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Abstract

The vanishing ideal of a set of points X ⊆ Rn
is the set of polynomials that evaluate to 0
over all points x ∈ X and admits an efficient
representation by a finite set of polynomials
called generators. To accommodate the noise
in the data set, we introduce the Conditional
Gradients Approximately Vanishing Ideal al-
gorithm (CGAVI) for the construction of the
set of generators of the approximately vanish-
ing ideal. The constructed set of generators
captures polynomial structures in data and
gives rise to a feature map that can, for ex-
ample, be used in combination with a linear
classifier for supervised learning. In CGAVI,
we construct the set of generators by solv-
ing specific instances of (constrained) con-
vex optimization problems with the Pairwise
Frank-Wolfe algorithm (PFW). Among other
things, the constructed generators inherit the
LASSO generalization bound and not only
vanish on the training but also on out-sample
data. Moreover, CGAVI admits a compact
representation of the approximately vanish-
ing ideal by constructing few generators with
sparse coefficient vectors.

1 Introduction

The accuracy of classification algorithms relies on the
quality of the available features. Naturally, feature
transformations are an important area of research in
the field of machine learning. In this paper, we focus
on feature transformations for a subsequently applied
linear kernel Support Vector Machine (SVM) (Suykens
and Vandewalle, 1999), an algorithm that achieves
high accuracy only if the features are such that the
different classes are linearly separable.
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Our approach is based on the idea that a set X =
{x1, . . . ,xm} ⊆ Rn can be succinctly described by the
set of algebraic equations satisfied by each point x ∈
X. Put differently, we seek polynomials g1, . . . , gk ∈ P
such that gi(x) = 0 for all x ∈ X and i ∈ {1, . . . , k},
where P is the polynomial ring in n variables. An
obvious candidate for a succinct description of X is
the vanishing ideal1 of X,

IX = {f ∈ P | f(x) = 0 for all x ∈ X}.

Even though IX contains an infinite number of van-
ishing polynomials, by Hilbert’s basis theorem (Cox
et al., 2013), there exists a finite number of generators
of IX , g1, . . . , gk ∈ IX with k ∈ N, such that for any
f ∈ IX , there exist h1, . . . , hk ∈ P such that

f =

k∑
i=1

gihi.

The generators have all the points in X as a common
root, implying that the set of generators captures the
nonlinear structure of the data set X and represents
the vanishing ideal IX . The construction of this set
of generators has received a lot of attention (Heldt
et al., 2009; Livni et al., 2013; Limbeck, 2013; Iraji
and Chitsaz, 2017).

The set of generators can be used to transform the
features of X such that linear separability is achieved
in the transformed feature space. For example, con-
sider the binary classification task of deciding whether
a tumor is cancerous or benign and suppose that the
sets Xc ⊆ X and Xb ⊆ X correspond to data points
of cancerous and benign tumors, respectively. Then,
generators g1, . . . , gk of IXc

provide a succinct charac-
terization of elements in the class of cancerous tumors
and vanish over Xc. For points x ∈ Xb, however, we
expect that for some i ∈ {1, . . . , k}, the polynomial gi
does not vanish over x, that is, gi(x) 6= 0. Similarly,
we construct a second set of generators of IXb

, rep-
resenting the benign tumors. Then, evaluating both

1A set of polynomials I ⊆ P is called an ideal if it is
a subgroup with respect to addition and for f ∈ I and
g ∈ P, we have f · g ∈ I.
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sets of generators over the entire data set X = Xc∪̇Xb

represents the data set X mapped into a new feature
space in which the two classes are (hopefully) linearly
separable. We further develop this idea in Section 7.

To accommodate the noise in the data set, we con-
struct generators g of the approximately vanishing
ideal instead of the vanishing ideal, where the approx-
imately vanishing ideal contains polynomials that al-
most vanish over X, that is, polynomials g such that
g(x) ≈ 0 instead of g(x) = 0 for all x ∈ X.

In this paper, we introduce the Conditional Gradients
Approximately Vanishing Ideal algorithm (CGAVI),
which takes as input a set of points X ⊆ Rn and con-
structs a set of generators of the approximately van-
ishing ideal over X. The novelty of our approach is
that CGAVI constructs the generators of the approxi-
mately vanishing ideal using an oracle (which solves
a (constrained) convex optimization problem), in our
case, via the Pairwise Frank-Wolfe algorithm (PFW)
(Guélat and Marcotte, 1986; Lacoste-Julien and Jaggi,
2015), whereas related methods such as the Approxi-
mate Vanishing Ideal algorithm (AVI) (Heldt et al.,
2009) and Vanishing Component Analysis (VCA) (Livni
et al., 2013) rely on Singular Value Decompositions
(SVD) to construct generators. Our approach admits
the following properties:

1. Generalization bounds: To the best of our
knowledge, CGAVI is the first algorithm that con-
structs generators that provably vanish approxi-
mately on out-sample data.

2. Compact transformation: CGAVI constructs a
small number of generators with sparse coefficient
vectors.

3. Blueprint: For the implementation of the ora-
cle in CGAVI, PFW can be replaced by any other
solver of (constrained) convex optimization prob-
lems. Thus, our paper gives rise to an entire fam-
ily of procedures for the construction of generators
of the approximately vanishing ideal.

4. Empirical results: For the combined approach
of constructing generators to transform features
for a linear kernel SVM, generators constructed
with CGAVI lead to test set classification errors
and evaluation times comparable to or better than
with related methods such as AVI and VCA.

2 Related works

2.1 Approximately vanishing ideal

The first algorithm for constructing generators of the
vanishing ideal was the Buchberger-Möller algorithm

(Möller and Buchberger, 1982). Its high susceptibil-
ity to noise was first addressed with the introduction
of AVI in Heldt et al. (2009), see also Fassino (2010);
Limbeck (2013). AVI is similar to CGAVI in that both
require a term ordering and construct generators as
linear combinations of monomials. The term order-
ing requirement is the reason why AVI and CGAVI can
produce different outputs depending on the order of
the features of the data set, an undesirable property
in practice. The currently most prevalent, and con-
trary to AVI and CGAVI, polynomial-based approach
for constructing generators of the approximately van-
ishing ideal is VCA, introduced by Livni et al. (2013)
and improved by Zhang (2018). VCA constructs gener-
ators not as linear combinations of monomials but of
polynomials, that is, VCA constructed generators are,
in some sense, polynomials whose terms are other poly-
nomials. Like most polynomial-based approaches, VCA
does not require an ordering of terms and the algo-
rithm has been exploited in hand posture recognition,
principal variety analysis for nonlinear data modeling,
solution selection using genetic programming, and in-
dependent signal estimation for blind source separa-
tion tasks (Zhao and Song, 2014; Iraji and Chitsaz,
2017; Kera and Iba, 2016; Wang and Ohtsuki, 2018).
Variants of VCA have also been studied in connection
with kernels (Király et al., 2014; Hou et al., 2016).
Despite VCA’s prevalence, foregoing the term ordering
of monomial-based approaches also gives rise to major
disadvantages. VCA constructs more generators than
AVI or CGAVI, VCA’s generators are non-sparse in their
polynomial representation, and VCA is highly suscepti-
ble to the spurious vanishing problem (Kera and Iba,
2016; Kera and Hasegawa, 2019, 2020): Polynomials
with small coefficient vector entries that vanish over
X still get added to the set of generators even though
they do not hold any structurally useful information
of the data, and, conversely, polynomials that describe
the data well get rejected as non-vanishing due to the
size of their (large) coefficient vector entries.

2.2 Conditional Gradients

The core difference between CGAVI, AVI, and VCA is the
replacement of the SVD steps in the latter two methods
with PFW calls to construct generators. PFW is a variant
of the Frank-Wolfe (Frank and Wolfe, 1956) or Condi-
tional Gradients (Levitin and Polyak, 1966) algorithm.
Conditional Gradients methods are a family of algo-
rithms which appear as building blocks in a variety
of scenarios in machine learning, e.g., structured pre-
diction (Jaggi and Sulovskỳ, 2010; Giesen et al., 2012;
Harchaoui et al., 2012; Freund et al., 2017; Garber
et al., 2018), optimal transport (Courty et al., 2016;
Paty and Cuturi, 2019; Luise et al., 2019), and video
co-localization (Joulin et al., 2014; Bojanowski et al.,
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2015; Peyre et al., 2017; Miech et al., 2018). They
have also been extensively studied theoretically, with
many algorithmic variations (Garber and Meshi, 2016;
Braun et al., 2017; Bashiri and Zhang, 2017; Braun
et al., 2019; Combettes and Pokutta, 2020; Carder-
era and Pokutta, 2020) and accelerated convergence
regimes (Garber and Hazan, 2013; Lacoste-Julien and
Jaggi, 2013; Garber and Hazan, 2015; Pena and Ro-
driguez, 2018; Gutman and Pena, 2018). Further-
more, Frank-Wolfe algorithms enjoy many appealing
properties (Jaggi, 2013); they are easy to implement,
projection-free, do not require affine pre-conditioners
(Kerdreux et al., 2021), and variants, e.g., PFW, offer
a simple trade-off between optimization accuracy and
sparsity of iterates. All these properties make them ap-
pealing algorithmic procedures for practitioners that
work at scale. Although Frank-Wolfe algorithms have
been considered in polynomial regression, particle fil-
tering, or as pruning methods of infinite RBMS (Blon-
del et al., 2017; Bach et al., 2012; Ping et al., 2016),
their favorable properties have not been exploited in
the context of approximately vanishing ideals.

3 Preliminaries

Throughout, let k,m, n ∈ N. For n ∈ N, let [n] :=
{1, . . . , n}. We denote vectors in bold and let 0,1 ∈ Rn
denote the 0- and 1-vector, respectively. Throughout,
we use capital calligraphic letters to denote sets of
polynomials and denote the sets of terms (or mono-
mials) and polynomials in n variables by T and P,
respectively. Given a polynomial f ∈ P, let deg(f)
denote its degree. We denote the set of polynomials
in n variables of and up to degree d by Pd and P≤d,
respectively. Given a set of polynomials G ⊆ P, let
Gd := G ∩ Pd and G≤d := G ∩ P≤d. Given a set of
polynomials G = {g1, . . . , gk} ⊆ P and vector x ∈ Rn,
define the evaluation vector of G over x as

G(x) := (g1(x), . . . , gk(x))ᵀ ∈ Rk.

Throughout, let X = {x1, . . . ,xm} ⊆ Rn be a data set
consisting of m n-dimensional feature vectors. Given
a polynomial f ∈ P and a set of polynomials G =
{g1, . . . , gk} ⊆ P, define the evaluation vector of f
and the evaluation matrix of G over X as

f(X) := (f(x1), . . . , f(xm))ᵀ ∈ Rm

and

G(X) := (g1(X), . . . , gk(X)) ∈ Rm,k,

respectively. Further, define the mean squared error
of f over X as

MSE(f,X) :=
1

m
‖f(X)‖22 .

Recall that we address noise in the data set by con-
structing approximately vanishing polynomials, which
we define via the mean squared error.

Definition 3.1 (Approximately vanishing polyno-
mial). Let X = {x1, . . . ,xm} ⊆ Rn and ψ ≥ 0. A
polynomial f ∈ P is ψ-approximately vanishing (over
X) if MSE(f,X) ≤ ψ.

Recall the spurious vanishing problem. For X =
{x1, . . . ,xm} ⊆ Rn, any polynomial f with
MSE(f,X) > ψ can be re-scaled to become ψ-
approximately vanishing, regardless of its roots, by
multiplying all coefficient vector entries of f with√

ψ
MSE(f,X) . To address this issue, we require an or-

dering of terms, in our case, the degree-lexicographical
ordering of terms (DegLex) (Cox et al., 2013), denoted
by <σ. For example, x <σ y <σ x

2 <σ xy <σ y
2 . . ..

Throughout, for O = {t1, . . . , tk}σ ⊆ T , the subscript
σ indicates that t1 <σ . . . <σ tk. DegLex allows us to
define the leading term (coefficient) of a polynomial.

Definition 3.2 (Leading term (coefficient)). Let f =∑k
i=1 citi ⊆ P. Define the leading term and leading

term coefficient of f as LT(f) := {ti | ti >σ tj ∀j 6= i}
and LTC(f) := {ci | ti >σ tj ∀j 6= i}, respectively.

For X = {x1, . . . ,xm} ⊆ Rn, a polynomial f with
LTC(f) = 1 that vanishes ψ-approximately over X is
called (ψ, 1)-approximately vanishing (over X). Fixing
the LTC of generators prevents rescaling, thus address-
ing the spurious vanishing problem. We now formally
define the approximately vanishing ideal.

Definition 3.3 (Approximately vanishing ideal). Let
X = {x1, . . . ,xm} ⊆ Rn and ψ ≥ 0. The ψ-

approximately vanishing ideal (over X), IψX , is the
ideal generated by all (ψ, 1)-approximately vanishing
polynomials over X.

Note that the definition above subsumes the definition
of the vanishing ideal, i.e., for ψ = 0, I0X = IX is the
vanishing ideal. In that case, we write IX instead of
I0X , omitting the superscript. In this paper, we intro-
duce an algorithm addressing the following problem.

Problem 3.4 (Setting). Let X = {x1, . . . ,xm} ⊆ Rn

and ψ ≥ 0. Construct a set of generators of IψX .

4 Convex optimization

To solve Problem 3.4, we first address the subproblem
of certifying (non-)existence of and constructing gen-

erators of the ψ-approximately vanishing ideal, IψX ,
under the restriction that terms of generators are con-
tained in a specific set of terms. As we show in this
section, this subtask can be reduced to solving a con-
vex optimization problem.
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Algorithm 1 ORACLE

Input: X = {x1, . . . ,xm} ⊆ Rn, O =
{t1, . . . , tk}σ ⊆ T , t ∈ T with t >σ ti for all i ∈ [k],
and ε ≥ 0.
Output: A polynomial g ∈ P with LT(g) = t,
LTC(g) = 1, other terms only in O, and MSE(g,X) ≤
minv∈R|O| `(O(X), t(X))(v) + ε.

Let X = {x1, . . . ,xm} ⊆ Rn, O = {t1, . . . , tk}σ ⊆ T ,
t ∈ T such that t >σ ti for all i ∈ [k], and ψ ≥ 0. We
present a method that constructs a polynomial g with
leading term t and other terms only in O such that
there exist (ψ, 1)-approximately vanishing polynomials
with leading term t and other terms only in O, if and
only if g is one of them.

Suppose there exists a (ψ, 1)-approximately vanishing

polynomial f =
∑k
i=1 citi+t with LT(f) = t and other

terms only in O. Let c = (c1, . . . , ck)ᵀ. Then,

ψ ≥ MSE(f,X) = `(O(X), t(X))(c)

≥ min
v∈Rk

`(O(X), t(X))(v), (1)

where for A ∈ Rm,n, y ∈ Rm, and x ∈ Rn,

`(A,y)(x) :=
1

m
‖Ax + y‖22 (SL)

is the squared loss. The right-hand side of (1) is a con-
vex optimization problem and in the argmin-version
has the form

d ∈ argminv∈Rk `(O(X), t(X))(v). (COP)

With d, we now construct the polynomial g =∑k
i=1 diti + t. Note that LT(g) = t, LTC(g) = 1,

and

min
v∈Rk

`(O(X), t(X))(v) =
1

m
‖O(X)d + t(X)‖22

= MSE(g,X).

Thus, g also vanishes (ψ, 1)-approximately over X, its
leading term is t, and all of its other terms are in O,
as required. We obtain the following result.

Theorem 4.1 (Certificate). Let X = {x1, . . . ,xm} ⊆
Rn, ψ ≥ 0, O = {t1, . . . tk}σ ⊆ T , t ∈ T such that
t >σ ti for all i ∈ [k], and d as in (COP). There
exists a (ψ, 1)-approximately vanishing polynomial f
with LT(f) = t and other terms only in O, if and only

if g =
∑k
i=1 diti + t vanishes (ψ, 1)-approximately.

The discussion above not only constitutes a proof
of Theorem 4.1 but also gives rise to an algorith-
mic blueprint, ORACLE, presented in Algorithm 1. We
denote the output of running ORACLE with X,O, t,

Algorithm 2 OAVI

Input: X = {x1, . . . ,xm} ⊆ Rn and ψ ≥ ε ≥ 0.
Output: G ⊆ P and O ⊆ T .

1: d← 1
2: O = {t1}σ ← {1}σ
3: G ← ∅
4: while ∂dO = {u1, . . . , uk}σ 6= ∅ do
5: for i = 1, . . . , k do
6: g ← ORACLE(X,O, ui, ε) ∈ P
7: if MSE(g,X) ≤ ψ then
8: G ← G ∪ {g}
9: else

10: O ← (O ∪ {ui})σ
11: end if
12: end for
13: d← d+ 1
14: end while

and ε by g = ORACLE(X,O, t, ε). In practice, any ε-
accurate solver of (COP), e.g., gradient descent, can
be used to implement ORACLE in two steps: First, solve
problem (COP) to ε-accuracy with the solver yield-
ing a vector d ∈ R|O|. Second, construct and return

g =
∑|O|
i=1 diti + t. We then say that the ε-accurate

solver is used as ORACLE. If, for example, we imple-
ment ORACLE with gradient descent, we say that we
use gradient descent as ORACLE.

In case that ORACLE is implemented with an accurate
solver of (COP), that is, ε = 0, by Theorem 4.1, either
MSE(g,X) > ψ and we have proof that no (ψ, 1)-
approximately vanishing polynomial with leading term
t and other terms only in O exists, or g vanishes (ψ, 1)-
approximately with leading term t and other terms
only in O.2

5 The OAVI algorithm

In this section, we give a detailed description of the Or-
acle Approximately Vanishing Ideal algorithm (OAVI),
which we refer to as CGAVI when the ORACLE used is a
Conditional Gradients algorithm. OAVI is presented in
Algorithm 2 and we analyze its properties in Section 6.

Input: Recall Problem 3.4. Our goal is to con-
struct generators of the ψ-approximately vanishing
ideal, IψX , where ψ is a tolerance introduced to con-
trol how strongly polynomials vanish over the data
X = {x1, . . . ,xm} ⊆ Rn. During its execution, OAVI
makes calls to ORACLE, the accuracy of which is con-
trolled by the tolerance ε.

To avoid cumbersome notation, we motivate OAVI for

2Here, we focus on ε = 0 for ease of exposition. We
discuss the case when ε > 0 in Theorem 6.2.
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ψ = ε = 0, that is, we focus on the construction of
generators of the vanishing ideal IX assuming access
to an accurate solver of (COP).

Initialization: We keep track of two sets: O ⊆ T
for the set of terms such that no generator exists with
terms only in O and G ⊆ P the set of generators.
Since the constant 1 polynomial does not vanish, we
initialize O = {t1}σ ← {1}σ and G ← ∅.

Line 4: After constructing degree d−1 generators, in
a next step, given O≤d−1 and G≤d−1, OAVI constructs
all vanishing polynomials of degree d. Checking for all(
n
d

)
monomials of degree d whether one of them is the

leading term of a generator is impractical. Instead,
note that there exists a set of generators G of IX such
that none of the terms of generators in G are divisible3

by the leading terms of other generators in G.

Lemma 5.1. Let X = {x1, . . . ,xm} ⊆ Rn. There
exists a set of generators G ⊆ P of IX such that for
g, h ∈ G,g 6= h, h =

∑k
i=1 citi ∈ G, LT(g) - ti for any

i ∈ [k].

To construct degree d generators, we thus only con-
sider terms t ∈ Td such that for all g ∈ G≤d−1,
LT(g) - t. This is equivalent to requiring that all divi-
sors of degree ≤ d− 1 of t are in O≤d−1.

Definition 5.2 (Border). Let O ⊆ Td−1. The (degree
d) border of O is defined as ∂dO := {u ∈ Td : t ∈
O≤d−1 for all t ∈ T≤d−1 such that t | u}.

In other words, we only consider degree d terms that
are contained in the border, drastically reducing the
number of redundant generators constructed.

While loop: Suppose that ∂dO 6= ∅, else OAVI ter-
minates. For each term u ∈ ∂dO, starting with the
smallest with respect to <σ, we construct a polynomial
g via a call to ORACLE. By Theorem 4.1, there exists a
vanishing polynomial f with LTC(f) = 1, LT(f) = u,
and other terms only in O, if and only if g is a vanish-
ing polynomial. If g vanishes, we append g to G. If g
does not vanish, we append LT(g) = u to O.

Termination: For bounded data X ⊆ [−1, 1]n4, the
border is guaranteed to become empty and the algo-
rithm terminates, see Theorem 6.1.

Output: Throughout, we denote the output of OAVI
by G and O, that is, (G,O) = OAVI(X,ψ, ε).

3Recall that for t, u ∈ T , t divides (or is a divisor of)
u, denoted t | u, if there exists s ∈ T such that t · s = u. If
t does not divide u, we write t - u.

4Bounded data can, for example, be obtained via min-
max feature scaling.

Remark 5.3 (AVI and VCA). We use the notation from
this paper to refer to the sets corresponding to O, G,
and ∂dO in AVI and VCA even though notation in Heldt
et al. (2009) and Livni et al. (2013), respectively, may
differ. For AVI, O, G, and ∂dO are identical to the sets
used in OAVI. AVI does, however, employ an SVD step to
determine all generators with leading terms in the bor-
der at once. VCA employs a similar SVD step as AVI for
generator construction. The main difference between
OAVI, AVI, and VCA is that the latter is polynomial-
based. Indeed, the set O in VCA does not contain
monomials but polynomials that provably do not van-
ish approximately over the data. Thus, VCA does not
require a term ordering. The disadvantage of avoiding
the term ordering is that the border in VCA cannot be
defined as in Definition 5.2 but is instead defined as
∂dO := {u ∈ Td | u = s · t for s ∈ O1 and t ∈ Od−1, },
which can lead to the construction of unnecessary gen-
erators. For example, suppose that O1 = {t1, . . . , tn}
and O2 = {t21}. By construction, t1tj and titj are
leading terms of approximately vanishing polynomi-
als for all i, j ∈ {2, . . . , n} and, by Lemma 5.1, there
is no need to consider generators with leading terms
t21t2, . . . t

2
1tn. This is exploited in the border of OAVI

and AVI, for which ∂3O = {t31}, but the border for
VCA is ∂3O = {t31, t21t2 . . . , t21tn}, which can lead to the
construction of n− 1 unnecessary generators.

6 Analysis

We begin the analysis of OAVI by proving that the
algorithm terminates.

Theorem 6.1 (Termination). Let X =
{x1, . . . ,xm} ⊆ [−1, 1]n, ψ ≥ ε ≥ 0, and
(G,O) = OAVI(X,ψ, ε). Then, OAVI terminates.

Thus, for ε = 0, OAVI constructs a set of genera-
tors of the ψ-approximately vanishing ideal in finite
time. Since, in practice, we employ solvers that are
ε-accurate only for ε > 0, in the theorem below, we
prove that when ε > 0, OAVI addresses Problem 3.4
up to tolerance ε.

Theorem 6.2 (Maximality). Let X =
{x1, . . . ,xm} ⊆ [−1, 1]n, ψ ≥ ε ≥ 0, and
(G,O) = OAVI(X,ψ, ε). Then, all g ∈ G 6= ∅
are (ψ, 1)-approximately vanishing polynomials and
there does not exist a (ψ − ε, 1)-approximately
vanishing polynomial with terms only in O.

Thus, OAVI is guaranteed to construct all (ψ − ε, 1)-
approximately vanishing polynomials but generators
that vanish (λ, 1)-approximately, where λ ∈]ψ − ε, ψ],
may not be detected by OAVI.
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6.1 Computational complexity

For bounded data X ⊆ [−1, 1]n, OAVI returns bounded
|G| and |O|, a useful property for discussing time and
space complexity.

Proposition 6.3. Let X = {x1, . . . ,xm} ⊆ [−1, 1]n,
ψ ≥ ε ≥ 0, and (G,O) = OAVI(X,ψ, ε). Then, |O| ≤
m and |G| ≤ |O|n ≤ mn.

Proposition 6.3 is an essential tool for the analysis of
the computational complexity of OAVI.

Theorem 6.4 (Computational Complexity). Let X =
{x1, . . . ,xm} ⊆ [−1, 1]n, ψ ≥ ε ≥ 0, and (G,O) =
OAVI(X,ψ, ε). In the real number model, the time and
space complexities of OAVI are O(m2n2 + mnTORACLE)
and O(m2n+SORACLE), where TORACLE and SORACLE are the
time and space complexities of ORACLE, respectively.

As we prove in the adaptation of Theorem 5.1 in Livni
et al. (2013) to OAVI below, the evaluation complexity
of OAVI’s output is identical to that of related methods
such as AVI and VCA.

Theorem 6.5 (Evaluation Complexity). Let X =
{x1, . . . ,xm} ⊆ [−1, 1]n, ψ ≥ ε ≥ 0, and (G,O) =
OAVI(X,ψ, ε). In the real number model, we can com-
pute the evaluation vectors of all monomials in O
and polynomials in G over a set Z = {z1, . . . , zq} ⊆
[−1, 1]n in time O(|O|q) and O(|G||O|q), respectively.

To reduce the time required to evaluate the feature
transformation on new data Z, one can reduce the
number of terms in O, construct fewer polynomials in
G, increase the sparsity of polynomials in G, or reduce
the number of samples in the set Z.

6.2 Generalization bounds

So far, the construction of generators for OAVI with
ORACLE involves solving an unconstrained convex op-
timization problem. In this section, we replace (COP)
with a constrained convex optimization problem and
show that this replacement allows OAVI to create gen-
erators that approximately vanish not only over in-
sample but also over out-sample data.

For τ ≥ 2, a polynomial f =
∑k
i=1 citi ∈ P with

c = (c1, . . . , ck)ᵀ is said to be τ -bounded in norm ‖ · ‖
if the norm of its coefficient vector is bounded by τ ,
that is, if ‖f‖ := ‖c‖ ≤ τ . Replacing (COP) by

d ∈ argminv∈Rk,‖v‖≤τ−1 `(O(X), t(X))(v) (CCOP)

allows OAVI to create τ -bounded generators in ‖ · ‖.
When ‖ · ‖ = ‖ · ‖1, (CCOP) is the bounded LASSO,
for which generalization bounds are available, see, e.g.,
Mohri et al. (2018). Thus, τ -bounded generators con-
structed by OAVI also vanish on out-sample data.

Theorem 6.6 (Vanishing property). Let X ⊆
[−1, 1]n, Y ⊆ [−1, 1], D be a distribution over X × Y,
S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m sampled ac-
cording to D, and X = {x1, . . . ,xm}. Let ψ ≥ ε ≥ 0,
τ ≥ 2, and (G,O) = OAVI(X,ψ, ε). Suppose that for
all g ∈ G, we have ‖g‖1 ≤ τ . Then, for any g ∈ G and
δ > 0, with probability at least 1− δ, we have

E(x,y)vD [MSE(g, {x})]

≤ MSE(g,X) + 2τ2
√

2 log(2m)

m
+ τ2

√
log(δ−1)

2m
.

Generators created by AVI and VCA are not guaran-
teed to be τ -bounded and, thus, in general, do not
satisfy Theorem 6.6. On the other hand, generators
constructed by OAVI with an ORACLE solving (CCOP)
instead of (COP) are guaranteed to be τ -bounded in
‖ · ‖1 due to the equivalence of norms in finite dimen-
sions and, thus, vanish also on out-sample data.

We extend our analysis of generalization bounds in
Appendix B. Specifically, in Theorem B.3, we present
sufficient conditions under which feature transforma-
tion algorithms in combination with a linear kernel SVM
inherit the margin bound of the SVM.

6.3 On approximately vanishing

In Definition 3.1, the mean squared error is used to
define approximately vanishing polynomials but other
options are possible. In AVI, for example, a polynomial
f ∈ P vanishes ψ-approximately over X ⊆ [−1, 1]n

if ‖f(X)‖2 ≤ ψ. However, definitions of vanishing
approximately that are less similar to ours are imag-
inable. We could, for example, define vanishing ψ-
approximately via the maximum loss instead, that is,
f would be defined as vanishing ψ-approximately over
X if |f(x)| ≤ ψ for all x ∈ X. Minimizing the max-
imum loss instead of the squared loss in (COP) re-
sults in a convex-concave optimization problem that
has to be addressed with specific solvers, for exam-
ple via the method described in Shalev-Shwartz and
Wexler (2016).

In this paper, we limit ourselves to adding an `2-
regularization term λ

2 ‖x‖
2
2 to (SL). Then, a polyno-

mial f =
∑k
i=1 citi + t ∈ P with LT(f) = t vanishes

(ψ, 1)-approximately over X if

MSE(f,X) +
λ

2
‖(c1, . . . , ck)ᵀ‖22 ≤ ψ.

Setting λ > 0 can prolong the running time of OAVI or
make termination impossible altogether. Furthermore,
|G| and |O| are no longer guaranteed to be bounded.
In our practical experiments, however, these negative
properties do not seem to be present, see Section 9.



Elias Wirth, Sebastian Pokutta

7 Pipeline

Following the notation of Mohri et al. (2018), we
present a detailed overview of the machine learning
pipeline for classification problems using generators of
the vanishing ideal to transform features for a linear
kernel SVM.

Consider an input space X ⊆ [−1, 1]n and an output
or target space Y = [k]. We receive a training sam-
ple S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m drawn
i.i.d. from some unknown distribution D. The prob-
lem is to determine a hypothesis h : X → Y with small
generalization error

P(x,y)vD[h(x) 6= y].

Let X = {x1, . . . ,xm}. For each class i ∈ [k], let Xi ⊆
X denote the set of feature vectors corresponding to

class i and construct a set of generators Gi = {g(i)j }
|Gi|
j=1

for the vanishing ideal IXi . As proposed in Livni et al.
(2013), we can then transform samples x ∈ X via the
feature transformation

x 7→ x̃ =
(
. . . , |g(i)1 (x)|, . . . , |g(i)|Gi|(x)|, . . .

)ᵀ
, (FT)

where g
(i)
j is the j-th vanishing polynomial correspond-

ing to class i. In other words, g
(i)
j vanishes over all x ∈

Xi and (hopefully) attains non-zero values over points
x ∈ X \Xi. We then train a linear kernel SVM on the
feature transformed data S̃ = {(x̃1, y1), . . . , (x̃m, ym)}
with `1-regularization to keep the number of used fea-
tures as small as possible. As shown in Livni et al.
(2013), if the underlying classes of S belong to disjoint
algebraic sets5, they become linearly separable in the
feature space corresponding to transformation (FT). If
we restrict the number and norm of the coefficient vec-
tors of generators used to transform the features, e.g.,
by bounding the maximum degree of generators and,
in the case of OAVI, replacing (COP) by (CCOP), this
combination of feature transformation and SVM satis-
fies Theorem B.3, guaranteeing that test set accuracy
improves as the number of training samples increases.

8 Putting the CG in CGAVI

Any algorithm guaranteeing an ε-accurate solution to
(COP) or (CCOP) can be used to construct the poly-
nomial g returned by ORACLE, allowing the practitioner
to choose a solver with specific properties for any given
task. Our goal is to construct a set of generators G
consisting of few and sparse polynomials to obtain a

5Recall that a set U ∈ Rn is algebraic if there exists a
finite set of polynomials U = {u1, . . . , uk} ⊆ P, such that
U is the set of the common roots of U .

compact representation of the approximately vanish-
ing ideal. The former property is already achieved
by restricting leading terms of generators to be in the
border, see Section 5. The latter property, we address
with our choice of solver for (COP) or (CCOP).

To do so, we formalize the notion of sparsity. Con-
sider the execution of OAVI (or AVI) and suppose that,

currently, O = {t1, . . . , tk} and g =
∑k
i=1 citi + t with

LT(g) = t 6∈ O gets appended to G. Let the number
of entries, the number of zero entries, and the num-
ber of non-zero entries in the coefficient vector of g be
denoted by ge := k, gz := |{ci = 0 | i ∈ [k]}|, and
gn := ge − gz, respectively.6 We then define the spar-
sity of g as SPAR(g) := gz/ge ∈ [0, 1]. Larger SPAR(g)
indicates a more thinly populated coefficient vector of
g. Recall that for classification as in Section 7 we con-
struct sets of vanishing polynomials Gi corresponding
to classes i and then transform the samples via (FT)
using all polynomials in G :=

⋃
i Gi. To measure spar-

sity of the feature transformation, define the sparsity
of G as

SPAR(G) :=

∑
g∈G gz∑
g∈G ge

∈ [0, 1], (SPAR)

which is the weighted average of the sparsity of all
polynomials in G with respect to ge.

In this paper, we focus on the implementation of
ORACLE with the Pairwise Frank-Wolfe algorithm
(PFW), presented in Algorithm 3 in Appendix C.
The algorithm converges linearly when optimizing the
squared loss over the `1-ball using line search for its
step-size rule and the iterate returned by PFW tends
to be sparse (Lacoste-Julien and Jaggi, 2015). Fur-
thermore, when optimizing over a bounded region, the
returned iterate is bounded and the corresponding gen-
erator constructed in ORACLE is bounded, which is nec-
essary for the generalization bounds presented in this
paper, Theorems 6.6 and B.3, to hold.

9 Numerical experiments

We use different algorithms that construct generators
of the approximately vanishing ideal to transform fea-
tures for a linear kernel SVM and compare them to each
other and a polynomial kernel SVM.

Set-up. We apply different feature transformation
algorithms for a linear kernel SVM using the set-up from
Section 7 and a polynomial kernel SVM to classification
problems. Let G :=

⋃
i Gi, where Gi is the set of gener-

ators constructed for class i as in Section 8. We com-
pare the number of generators constructed,

∑
i |Gi|,

6For VCA, define ge, gz, and gn with respect to the rep-
resentation of g as a linear combination of polynomials.
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Table 1: Overview of the data sets used in the numerical experiments. Each row contains the data set used, its
full name, the number of samples, the number of features, and the number of classes.

Data set Full name # samples # features # classes
bank banknote authentication 1372 4 2
cancer breast cancer Wisconsin 569 30 2
htru2 HTRU2 (Lyon et al., 2016) 17898 8 2
iris iris 150 4 3
seeds seeds 210 7 3
sonar connectionist bench (sonar, mines vs. rocks) 208 60 2
spam spambase 4601 57 2
voice LSVT voice rehabilitation (Tsanas et al., 2013) 126 310 2
wine wine 178 13 3

the sparsity of the feature transformation, (SPAR), the
number of non-zero entries in the coefficient vectors of
generators in G,

∑
g∈G gn, the test time in seconds,

Test time, and the classification error on the test set
in %, Test error. The results are averaged over ten
random 60%/40% train/test partitions.

Implementation. All experiments are performed
on an NVIDIA TITAN RTX GPU with 24GB RAM
and a 64-core AMD Ryzen Threadripper 3990X CPU
at 3.30 GHz with 128 GB RAM. Our code is publicly
available on GitHub. The algorithms are:
`1-CGAVI: We implement OAVI with PFW and `2-
regularized squared loss as ORACLE for (CCOP) with
ε = ψ/2 and radius τ = 507 using line search. PFW

is terminated when the polynomial corresponding to
the constructed iterate is guaranteed to vanish ψ-
approximately, if the Frank-Wolfe gap is smaller than
ε, or if no significant progress is made during an iter-
ation.
`2-CGAVI: The implementation is identical to `1-CGAVI,
except that we replace PFW with vanilla Conditional
Gradients and the `1- by the `2-ball.
AGDAVI: We implement Accelerated Gradient Descent
(AGD) (Nesterov, 1983) with `2-regularized squared loss
as ORACLE in OAVI. AGD is terminated when the polyno-
mial corresponding to the constructed iterate is guar-
anteed to vanish ψ-approximately or if no significant
progress is made over 5 iterations.
AVI: We implement AVI as in Heldt et al. (2009) with
improved Stabilized Reduced Row Echelon Form algo-
rithm as in Limbeck (2013).
VCA: We implement VCA as in Livni et al. (2013).
SVM: We implement a polynomial kernel multiclass SVM
with one-versus-rest approach using the scikit-learn
software package (Pedregosa et al., 2011). We run the
SVM up to tolerance 1e-3 with `2-regularization. For
the SVM,

∑
i |Gi|, (SPAR), and

∑
g∈G gn do not exist.

All algorithms above are terminated after constructing

7We observe that the radii of the feasibility regions do
not affect the numerical results when chosen sufficiently
large and that the effect of ε ∈]0, ψ[ is small.

degree 10 polynomials, even if the upcoming border is
not empty. After applying the algorithms, except for
SVM, we subsequently apply a linear kernel SVM as in
Section 7. We implement the linear kernel SVM us-
ing the scikit-learn software package and run it for
up to 1000 iterations, up to tolerance 1e-4, with `1-
penalized squared hinge loss, and one versus the rest
approach.

The abbreviations for the feature transformation al-
gorithms above also refer to the complete approach of
feature transformation with subsequently applied lin-
ear kernel SVM. Further, OAVI refers to `1-CGAVI, `2-
CGAVI, and AGDAVI.

Data sets. All data sets are retrieved from the UCI
Machine Learning Repository (Dua and Graff, 2017).
An overview is given in Table 1. For each data set, we
apply min-max feature scaling into the range [0, 1] as
a preprocessing step.

Hyperparameters. We tune the hyperparameters
using three-fold cross-validation. For all approaches
except the polynomial kernel SVM, we tune the `1-
regularization coefficient for the linear kernel SVM. For
OAVI, we tune the vanishing parameter ψ and the `2-
regularization parameter. For AVI, we tune the van-
ishing parameter ψ and the tolerance τ controlling the
sparsity of the constructed generators. For VCA, we
tune the vanishing parameter ψ. For the polynomial
kernel SVM, we tune the `2-regularization parameter
and the degree of the polynomial kernel.

Results.∑
i |Gi|: As can be seen by Table 2, for all data sets ex-

cept for bank and cancer, OAVI constructs fewer gener-
ators than AVI and VCA. For seeds, sonar, spam, voice,
and wine, VCA constructs up to an order of magnitude
more generators than OAVI due to employing a differ-
ent border set as discussed in Remark 5.3. For most
data sets, AVI also produces significantly more gen-
erators than OAVI but the reason for this is not yet
understood.

https://github.com/ZIB-IOL/cgavi/releases/tag/v1.0.0
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Table 2: We compare the number of generators constructed,
∑
i |Gi|, the sparsity of the feature transformation,

(SPAR), the number of non-zero entries in the coefficient vectors of generators in G,
∑
g∈G gn, the test time in

seconds, Test time, and the classification error on the test set in %, Test error. The results are averaged over
ten random 60%/40% train/test partitions and the best results in each category are in bold.

Algorithms
Data sets

bank cancer htru2 iris seeds sonar spam voice wine

∑ i
|G

i
|

`1-CGAVI 19 153 20 13 26 345 118 649 79
`2-CGAVI 17 115 22 13 24 399 122 631 116
AGDAVI 21 132 18 14 25 475 120 622 95
AVI 15 288 101 22 47 1205 123 1204 201
VCA 14 104 81 99 332 3350 2413 1789 505

(S
P

A
R

)

`1-CGAVI 0.65 0.54 0.53 0.15 0.13 0.82 0.37 0.36 0.51
`2-CGAVI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AGDAVI 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
AVI 0.01 0.03 0.02 0.00 0.05 0.02 0.04 0.06 0.03
VCA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∑ g
g n

`1-CGAVI 6.8e+1 5.2e+2 4.2e+1 3.0e+1 9.9e+1 1.2e+3 2.4e+2 1.9e+3 2.5e+2
`2-CGAVI 1.3e+2 1.3e+3 1.2e+2 4.0e+1 7.8e+1 9.5e+3 4.5e+2 2.5e+3 2.0e+3
AGDAVI 2.2e+2 1.8e+3 7.3e+1 5.0e+1 1.3e+2 1.2e+4 4.1e+2 1.8e+3 1.6e+3
AVI 7.1e+1 1.2e+4 2.4e+3 1.3e+2 3.8e+2 6.5e+4 3.7e+2 2.3e+4 4.6e+3
VCA 1.7e+2 8.4e+3 4.7e+3 4.3e+3 3.8e+4 4.5e+6 4.0e+6 1.7e+6 9.0e+4

T
es

t
ti

m
e

`1-CGAVI 2.2e-3 1.1e-3 1.8e-3 9.1e-4 1.1e-3 1.8e-3 1.3e-3 1.1e-3 1.9e-3
`2-CGAVI 2.0e-3 9.1e-4 1.9e-3 1.1e-3 8.4e-4 2.1e-3 1.4e-3 1.1e-3 3.1e-3
AGDAVI 2.6e-3 1.1e-3 1.6e-3 1.2e-3 1.2e-3 2.5e-3 1.5e-3 6.9e-4 2.5e-3
AVI 1.2e-3 1.6e-3 3.7e-3 1.6e-3 1.7e-3 2.1e-3 1.2e-3 1.5e-3 2.0e-3
VCA 7.6e-4 8.9e-4 2.3e-3 2.6e-3 3.2e-3 2.5e-3 8.5e-3 1.5e-3 2.4e-3
SVM 3.4e-4 3.8e-4 8.3e-2 1.6e-4 2.2e-4 3.2e-4 2.8e-2 2.6e-4 2.0e-4

T
es

t
er

ro
r

`1-CGAVI 0.09 3.42 2.05 4.33 5.95 20.95 5.90 19.80 2.08
`2-CGAVI 0.05 3.29 2.09 4.17 5.48 19.88 6.08 18.24 2.64
AGDAVI 0.09 3.38 2.10 4.33 6.43 17.50 5.92 21.76 1.94
AVI 0.00 3.46 2.11 4.00 4.76 26.43 6.64 23.14 3.33
VCA 0.00 5.44 2.15 4.17 5.71 31.90 7.13 29.02 3.06
SVM 0.00 2.72 2.05 3.17 6.79 21.07 7.22 18.43 3.19

(SPAR): `1-CGAVI produces sparse, AVI less sparse,
and other algorithms practically non-sparse feature
transformations.∑
g∈G gn: For all data sets but seeds and voice, `1-

CGAVI creates the feature transformation with the
smallest number of non-zero entries in the coefficient
vectors of generators in G. `2-CGAVI, AGDAVI, and AVI

produce similar amounts of non-zero entries. Since VCA
constructs a lot of generators, VCA often constructs
the most non-zero entries. For seeds, sonar, spam,
and voice, VCA constructs multiple orders of magni-
tude more non-zero entries than other algorithms.
Test time: The test times for the SVM are the fastest for
small data sets. For large data sets, that is, htru2 and
spam, the SVM is slower than the other approaches by
a factor of at least 3. The test times for the monomial-
based algorithms `1-CGAVI, `2-CGAVI, AGDAVI, and AVI

are very similar. Since `1-CGAVI represents the approx-
imately vanishing ideal with few and sparse genera-
tors, for all data sets except for bank and cancer, `1-
CGAVI enjoys either the second-fastest or third-fastest
test time. Except for bank and cancer, VCA’s test time
is slow. Especially for spam, a large data set with a
lot of features, VCA’s test time is 5 times slower than

the test times of the monomial-based approaches and
the polynomial kernel SVM.
Test error: All six algorithms enjoy comparable error
rates on the test set. For most data sets, VCA tends
to perform slightly worse than the other algorithms,
especially on cancer, sonar, spam, and voice. OAVI

tends to outperform the SVM on more complex data
sets, whereas on easier data sets, the SVM has better
baseline results.

10 Discussion

Here we present an ORACLE-based approach for the
construction of generators of the approximately van-
ishing ideal. OAVI constructs few and, in the case of
`1-CGAVI, sparse generators. Most importantly, this
compact representation of the approximately vanish-
ing ideal does not lead to worse error rates on the
test set but sometimes leads to superior generalization
performance than AVI, VCA, and the polynomial ker-
nel SVM. Under mild assumptions, we also derive two
generalization bounds for CGAVI.
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A Proofs

A.1 Proof of Lemma 5.1.

Proof of Lemma 5.1. By Hilbert’s basis theorem (Cox et al., 2013), there exists a finite set of generators G ⊆ P of
IX . We modify G such that it satisfies the property described in the lemma while remaining a set of generators
of IX . Let h =

∑k
i=1 citi ∈ G for some k ∈ N and let tj , j ∈ [k], be the <σ-largest term which is divisible

by the leading term of any generator in G other than h, that is, tj ≥σ t for all t ∈ {ti : i ∈ [k],∃g ∈ G, g 6=
h, such that LT(g) | ti}. Let g ∈ G such that LT(g) | tj . Since both h and g vanish, so does h̄ = h − cj

LTC(g)g.

Further, either none of the terms in h̄ are divisible by leading terms of generators in G other than h, or the
new <σ-largest term in h̄ divisible by the leading term of some generator in G other than h is <σ-smaller than
tj . Repeatedly applying this procedure results in a formulation h =

∑
i αigi + h̃, where αi ∈ R for all i ∈ [k]

and h̃ ∈ P is a vanishing polynomial none of whose terms are divisible by the leading terms of generators in
G other than h. We can thus replace h in G by h̃ and the updated G is still a set of generators. Performing
this procedure for all generators in G, from the generator with <σ-smallest leading term to the generator with
<σ-largest leading term, transforms G into a set of generators with the property described in the lemma.

A.2 Proof of Theorem 6.1

Proof of Theorem 6.1. Let i ∈ N≥1. Since X ⊆ [−1, 1]n is bounded, for any term t ∈ T1, we have that

1

m

∥∥ti+2(X)− ti(X)
∥∥2
2
≤ 2(max{|t(x)| : x ∈ X, |t(x)| < 1|})i.

As i → ∞, the right-hand side tends to 0. Consider the polynomial g := ti+2 − ti. Then, for any ψ ≥ ε ≥ 0,
there exists i∗ ∈ N such that

MSE(g,X) =
1

m

∥∥∥t(X)i
∗+2 − t(X)i

∗
∥∥∥2
2
≤ ε ≤ ψ.

Thus, if no polynomial with leading term divisible by t is appended to G before reaching degree i∗ + 2, OAVI
appends a polynomial g with LT(g) = ti

∗+2 to G. The same observation holds for all other terms in T1 and,
thus, there exists a degree d∗ ∈ N such that for any t ∈ T1, there exists a polynomial g ∈ G with degree at most
d∗ and t | LT(g). Therefore, all terms in ∂d∗n+1O are divisible by at least one leading term of a polynomial in G
and ∂d∗n+1O = ∅, guaranteeing termination of OAVI.

A.3 Proof of Theorem 6.2

Proof of Theorem 6.2. We prove the first statement. By Theorem 6.1, OAVI terminates with G 6= ∅. Thus,
by construction, at the end of OAVI’s execution, G contains (ψ, 1)-approximately vanishing polynomials. For
the second statement, suppose towards a contradiction that there exists a (ψ − ε, 1)-approximately vanishing
polynomial f with terms only in O and LT(f) = t ∈ O. Let U := {u ∈ O | t >σ u} = {u1, . . . , uk}σ. At
some point during its execution OAVI constructs a polynomial g with LT(g) = t and other terms only in U . By
ε-accuracy of ORACLE,

MSE(g,X) ≤ min
v∈Rk

1

m
‖U(X)v + t(X)‖22 + ε ≤ MSE(f,X) + ε ≤ ψ − ε+ ε ≤ ψ,

a contradiction.

A.4 Proof of Proposition 6.3

Proof of Proposition 6.3. Consider the execution of OAVI with X and ψ ≥ ε ≥ 0. Suppose that OAVI is currently
inside the while loop corresponding to O = {t1, . . . , tm}σ and border ∂dO. Should this never occur, |O| ≤ m
is satisfied automatically. Let R ⊆ Td denote the remaining terms in ∂dO for which OAVI has not yet checked
whether they are leading terms of approximately vanishing polynomials. Since the m columns of O(X) are
linearly independent, for any u ∈ R, there exists c ∈ Rm such that

O(X)c + u(X) = 0.
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Hence, there exists a (0, 1)-approximately vanishing polynomial with leading term u and other terms only in O.
By ε-accuracy of ORACLE, ψ ≥ ε, and Theorem 4.1, OAVI appends a (ψ, 1)-approximately vanishing polynomial
with leading term u and other terms only in O to G. Since this observation holds for any term in the remainder
of the current border or the upcoming border, that is, R or ∂d+1O, respectively, no more terms get appended to
O. If no terms get appended to O for all terms in the border corresponding to a specific degree, then the border
corresponding to the next higher degree is empty and OAVI terminates, proving the first statement.

For the second statement, suppose that OAVI terminates after performing the while loop corresponding to
degree D ∈ N. By construction, leading terms of polynomials in G are contained in

⋃D
d=1 ∂dO. Hence,

|G| ≤
∣∣∣⋃Dd=1 ∂dO

∣∣∣ ≤ |O|n ≤ mn.

A.5 Proof of Theorem 6.4

Proof of Theorem 6.4. By Theorem 6.1, OAVI is guaranteed to terminate. Suppose that OAVI terminates after
performing the while loop corresponding to degree D ∈ N. We first address the computational cost of OAVI,
which is determined by two factors, the time required to construct the evaluation vectors of terms contained in
any border, i.e.,

⋃D
d=1 ∂dO, and the time required to perform all the calls to ORACLE, which is exactly once for

every term in
⋃D
d=1 ∂dO.

We start with a brief overview of how the degree d border, ∂dO, is constructed in OAVI. First, we construct
Cd = {u ∈ Td | u = s · t for s ∈ O1 and t ∈ Od−1}, a superset of ∂dO. Second, we determine Cd \∂dO, that is, the
set of terms u ∈ Cd such that there exists a polynomial g ∈ G≤d−1 with LT (g) | u. Third, we remove Cd \ ∂dO
from Cd to obtain ∂dO. Fourth, we evaluate all terms in ∂dO.

We now show that it requires time O(m2n2) to construct
⋃D
d=1 ∂dO and the evaluation vectors of terms therein.

Note that the evaluation vectors of terms in ∂1O are identical to the elements of input X of OAVI and thus
require time O(1) to construct. We thus consider any d ∈ {2, . . . , D} and suppose that Oi, Gi, and ∂iO and the
evaluation vectors of Oi, Gi, and ∂iO are already determined for all i ≤ d− 1. First, assuming that multiplying
two terms requires constant time, to construct Cd, every term in Od−1 gets multiplied by all terms in O1 exactly
once, requiring a total of O(|Od−1|n) multiplications of terms. Second, assuming that it takes constant time to
determine whether a term is divisible by another term, it requires time O(|Cd||G≤d−1|) ≤ O(|Cd||G|) to determine
all terms in Cd that have to be deleted. Third, assuming that a term can be deleted in constant time, it
takes O(|Cd|) time to perform all deletions of terms in Cd. Fourth, evaluating a term t ∈ ∂dO requires entry-
wise multiplication of two m-dimensional evaluation vectors of terms in O≤d−1, requiring time O(m). Since
we have to evaluate at most |Cd| terms, the evaluation step requires time O(|Cd|m). Thus, it requires time
O(|Cd|(|G| + 1 + m)) = O(|Cd||G|) to construct the evaluation vectors of terms in ∂dO, where equality follows

due to Proposition 6.3. Thus, to construct
⋃D
d=1 ∂dO and the evaluation vectors of terms therein, it requires

time O(
∑D
d=1 |Cd||G|) = O(|C||G|) = O(m2n2), where the first equality holds because the sets Cd for d ∈ [D] are

pairwise disjoint and the second equality holds due to O(|C|) = O(|O||O1|) = O(mn) and Proposition 6.3.

We next determine the time complexity of the ORACLE calls during OAVI’s execution. ORACLE is called exactly
once for every border term, i.e., O(|

⋃D
d=1 ∂dO|) = O(|G| + |O|) = O(mn) times, requiring time O(mnTORACLE).

Thus, OAVI’s total time complexity is O(m2n2 +mnTORACLE).

Throughout the algorithm’s execution, we store O, G, and C, and the evaluation vectors of terms therein.
Assuming that we can store a term t ∈ T and the corresponding evaluation vector t(X) ∈ Rm in space O(m),
OAVI requires space O((|C|+ |G|+ |O|)m) = O(m2n). To store the generators in G, we further store |G| vectors of
length O(m). Since the space complexity of ORACLE affects the total space complexity only additively, the total
space complexity is O(m2n+ SORACLE).

A.6 Proof of Theorem 6.5

Proof of Theorem 6.5. The proof is an adaptation of the proof of Theorem 5.1 in Livni et al. (2013) to OAVI.
Let O = {t1, . . . , tk}σ with k ≤ m. Since t1 = 1, we can evaluate it in time O(1). Since the evaluation vectors
of monomials in O1 over Z are identical to the data points z ∈ Z, all degree 1 monomials can be evaluated in
time O(1). The evaluation of a term t ∈ T of degree greater than 1 over Z can be computed by multiplying the
evaluation vectors of two q-dimensional monomials element-wise, requiring time O(q). Hence, we can construct
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the evaluation vectors of all monomials in O over Z in time O(|O|+|O|q) = O(|O|q). Since the evaluation vectors
of leading terms of generators in G are element-wise multiplications of evaluation vectors in O, we can construct
all leading terms of generators in G in time O(|G|q + |O|q) = O(|G|q). After evaluating all monomials in O and
G, generators in G are linear combinations of at most |O| + 1 evaluation vectors of terms. The computation of
the linear combinations requires time O(|G||O|q). Thus, the total evaluation complexity is O(|G||O|q).

A.7 Proof of Theorem 6.6

Proof of Theorem 6.6. Let τ ≥ 2 and for X = {x1, . . . ,xm} and ψ ≥ ε ≥ 0, let (G,O) = OAVI(X,ψ, ε) and
suppose that all g ∈ G are τ -bounded in ‖ · ‖1. Consider any (ψ, 1)-approximately vanishing polynomial over X,
g ∈ G, with LT(g) = t and other terms only in U = {u1, . . . , uk}σ ⊆ O, where k ≤ m. Recall that

U(x) = (u1(x), . . . , uk(x))ᵀ ∈ Rk

and let
H := {x ∈ X 7→ wᵀU(x) : ‖w‖1 ≤ τ − 1} .

The next part of the proof repeats the arguments used in Mohri et al. (2018, Theorem 11.15). We adapt the
notation therein to our setting and show that the empirical Rademacher complexity of H is bounded. Let
σ = (σ1, . . . , σk)ᵀ ∈ {−1, 1}k be a vector of uniform random variables. Then, for the empirical Rademacher
complexity R̂X(H), it holds that

R̂X(H) =
1

m
Eσ

[
sup

‖w‖1≤τ−1

m∑
i=1

σiw
ᵀU(xi)

]

=
τ − 1

m
Eσ

[∥∥∥∥∥
m∑
i=1

σiU(xi)

∥∥∥∥∥
∞

]
. by definition of the dual norm

=
τ − 1

m
Eσ

[
max
j∈[k]

∣∣∣∣∣
m∑
i=1

σiU(xi)j

∣∣∣∣∣
]

. by definition of ‖ · ‖∞

=
τ − 1

m
Eσ

[
max
j∈[k]

max
s∈{−1,1}

s

m∑
i=1

σiU(xi)j

]
. by definition of ‖ · ‖∞

=
τ − 1

m
Eσ

[
sup
z∈A

m∑
i=1

σizi

]
,

where A = {s(U(x1)j , . . . ,U(xm)j)
ᵀ : j ∈ [k], s ∈ {−1, 1}}. For all x ∈ [−1, 1]n, we have ‖U(x)‖∞ ≤ 1. Thus,

for any z ∈ A, we have ‖z‖2 ≤
√
m. By Mohri et al. (2018, Theorem 3.7), since A contains at most 2k ≤ 2m

elements, we have

R̂X(H) ≤ τ
√

2 log(2m)

m
.

To conclude the proof, note that for all h ∈ H and (x, y) ∈ (X × Y), we have |h(x) + t(x)| ≤ τ − 1 + 1 = τ ,
and apply Mohri et al. (2018, Theorem 11.3) to the bound on R̂X(H), similarly to Mohri et al. (2018, Theorem
11.16).

B Generalization bound for OAVI feature transformations for a linear kernel SVM

In this section, we derive a margin bound for the approach of using τ - and degree-bounded generators of the
approximately vanishing ideal to transform features for a linear kernel SVM.

To do so, we recall some definitions from Mohri et al. (2018). Let X ⊆ [−1, 1]n and Y = {0, 1} and recall that a
hypothesis h is a mapping from X to Y.

Definition B.1 (Margin loss function). For any ρ > 0, the ρ-margin loss is the function Lρ : R × R → R>0

defined for all y, y′ ∈ R as

Lρ(y, y
′) = min

{
1,max

{
0, 1− yy′

ρ

}}
.
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The margin loss functions is used to define the empirical margin loss, i.e., the error on the training set.

Definition B.2 (Empirical margin loss). Let X ⊆ [−1, 1]n, Y = {0, 1}, D be a distribution over X × Y,
S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m be sampled according to D, and h be a hypothesis. The empirical
margin loss of h is defined as

R̂S,ρ(h) =
1

m

m∑
i=1

Lρ(h(xi), yi).

In the theorem below, we present a margin bound for the approach of using τ - and degree-bounded generators
of the approximately vanishing ideal to transform features for a linear kernel SVM.

Theorem B.3 (Margin bound for feature transformations for a linear kernel SVM). Let X ⊆ [−1, 1]n, Y = {0, 1},
D be a distribution over X × Y, G = {g1, . . . , gk} ⊆ P such that |g(x))| ≤ τ for all g ∈ G and x ∈ X ,
S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m be sampled according to D, and S̃ = {(G(x), y) | (x, y) ∈ S}. Let
K : [−τ, τ ]k × [−τ, τ ]k → R denote the linear kernel and H = {Rk 3 v 7→ wᵀv : ‖w‖2 ≤ Λ} for some Λ ≥ 0. Fix
ρ > 0. Then, for any δ > 0, with probability at least 1− δ, for any h ∈ H, we have

P(x,y)vD[h(G(x)) 6= y] ≤ R̂S̃,ρ(h) + 2

√
kτ2Λ2

ρ2m
+

√
log(δ−1)

2m
.

Proof. Let X̃ = {G(x) | x ∈ X}. Given a distribution D over X × Y, let D̃ denote an auxiliary distribution,
samples (x̃, y) v D̃ of which are obtained by drawing a sample (x, y) v D and letting x̃ := G(x). Then, for the
linear kernel K : X̃ × X̃ → R, we have

sup
x̃∈X̃

K(x̃, x̃) = 〈x̃, x̃〉 ≤ kτ2.

We then apply the generalization bound for kernel-based classifiers (Mohri et al., 2018, Corollary 6.13) to data
sampled according to D̃, proving the theorem.

For X ⊆ [−1, 1]n and any set of τ -bounded polynomials G ⊆ P in norm ‖·‖1, it holds that |g(x)| ≤ τ for all x ∈ X
and g ∈ G. Thus, using the notation of Section 7, if we apply a linear kernel SVM to the data set transformed
according to the feature transformation (FT) corresponding to a set of τ -bounded generators in norm ‖ · ‖1
constructed by OAVI, AVI, or VCA, Theorem B.3 is satisfied. However, the margin bound in Theorem B.3 relies
on the number of polynomials in G =

⋃
i Gi to be o(m), where Gi is the set of generators constructed for class i.

This can be achieved by bounding the number of generators used to transform the features of the original data
set, for example, via an upper bound on the maximum degree of generators.

To summarize, since generators constructed with CGAVI are τ -bounded in norm ‖ · ‖1, whereas generators con-
structed with AVI or VCA are not necessarily τ -bounded in norm ‖ · ‖1, Theorem B.3 applies to CGAVI when the
algorithm is terminated after reaching a certain degree, but, in general, does not apply to AVI or VCA. Thus, if we
apply a linear kernel SVM to the data set transformed according to the feature transformation (FT) corresponding
to a set of generators of bounded degree constructed with CGAVI, increasing the number of training samples and
decreasing the training error decreases the probability of misclassifying out-sample data.

C The PFW algorithm

The Pairwise Frank-Wolfe algorithm PFW is presented in Algorithm 3. Let f : Rn → R be a convex and smooth
function and A = {v1, . . . ,vk} ⊆ Rn a set of vectors. Then, PFW solves

min
x∈conv(A)

f(x),

where conv(A) is the convex hull of A. At iteration t = 0, . . . , T , PFW writes the current iterate, xt, as a convex

combination of elements of A, that is, xt =
∑

v∈A λ
(t)
v v, where

∑
v∈A λ

(t)
v = 1 and λ

(t)
v ∈ [0, 1] for all v ∈ A. At

iteration t, a vertex v whose corresponding weight λ
(t)
v is not zero is referred to as an active vertex and the set

S(t) = {v ∈ A | λ(t)v > 0} is referred to as the active set at iteration t. During each iteration, PFW determines
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Algorithm 3 PFW

Input: A smooth and convex function f , a set of atoms A ⊆ Rn, a vertex x0 ∈ A, and T ∈ N.
Output: A point xT ∈ conv(A).

1: S(0) ← {x0}
2: λ

(0)
v ← 1 for v = x0 and 0 otherwise

3: for t = 0, . . . , T do
4: st ← argmins∈A〈∇f(xt), s〉
5: dFWt ← st − xt
6: vt ← argmaxv∈S(t)〈∇f(xt),v〉
7: dAWt ← xt − vt
8: dt ← dFWt + dAWt
9: γt = argminγ∈[0,λvt ]

f(xt + γdt)
10: xt+1 ← xt + γtdt
11: λ

(t+1)
st ← λ

(t)
st + γt

12: λ
(t+1)
vt ← λ

(t)
vt − γt

13: S(t+1) ← {v ∈ A | λ(t+1)
v > 0}

14: end for

two vertices requiring access to a first-order oracle and a linear minimization oracle. In Line 4, PFW determines
the Frank-Wolfe vertex, which minimizes the scalar product with the gradient of f at iterate xt. Taking a step
of appropriate size towards the Frank-Wolfe vertex, in the Frank-Wolfe direction, reduces the objective function
value. In Line 7, PFW determines the Away vertex in the active set, which maximizes the scalar product with
the gradient of f at iterate xt. Taking a step away from the Away vertex, in the Away direction, reduces the
objective function value. In Line 8, PFW combines the Away direction and the Frank-Wolfe direction into the
Pairwise direction and takes a step with optimal step size in the Pairwise direction, shifting weight from the
Away vertex to the Frank Wolfe vertex. In each iteration, PFW thus only modifies two entries of the iterate xt,
which is the main reason why PFW tends to return a sparse iterate xT . The iterate xT returned by PFW satisfies
f(xT ) − minx∈conv(A) f(x) = O(e−T ) (Lacoste-Julien and Jaggi, 2015) when optimizing the squared loss over
the `1-ball. However, PFW’s linear convergence rate is theoretically cumbersome to bound due to its dependence
on various constants and the number of so-called swap steps when a vertex in the active set gets replaced by
another vertex. To address this issue, one could replace PFW with a swap-step free version called Blended Pairwise
Conditional Gradients, whose convergence rate constants are smaller than those of PFW (Tsuji et al., 2021). In
practice, instead of computing the number of iterations to reach ε-accuracy, we use the Frank-Wolfe gap as a
stopping criterion for PFW and we do not have to compute T .

When using PFW as ORACLE for OAVI, we implement ORACLE in Line 6 as follows: Run PFW with f , A the set of
vertices of the `1-ball of radius τ −1, x0 = (1, 0 . . . , 0)ᵀ, and T ∈ N such that PFW achieves ε-accuracy and obtain
xT . Then, (xᵀ

T , 1)ᵀ is the coefficient vector of the polynomial g returned by ORACLE.

D Additional numerical experiments

We use different algorithms that construct generators of the approximately vanishing ideal to transform features
for a linear kernel SVM and compare them to each other and a polynomial kernel SVM.

As in Section 9, let G :=
⋃
i Gi, where Gi is the set of generators constructed for class i and let Oi denote the set of

terms that are not leading terms of generators constructed for class i.8 By Theorem 6.5, (Gi,Oi) = OAVI(X,ψ, ε)
for X ⊆ [−1, 1]n and ψ ≥ ε ≥ 0, the time required to evaluate a test set of q data points is O(|Gi||Oi|q). It thus
remains to compare

∑
i |Oi|, the number of terms that are provably not leading terms of generators summed

over all classes for the monomial-based algorithms, `1-CGAVI, `2-CGAVI, AGDAVI, and AVI, and the number of
non-approximately vanishing polynomials constructed for the polynomial-based algorithm, VCA.

Set-up. We apply different feature transformation algorithms for a linear kernel SVM and a polynomial kernel
SVM to classification problems using the set-up from Section 9. We compare the number of terms constructed,

8Recall that for VCA, Oi is a set of non-approximately vanishing polynomials instead.
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Table 3: We compare the number of terms constructed,
∑
i |Oi|, the maximum degree of generators constructed,

Degree, the number of entries in the coefficient vectors of generators in G,
∑
g∈G ge, the hyperparameter opti-

mization time in seconds, Hyp. time, the training time in seconds, Train time, and the classification error on
the training set in %, Train error. The results are averaged over ten random 60%/40% train/test partitions and
the best results in each category are in bold.

Algorithms
Data sets

bank cancer htru2 iris seeds sonar spam voice wine

∑ i
|O

i
| `1-CGAVI 18 17 6 5 7 34 5 11 20

`2-CGAVI 15 11 8 6 5 43 5 7 42
AGDAVI 23 15 5 7 7 53 6 3 32
AVI 8 37 42 12 17 71 4 38 46
VCA 4 8 13 34 67 91 64 42 49

D
eg

re
e

`1-CGAVI 4.30 2.30 2.20 1.90 1.70 3.10 1.90 2.50 2.90
`2-CGAVI 3.80 1.80 2.60 2.00 1.40 3.50 2.30 2.50 4.80
AGDAVI 5.20 2.10 2.00 2.20 2.00 4.30 2.70 1.40 3.10
AVI 2.20 2.20 3.00 2.30 2.00 2.40 1.40 2.00 2.20
VCA 1.50 1.70 2.20 3.60 3.60 3.10 2.00 2.20 3.00

∑ g
g e

`1-CGAVI 1.6e+2 2.6e+3 9.0e+1 3.6e+1 1.3e+2 6.1e+3 3.9e+2 3.6e+3 6.9e+2
`2-CGAVI 1.3e+2 1.3e+3 1.2e+2 4.0e+1 7.8e+1 9.5e+3 4.5e+2 2.5e+3 2.0e+3
AGDAVI 2.2e+2 1.8e+3 7.3e+1 5.0e+1 1.3e+2 1.2e+4 4.1e+2 1.8e+3 1.6e+3
AVI 7.2e+1 1.3e+4 2.4e+3 1.3e+2 4.1e+2 6.6e+4 4.1e+2 2.4e+4 4.8e+3
VCA 1.7e+2 8.4e+3 4.7e+3 4.3e+3 3.8e+4 4.5e+6 4.0e+6 1.7e+6 9.0e+4

H
y
p
.

ti
m

e

`1-CGAVI 2.5e+2 6.4e+2 5.7e+2 4.9e+2 8.4e+2 1.1e+3 7.1e+2 2.3e+3 1.2e+3
`2-CGAVI 1.9e+2 7.2e+2 5.7e+2 3.1e+2 5.8e+2 1.5e+3 6.6e+2 3.8e+3 9.8e+2
AGDAVI 8.0e+1 2.7e+2 5.2e+2 1.1e+2 1.8e+2 4.9e+2 5.3e+2 1.1e+3 3.4e+2
AVI 4.7e+1 4.8e+2 9.2e+2 3.4e+1 7.5e+1 5.7e+2 1.5e+3 1.1e+3 1.7e+2
VCA 4.7e+1 5.7e+2 4.3e+2 4.4e+1 7.4e+1 4.8e+2 1.7e+3 4.6e+2 1.4e+2
SVM 2.3e-1 1.7e-1 9.9e+1 1.0e-1 1.1e-1 1.3e-1 1.3e+1 1.2e-1 1.0e-1

T
ra

in
ti

m
e

`1-CGAVI 3.2e-1 9.9e-1 1.2e+0 5.9e-2 2.0e-1 2.1e+0 9.9e-1 2.5e+0 5.9e-1
`2-CGAVI 2.1e-1 7.6e-1 1.4e+0 6.2e-2 9.9e-2 3.7e+0 9.9e-1 3.5e+0 1.2e+0
AGDAVI 1.4e-1 2.9e-1 1.0e+0 4.0e-2 6.8e-2 1.5e+0 8.6e-1 7.9e-1 3.4e-1
AVI 3.8e-2 4.2e-1 5.0e+0 4.8e-2 1.0e-1 1.6e+0 8.4e-1 1.3e+0 3.1e-1
VCA 1.3e-2 4.7e-2 8.6e-1 8.3e-2 1.8e-1 1.0e+0 2.1e+0 5.1e-1 2.0e-1
SVM 2.5e-3 1.4e-3 1.1e+0 4.7e-4 7.6e-4 1.1e-3 2.3e-1 8.3e-4 6.1e-4

T
ra

in
er

ro
r `1-CGAVI 0.00 1.32 2.00 1.89 0.56 0.24 4.74 1.87 0.09

`2-CGAVI 0.00 1.35 2.00 1.22 0.56 1.13 4.91 1.47 0.28
AGDAVI 0.01 1.26 2.00 1.22 1.43 0.40 4.75 2.40 0.09
AVI 0.00 1.29 1.99 1.67 1.03 0.65 5.34 4.53 0.09
VCA 0.00 1.61 2.05 1.56 0.32 0.00 5.43 0.00 0.00
SVM 0.00 1.61 1.93 1.44 1.83 3.31 6.53 1.87 0.85

∑
i |Oi|, the maximum degree of generators constructed, Degree, the number of entries in the coefficient vectors

of generators in G,
∑
g∈G ge, the hyperparameter optimization time in seconds, Hyp. time, the training time,

that is, the time required to perform the retraining with the best hyperparameter combination, in seconds, Train
time, and the classification error on the training set in %, Train error.

Implementation, data sets, and hyperparameters. Implementation, data sets, and hyperparameters are
the same as in Section 9. For the polynomial kernel SVM,

∑
i |Oi|, Degree, and

∑
g∈G ge do not exist.

Results.∑
i |Oi|: The three OAVI algorithms construct a similar number of terms that are not leading terms of generators

for all data sets and for htru2, iris, seeds, sonar, voice, and wine, construct fewer terms that are not leading
terms of generators than AVI and VCA.
Degree: Even though we use `2-regularized squared loss for OAVI, the maximum degrees of the generators con-
structed by OAVI are comparable to the maximum degrees of generators constructed by AVI and VCA.∑
g∈G ge: For all data sets but bank, one of the OAVI algorithms creates the feature transformation with the

smallest number of entries in the coefficient vectors of generators in G. For most data sets, VCA constructs the
feature transformation with the largest number of entries in the coefficient vectors of generators in G and for
seeds, sonar, spam, and voice, VCA constructs multiple orders of magnitude more entries in the coefficient vectors
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of generators in G than the other algorithms.
Hyp. time: All algorithms except the SVM achieve comparable hyperparameter optimization times. For all data
sets, tuning the hyperparameters for AGDAVI requires less time than tuning the hyperparameters for `1- and
`2-CGAVI. For all data sets, the SVM requires the least amount of time for hyperparameter optimization.
Train time: All algorithms except the SVM achieve comparable training times. For all data sets, training AGDAVI

requires less time than training `1- and `2-CGAVI. For five of the nine data sets, VCA can be trained faster than
OAVI and AVI. For all data sets, the SVM requires the least amount of time for training.
Train error: All algorithms achieve comparable errors on the training data. However, it is noteworthy that VCA

achieves perfect training accuracy on four of the nine data sets.
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