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Abstract

We perform scalable approximate inference in
continuous-depth Bayesian neural networks.
In this model class, uncertainty about sepa-
rate weights in each layer gives hidden units
that follow a stochastic differential equation.
We demonstrate gradient-based stochastic
variational inference in this infinite-parameter
setting, producing arbitrarily-flexible approx-
imate posteriors. We also derive a novel gra-
dient estimator that approaches zero variance
as the approximate posterior over weights
approaches the true posterior. This ap-
proach brings continuous-depth Bayesian neu-
ral nets to a competitive comparison against
discrete-depth alternatives, while inheriting
the memory-efficient training and tunable pre-
cision of Neural ODEs.

1 INTRODUCTION

Taking the limit of neural networks to be the com-
position of infinitely many residual layers provides a
way to implicitly define its output as the solution to
an ODE (Haber and Ruthotto, 2017; E, 2017). This
continuous-depth parameterization decouples the spec-
ification of the model from its computation. While
the paradigm adds complexity, it has several benefits:
(1) Computational cost can be traded for precision in
a fine-grained manner by specifying error tolerances
for adaptive computation, and (2) memory costs for
training can be significantly reduced by running the
dynamics backwards in time to reconstruct activations
of intermediate states needed for backpropagation.

On the other hand, the Bayesian treatment for neural
networks modifies the typical training pipeline where
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Figure 1: Hidden unit trajectories in an ODE-Net and
an SDE-BNN. Left : A continuous-depth residual net-
work has deterministic transformations of its hidden
units from depths t = 0 to t = 1. Right : Uncertainty
in the weights of a Bayesian continuous-depth residual
network implies uncertainty in its hidden unit activa-
tion trajectories. Shaded regions show densities over
samples from the learned posterior dynamics. Both:
Each distinct color corresponds to a different initial
state corresponding to different data inputs.

instead of performing point estimates, a distribution
over parameters is inferred. Although this approach
adds complexity, it automatically accounts for model
uncertainty. In turn, model averaging can be done to
combat overfitting and improve calibration, especially
on out-of-distribution data (Zhang et al., 2018; Osawa
et al., 2019).

How can we combine the benefits of continuous-depth
models with those of Bayesian neural networks? The
simplest approach is a “Bayesian neural ODE” (Yıldız
et al., 2019; Dandekar et al., 2020), which integrates
out the finitely-many parameters of a standard neural
ODE for prediction.

This approach is straightforward to implement, and can
inherit the advantages of both Bayesian and continuous-
depth neural nets. However, empirically, standard
Gaussian approximate posteriors are a relatively poor
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Figure 2: Predictive prior and posterior of the SDE-
BNN on a non-monotonic toy dataset. Blue areas
indicate density percentiles, and distinct colored lines
show model samples.

match for neural ODEs, not to mention the draw-
backs of also being used in the prior. Additionally, it
does not exploit the special synergy available between
continuous-time models and approximate inference.

In this paper, we show that an alternative construction
of Bayesian continuous-depth neural networks has ad-
ditional practical benefits. Specifically, we consider the
limit of infinite-depth Bayesian neural networks with
separate unknown weights at each layer, a model class
that we refer to as SDE-BNNs. We develop a unique
network architecture that enhances model expressiv-
ity through time-correlated weights and scales linearly,
instead of quadratically, with the parameter dimension-
ality. Combined with our novel formulation of a zero-
variance gradient estimator, we show that approximate
inference can be realized through the maximization of
our modified variational lower bound, effectively scaling
up the gradient-based variational inference scheme de-
scribed by Li et al. (2020) (preliminary forms of which
appeared in earlier works (Archambeau et al., 2008;
Opper, 2019; Tzen and Raginsky, 2019a)).

With this approach, the state of the output layer is
computed by a black-box adaptive SDE solver. Fig-
ure 1 contrasts our neural SDE with the neural ODE
parameterization. This approach maintains the adap-
tive computation and constant-memory cost of training
Bayesian neural ODEs and adds two unique benefits:

• The variational posterior can be made arbitrarily
expressive by simply enlarging the neural network
that parameterizes the dynamics of the approximate
posterior. Under mild conditions, this approach can
approximate the true posterior arbitrarily closely.

• The variational objective admits a variance-reduced
gradient estimator that is a natural extension of
the “sticking the landing” trick (Roeder et al., 2017).
Combined with arbitrarily expressive approximate
posteriors, it is consistent and has vanishing variance
as the approximate posterior approaches the true.

Notably, our low-variance gradient estimator can also
be applied to variational inference in SDEs more gen-
erally, such as for time-series modeling, but such appli-
cations are beyond the scope of this paper.

2 BACKGROUND

Bayesian Neural Networks Given a dataset, there
are often many functions that fit the data well, which
a given neural network can express with different pa-
rameter values. Instead of making point estimates of
the parameters, the Bayesian paradigm frames learn-
ing as posterior inference. Predictions are obtained
through integrating over many possible parameter set-
tings. Formally, given a dataset D = {(xi, yi)}Ni=1 and
prior distribution over model weights p(w), we want
to compute a posterior p(w|D) ∝ p(D|w)p(w). We can
optimize an approximate posterior distribution q(w)
that minimizes the Kullback-Leibler (KL) divergence,
i.e. maximizing the Evidence Lower Bound (ELBO):

LELBO(φ) =Eq(w) [log p(D|w)]−DKL (q(w)||p(w)) .
(1)

Estimating gradients of this objective using simple
Monte Carlo is known as stochastic variational inference
(SVI) (Hoffman et al., 2013; Rezende et al., 2014)).

One of the main technical challenges of SVI is choosing
a parametric family of approximate posteriors that is
tractable to sample from and evaluate, while being
flexible enough to approximate the true posterior well.
Most scalable inference techniques use Gaussian approx-
imate posteriors with restricted covariance structure
between network parameters (Graves, 2011; Blundell
et al., 2015; Zhang et al., 2018; Mishkin et al., 2018).
Others construct complex approximate posteriors with
normalizing flows (Krueger et al., 2018; Louizos and
Welling, 2017) or through distillation (Balan et al.,
2015; Wang et al., 2018).

Neural Ordinary Differential Equations Neural
ordinary differential equations (Chen et al., 2018) define
ODEs using neural networks:

dht = fθ(ht, t) dt, h0 ∈ Rd, (2)

where f : Rd × R → Rd is a Lipschitz function defined
by a neural network with parameters θ. Starting at
an initial value h0 = x given by a data example and
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Figure 3: Neural SDEs can learn arbitrarily expres-
sive approximate posteriors. Left: Samples from an
approximate posterior, trained with an OU prior and
conditioned on two observations with Cauchy likeli-
hoods. Right: Joint distribution and marginals of the
approximate posterior process z at times t0 and t1.

integrating these dynamics forward for a finite time can
be seen as passing the input through an infinitely-deep
residual network. For learning scalar-valued functions,
adding extra dimensions to h and a linear final layer
induces similar universal approximations to standard
neural networks (Dupont et al., 2019; Zhang et al.,
2019b) trained by standard stochastic gradient descent
methods. Using adaptive ODE solvers can trade evalua-
tion speed for precision. The adjoint sensitivity method
saves memory during training through reconstructing
the trajectory of the hidden units h by running the
dynamics backwards in backpropagation.

2.1 Latent Stochastic Differential Equations

Informally, an SDE can be viewed as an ODE with
infinitesimal noise added throughout time. Formally:

dwt = fθ(wt, t) dt+ gθ(wt, t) dBt, (3)

where w0 ∈ Rd is the initial state, fθ : Rd×R → Rd and
gθ : Rd × R → Rd×m are functions Lipschitz in both
arguments, dubbed the drift and diffusion, respectively,
and {Bt} is an m-dimensional Brownian motion.

Some works have considered training SDEs with dy-
namics parameterized by neural networks (Li et al.,
2020; Tzen and Raginsky, 2019a; Peluchetti and Favaro,
2020b; Innes et al., 2019; Kong et al., 2020; Liu et al.,
2019). Note that directly optimizing the drift and
diffusion to maximize the average log-likelihood of an
observation log p(yt|wt) would result in the diffusion ap-
proaching 0, conditional on the ODE fitting the training
data well with the diffusion somewhat unconstrained.

Instead of directly optimizing the parameters of an SDE
to match the data, a better approach is to use an SDE
to define a prior over trajectories of w, and optimize
the marginal likelihood of the data, integrating over all

trajectories of w weighted by the prior. Luckily, we can
specify an approximate posterior over trajectories using
a second SDE. We define the approximate posterior by

dwt = fφ(wt, t) dt+ gθ(wt, t) dBt. (4)

When the dynamics of the approximate posterior fφ
is parameterized by a neural network, this family of
posteriors is extremely expressive. Figure 3 shows that
such a variational family can easily approximate non-
Gaussian and multi-modal posteriors on path space.

If both the SDE defined by equation 3 and equation 4
share the same diffusion function, then the KL between
the two induced measures on path space has the follow-
ing form (Li et al., 2020; Tzen and Raginsky, 2019a):

DKL (µq||µp) = Eqφ(w)

[∫ 1

0

1
2 ‖u(t,φ)‖

2
2 dt

]
where (5)

u(t,φ) = gθ(wt, t)
−1 [fθ(wt, t)− fφ(wt, t)] (6)

where µq and µp are path space probability measures
induced respectively by equation 4 and equation 3, and
the expectation is taken under the approximate pos-
terior, denoted qφ(w). Intuitively, this KL divergence
resembles the summative difference over time horizon
[0, 1] between the prior drift fθ and fφ, scaled by the
diffusion. This divergence can be estimated up to a con-
stant with simple Monte Carlo, sampling trajectories
from the dynamics given by the approximate posterior.

SDEs as expressive approximate posteriors To
ensure that the KL divergence between the prior and
approximate posterior on path space is finite, the same
diffusion function gθ(wt, t) must be used for the ap-
proximate posterior and prior. Surprisingly, this does
not limit the expressivity of the approximate posterior.
Boué et al. (1998) show that there is a one-to-one cor-
respondence between the space of path measures and
drift functions that result in the same path space KL
divergence. This implies that any path space measure
close to the true posterior can be instantiated by SDEs
with appropriate drifts. It follows that an approximate
posterior parameterized by a sufficiently expressive fam-
ily of function approximators can be made arbitrarily
close to the true posterior. The Girsanov reparameter-
ization of the variational formula, derived from Boue
(Tzen and Raginsky, 2019a, Section 4), proves that the
ELBO is tight when the drift is optimal. This means
that there exists a ground truth drift function that can
make the ELBO tight, the approximation of which can
be achieved with a high capacity neural network.
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3 INFINITELY DEEP BNNs

Standard discrete-depth residual networks can be de-
fined as a composition of layers of the form:

ht+ε = ht + εf(ht, wt), t = 1 . . . T, (7)

where t is the layer index, ht ∈ RDh denotes a vector
of hidden unit activations at layer t, the input h0 = x,
and wt ∈ RDw represents the parameters for layer t.
In the discrete setting, ε = 1, ∈ R.

We can construct a continuous-depth variant of residual
networks by setting ε = 1/T and taking the limit as T →
∞. This yields a differential equation that describes
the hidden unit evolution as a function of depth t.
Since standard residual networks are parameterized
with different layerwise “weights”, we denote them wt.
To specify different weights at each layer with a finite
number of parameters, we introduce a hypernetwork
fw that specifies the change in weights as a function of
depth and the current weights (Ha et al., 2016). The
evolution of the hidden unit activations and weights can
then be combined into a single differential equation:

d

dt

[
ht

wt

]
=

[
fh(t, ht, wt)
fw(t, wt)

]
(8)

with some learned initial weight value wt0 . Using
time-varying weights is similar to augmenting the
state (Dupont et al., 2019; Zhang et al., 2019c). See
Appendix Figure 8 on the effects of augmentation. We
perform Bayesian inference on the weight process wt,
assigning a suitable prior stochastic process and per-
forming variational inference in this infinitesimal limit.

Like all Bayesian neural networks with observation
likelihoods, our framework models uncertainty both
about parameters and about individual observations:
The likelihood p(y|h1) captures the observational noise,
while the SDE encodes weight uncertainty.

Prior process on weights Typical priors for
Bayesian neural networks are independent Gaussians
across all weights and layers. Taking the infinitesi-
mal limit of such a prior gives a white noise process
prior on the weights w(·). However, initializing this
noise while maintaining finite variance at scale is diffi-
cult (Peluchetti and Favaro, 2020a,b).

Instead, we use the Ornstein–Uhlenbeck (OU) process
as the prior on weights. The process is characterized
by an SDE with drift and diffusion:

fp(wt, t) = −wt, g(wt, t) = σId, (9)

respectively, where σ is a hyperparameter. We choose
this prior for its simplicity and bounded marginal vari-
ance at a constant in the large time limit.

Approximate posterior over weights We param-
eterize the approximate posterior on weights implicitly
using another SDE with the following drift function:

fq(wt, t,φ) = NNφ(wt, t,φ)− fp(wt, t). (10)

This drift fq is parameterized by a small neural net-
work (NN) with parameters φ. With this drift, the
approximate posterior process will generally have non-
Gaussian, non-factorized marginals; its expressive ca-
pacity can be increased by making the neural net larger.

Evaluating the network Given an input, we
marginalize over weight and hidden unit trajectories.
This can be done with simple Monte Carlo, sampling
a weight path {wt} from the posterior process and
evaluating the network activations {ht} given the sam-
pled weights and input. Both steps require solving
a differential equation. Luckily, both can be solved
simultaneously with the augmented state SDE:

d

[
wt

ht

]
=

[
fw(wt, t,φ)
fh(ht, t, wt)

]
dt+

[
gw(wt, t)

0

]
dBt, (11)

where h0 = x, the input. The learnable parameters are
the initial weight values at time zero w0 (either point
estimated or inferred) and those of drift function φ.

Output likelihood The final state of the hidden
units h1 is used to parameterize the likelihood of the tar-
get output y: log p(y|x,w) = log p(y|h1). For instance,
p(y|h1) could be a Cauchy likelihood for regression, or
categorical likelihood for classification.

Training objective To fit the network to data, we
maximize the lower bound on marginal likelihood given
by the infinite-dimensional ELBO:

LELBO∞(φ) = Eqφ(w)

[
log p(D|w)−

∫ 1

0

1
2 ‖u(wt, t,φ)‖22 dt

]
.

The sampled weights, the hidden activations, and the
training objective are all computed simultaneously with
a single call to an adaptive SDE solver. Gradients of
the sampled loss can also be efficiently computed using
adaptive solvers, following Li et al. (2020).

4 VARIANCE-REDUCED
GRADIENTS

Roeder et al. (2017) showed that when optimizing ex-
pectations using the reparameterization gradient, a
gradient estimator with lower variance can be con-
structed by removing a score function term that has
zero expectation, and that the variance of this gradient
estimator approaches zero as the approximate posterior
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Figure 4: Comparison of the variance in three gradient
estimators. On this toy problem, our new gradient
estimator reduces variance by a factor of roughly 4.

approaches the true posterior. We refer to this trick as
“sticking the landing” (STL). We generalize this to our
SDE setting by replacing the original estimator of the
path space KL with the following STL estimator:

K̂LSTL=

∫ 1

0

1
2 ‖u(wt, t,φ)‖22 dt+

∫ 1

0
u(wt, t,⊥(φ)) dBt,

(12)

where w(·) ∼ qφ(w) and u is defined in equation 6,
the path {wt}t∈[0,T ] is sampled from the approximate
posterior process, and ⊥(·) is the stop gradient function
that renders the input a constant with respect to which
gradient propagation is stopped. Note that 12 is the
fully Monte Carlo version referred to in 4 from which
our STL variant is derived.

The second term in equation 12 is a martingale and
has expectation zero. Therefore, in prior works (Li
et al., 2020; Tzen and Raginsky, 2019a,b), Monte Carlo
estimation was only performed for the first term, but
we find that this approach does not necessarily reduce
the variance of the gradient (Figure 4).

Because our approximate posterior can be made arbi-
trarily expressive, we conjecture that our approach can
achieve arbitrarily low gradient variance towards the
end of training if the fw parameterization is expressive
enough. See Appendix is A.2 for a heuristic derivation.

We show the variance of different gradient estimators
in Figure 4, averaged across the parameters θ, in a 1D
regression setting. We compare STL against a “Full
Monte Carlo” estimate which includes the second addi-
tional term without gradient stopping, as well as the
estimator that was previously used by Li et al. (2020)
which ignores the second term. Figure 4 shows that
STL obtains lower variance than alternatives, when
matching an exponentiated Brownian motion. Table 4
shows training performance improvements.

Figure 5: Benchmarking two gradient computation
methods: (1) Back-propagation through the SDE
solver, and (2) the memory-efficient stochastic adjoint
of Li et al. (2020). Both methods have similar optimiza-
tion dynamics, final performance, and wall-clock time,
but the adjoint approach is more memory-efficient. De-
tailed comparisons of wall-clock time and evaluation
step results in Appendix C.8.

5 EXPERIMENTS

We investigate the effectiveness of our proposed approx-
imate inference method for training continuous-depth
neural nets, referred to as SDE-BNN, in terms of classi-
fication accuracy, calibration, perturbation robustness,
and speed-precision trade-offs. Our code is publicly
available here and experimental settings in Table 2.

We consider toy regression and image classification
tasks on MNIST and CIFAR-10. We also investigate
out-of-distribution generalization. Notably, our ap-
proach does not require post hoc recalibration methods
such as training with temperature scaling (Guo et al.,
2017) or isotonic regression (Zadrozny and Elkan, 2002).

Backpropagation through solvers vs. adjoint
We experimented with fixed- and adaptive-step SDE
solvers, and the stochastic adjoint of Li et al. (2020).
Figure 5 shows similar convergence for both approaches.
Appendix C shows that both had similar numbers of
dynamics function evaluations and wall-clock time.

The overhead for estimating error in our adaptive
solvers was substantial; therefore, for final model eval-
uation, we trained with fixed-step solvers, where the
number of steps is chosen to be large enough to match
the convergence speed of our adaptive-step solvers.

Baselines For a fixed-depth network baseline, we
compare to standard residual networks. We then test
variational inference on the weights of these models.
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Table 1: Classification accuracy and expected calibration error (ECE) on MNIST and CIFAR-10. We separate
models into point estimates, discrete-time models, and continuous-time models. Our SDE-BNN outperforms other
continuous-time Bayesian neural nets (BNNs) and perform competitively against discrete-time BNNs. †Results
by Izmailov et al. (2021) where a modified residual network architecture was used; only one seed was reported.

MNIST CIFAR-10

Model Accuracy (%) ECE (×10−2) Accuracy (%) ECE (×10−2)

ResNet32 99.46 ± 0.00 2.88 ± 0.94 87.35 ± 0.00 8.47 ± 0.39
ODEnet 98.90 ± 0.04 1.11 ± 0.10 88.30 ± 0.29 8.71 ± 0.21
HyperODEnet 99.04 ± 0.00 1.04 ± 0.09 87.92 ± 0.46 15.86 ± 1.25

MFVI ResNet32 99.44 ± 0.00 2.76 ± 1.28 86.97 ± 0.00 3.04 ± 0.94
MFVI† — — 86.48 1.95
Deep Ensemble† — — 89.22 2.79
HMC (“gold standard”)† 98.31 1.79 90.70 5.94

MFVI ODEnet 98.81 ± 0.00 2.63 ± 0.31 81.59 ± 0.01 3.62 ± 0.40
MFVI HyperODEnet 98.77 ± 0.01 2.82 ± 1.34 80.62 ± 0.00 4.29 ± 1.10
SDE BNN 99.30 ± 0.09 0.63 ± 0.10 89.84 ± 0.94 7.19 ± 0.37
SDE BNN (+ STL) 99.10 ± 0.09 0.78 ± 0.12 89.10 ± 0.45 7.97 ± 0.51

We also perform ablation studies to compare with stan-
dard variational inference approaches over continuous-
depth networks. Specifically, we compare to a mean
field variational inference (MFVI) ODEnet where
stochastic variational inference is performed over depth-
invariant weights. This baseline is a fully-factorized
Gaussian approximate posterior, i.e. mean-field approx-
imation, and been used for Neural ODEs by Look and
Kandemir (2019); Dandekar et al. (2020).

We further compare our model to a MFVI HyperO-
DEnet, where a learned drift is applied to w, but mean-
field inference is instead performed over the parameters
of the hypernetwork. Alternatively, one can interpret
this as another MFVI ODEnet with a larger state and a
more complex drift function but with similar computa-
tional complexity to SDE-BNN. This setting contrasts
our approach of doing Bayesian inference over the en-
tire continuous-depth network as a stochastic process.

Parameterizing the drift function We parame-
terized the drift of the variational posterior fw with a
simple multilayer perceptron. To ensure optimization
starts at a stable set of dynamics, we subtract the prior
drift so that the approximate posterior equals the prior
when the final layer is initialized to output zero.

Hyperparameters We swept learning rates in the
range [1e-4, 1e-3], selecting the optimal based on the
validation set. We train with the default Adam op-
timizer (Kingma and Ba, 2015). In image classifica-
tion experiments, all convolutional layers of the drift
network are time-conditional and use the tanh non-
linearity. The diffusion coefficient σ was selected from
validation performance over {0.1, 0.2, 0.5}.

5.1 1D Regression

We first verify the capabilities of the SDE-BNN on
a 1D regression problem. Conditioned on a sample
from the diffusion process, each sample from a one-
dimensional SDE-BNN is a bijective mapping from
the inputs to the outputs. This implies that every
function sampled from a 1D SDE-BNN is monotonic.
To be able to sample non-monotonic functions, we
augment the state with 2 extra dimensions initialized
to zero, as in Dupont et al. (2019). Figure 2 shows
that our model learns a reasonably flexible approximate
posterior on a synthetic non-monotonic 1D dataset. We
emphasize that the samples from our model are smooth
w.r.t. depth because the hidden states h do not receive
additive instantaneous noise, only the weights w do.

5.2 Image Classification

Instantaneous changes to the hidden state (fh) are
parameterized using a convolutional neural network,
including one strided convolution for downsampling
and a transposed convolution layer for upsampling. We
then set the w to be the filters and biases of all the
convolutional layers. The approximate posterior drift
dynamics (fw) is a multilayer perceptron with hidden
layer widths of 2, 128, and 2. The small hidden width of
the bottleneck layers was chosen to reduce the number
of variational parameters and promote linear scaling
with respect to the dimension of w. On MNIST, we
used one such SDE-BNN block, while on CIFAR-10, we
used a multi-scale variant where multiple SDE-BNN
blocks were stacked with the invertible downsampling
from Dinh et al. (2016) in between.

We report classification results in Table 1. Our SDE-



Winnie Xu, Ricky T.Q. Chen, Xuechen Li, David Duvenaud

(a) CIFAR-10. Left: Negative log likelihood. Right: ECE.
Adjusting SDE-BNN solver tolerance at test time trades
off computational speed for predictive performance. Grey
line is solver’s training tolerance. Averaged across 3 seeds.

(b) Calibration on the CIFAR-10 test set for a neural ODE
(left) and a SDE-BNN (right). The SDE-BNN displays
better calibration and generalization.

Figure 6: Performance of SDE-BNN on standard
CIFAR-10 classification task.

BNN generally outperforms the baselines. While the
continuous-depth Neural ODE (ODEnet) models can
achieve similar classification performance on a standard
residual network, it consistently has poorer calibration.

The SDE-BNN matches and outperforms the accuracy
of standard residual networks on MNIST and CIFAR-
10, respectively, while obtaining lower expected calibra-
tion errors (ECE). From ablation studies, we found that
it was harder to achieve similar performance with either
of the mean field variants of an ODEnet as they had a
poorer trade-off between performance and calibration.

Figure 6a shows the ability of SDE-BNNs to trade
off computation time for precision. Figure 12 in Ap-
pendix C.4 indicates that calibration is insensitive to
solver tolerances close to the value used during training.

5.2.1 Calibration

Table 1 quantifies our model’s calibration with expected
calibration error (ECE; Guo et al. (2017)). The SDE-
BNN appears better calibrated than the Neural ODE
(Chen et al., 2018) and mean field ResNet baselines.
Figure 6b shows better calibration than neural ODEs
with similar accuracy. Appendix Figure 11 shows the
insensitivity of these results to solver step size.

Figure 7: CIFAR10-C. Robustness to distributional
shifts on CIFAR-10. SDE-based neural nets show better
accuracy and calibration than non-Bayesian and mean-
field methods. Black bars show standard deviation over
3 seeds.

5.2.2 Robustness to Input Corruption

We report the robustness of SDE-BNNs by evaluating
on all 19 non-adversarial corruptions across 5 severity
levels in CIFAR10-C Hendrycks and Dietterich (2019).
These corruptions mimic real-world perturbations such
as noise, blur, and weather. To evaluate the classifica-
tion robustness of SDE-BNN, we compare the mean
corruption error (mCE), an average error for each in-
tensity level summed across all 19 perturbations, to the
top-1 error rate on the corresponding clean CIFAR-10.

Figure 7 shows error on the corrupted test set relative
to uncorrupted data, demonstrating a steady increase
in mCE across increasing perturbation levels along with
the overall error measurement summarized in Table 1.
On both CIFAR-10 and CIFAR10-C, the SDE-BNN
and SDE-BNN + STL models achieve lower overall
test error and better calibration than the baselines.

Compared to standard baselines (ResNet32 and Mean
Field (MF) ResNet32), SDE-BNN achieves around 4.4%
lower absolute corruption error (CE), the total classifi-
cation error for all corruption tasks across all 5 severity
levels (Hendrycks and Dietterich, 2019), in comparison
to the clean errors. The effectiveness of learned un-
certainty on out-of-domain inputs indicates that SDE-
BNN is more robust to observation noise despite not
being trained on such diverse forms of corruptions.
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6 SCOPE AND LIMITATIONS

Computational speed The cost of evaluating our
model grows in O(DT ), where D is the number of
weights, and T the number of iterations taken by the
solver. This may seem advantageous compared to the
O(D3) cost for non-factorized Gaussian approximate
posteriors, but the number of steps required is difficult
to characterize. Although our approach allows adjust-
ment of the computational cost at test time, it is harder
to control the cost of evaluation during training time,
making our method relatively slow to train. However,
it should be straightforward to regularize these models
to be faster to solve, as in Kelly et al. (2020). Relat-
edly, Dusenberry et al. (2020) recently demonstrated an
O(DK) cost approximate posterior in standard BNNs.

Batch norm We did not incorporate batch normal-
ization (Ioffe and Szegedy, 2015) in any of our neural
network components. Introducing any normalization
(e.g. batchnorm, layernorm, etc.) compromises the
Lipschitz property required for SDEs to have a unique
solution. Since BN introduces dependence between
samples within a batch, it is also unclear how to incor-
porate BN while maintaining the consistency properties
of Bayesian inference. Zhang et al. (2019a); Chang et al.
(2020) proposed initializations that yield the same per-
formance without needing batch normalization.

Low-variance gradients for other domains Our
extended STL gradient estimator (Roeder et al., 2017)
to the infinite-dimensional variational objective could
be applied to other settings for faster convergence, e.g.
time series applications Li et al. (2020) investigated.

7 RELATED WORK

Initial theoretical investigations The earliest the-
oretical treatment of infinitely-deep Bayesian neural
networks was made by Neal (1996, Chapter 2), but
no practical training or evaluation method was pro-
posed. Duvenaud et al. (2014) also investigated the
theoretical properties of kernel-based constructions of
infinitely-deep Bayesian neural networks.

Diffusion limits of discrete-time models We ex-
pect existing discrete-depth constructions to converge
to diffusion limits in the infinitesimal limit if a system
is updated with appropriately scaled Gaussian noise at
each timestep. Peluchetti and Favaro (2020b,a) show
this holds for the output of residual networks with
shallow residual blocks whose weight initializations are
appropriately scaled. While our construction of SDE-
BNN given by equation 11 seems similar Peluchetti
and Favaro (2020b), there are two key differences: (i)

We strictly enforce hidden states to follow a diffusion
throughout training by directly learning a neural SDE,
whereas Peluchetti and Favaro (2020b) only ensures
SDE-driven dynamics at initialization. (ii) We adopt a
more general neural net architecture for the residual
blocks than the shallow ones considered in (Peluchetti
and Favaro, 2020b). Their work mainly discusses the
convergence of shallow ResNets to SDEs, in order to
analyze training stability for regular ResNets and ver-
ify that a scaled gradient formulation leads to faster
convergence at the first epoch. The consequence of
(i) is that operations on diffusions (e.g., computing
path-space KL) remain applicable even after our model
has been trained. While (ii) appears to be a minor dif-
ference, it actually uncovers a fundamental distinction
in our analysis: Since we start out with an SDE, and
only discretize for numerical computations, our model
is able to incorporate any type of Lipschitz smooth
residual block. Additionally, no training algorithm was
specified for learning SDE models. The analysis by
Peluchetti and Favaro (2020b) relies on Taylor expand-
ing the residual block function, which is not easy in the
presence of complex residual block architectures and
would require modifications to the initialization. Tzen
and Raginsky (2019a) show that particle trajectories
of the approximate posterior in discrete deep latent
Gaussian models converge to a diffusion, and that the
ELBO may be written with KL of measures on path
space. This construction has been explored in various
forms in the past (Opper, 2019; Archambeau et al.,
2008).

Neural SDEs with other training objectives
Models making use of SDEs have appeared in the past,
though many make use of somewhat ad-hoc combina-
tions of methods involving both discrete and continuous
components. Kong et al. (2020) proposed fitting a neu-
ral SDE by using a heuristic training objective based
on encouraging the diffusion to be large away from the
training data and a fixed Euler-Maruyama (E-M) dis-
cretization. Innes et al. (2019) trained neural SDEs by
backpropagating through the operations of the solver,
however their training objective simply matched the
first two moments of the training data, implying that
it could not consistently estimate diffusion functions.
This approach is also relatively memory-intensive. Liu
et al. (2019) and Oganesyan et al. (2020) add noise to
the solver operations in a neural ODE, although the
diffusion must be tuned as a hyperparameter. Hegde
et al. (2018) proposed a form of neural SDE using Gaus-
sian processes to parameterize the drift and diffusion
functions for a fixed E-M discretization. However, the
diffusion functions are based on an ad-hoc construc-
tion from a Gaussian process posterior conditioned on
inducing points. Ryder et al. (2018) used a Gaussian
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process variational posterior, effectively a continuous-
time analog of a mean field approximation that may
not always be expressive enough to model the true
posterior. Kidger et al. (2021) learn neural SDEs by
jointly learning a discriminator (Kidger et al., 2020)
and formalize the problem as learning generative ad-
versarial networks. However, this would involve many
more hyperparameters and require extensive tuning
compared to our variational inference approach.

ODEnets with finite-dimensional stochasticity
Some methods based on building variational autoen-
coders with a neural ODE share similar training objec-
tives, since the ELBO appears frequently in posterior
inference. The Latent ODE model (Rubanova et al.,
2019) only performs inference on the distribution at an
initial time of a continuous hidden state. De Brouwer
et al. (2019) introduced stochastic jumps at data loca-
tions, and do not perform continuous-time inference.
While performing amortized inference for time series
modeling, Yıldız et al. (2019) also infer the weights of
an ODE drift function. Dandekar et al. (2020) have a
similar setting but for supervised learning.

Approximate posteriors defined as neural nets
Krueger et al. (2018) and Louizos and Welling (2017)
use normalizing flows to construct an unfactorized, non-
Gaussian approximate posterior in BNNs. However,
normalizing flows have poor scaling with dimension
and point estimates were used for most of the weights
in the neural network. Table 5 in Appendix 5 com-
pares qualities of our approach to existing methods for
stochastic variational inference in BNNs.

8 CONCLUSION

We developed a practical method for approximate
inference in continuous-depth Bayesian neural net-
works. Our approach exploits a special synergy be-
tween continuous-depth models and variational infer-
ence for SDEs, providing additional benefits over stan-
dard approaches. In particular, our method allows
arbitrarily-expressive, non-factorized approximate pos-
teriors implicitly defined through neural SDEs. We
also developed an unbiased gradient estimator for SDE
variational inference whose variance approaches zero
as the approximate posterior approaches the true pos-
terior. This combination gives our family of Bayesian
continuous-depth neural networks a special property,
which is that the gradients’ bias and variance can be
made arbitrarily small during training. Where stan-
dard applications of MFVI on continuous-depth models
perform poorly, our approach brings continuous-depth
Bayesian neural networks to a comparable performance
with standard Bayesian neural networks. Furthermore,

we demonstrated the ability of this continuous-depth
model class to use adaptive SDE solvers. This allows a
memory-efficient training, and a fine-grained trade-off
between precision and speed.
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Supplementary Material:
Infinitely Deep Bayesian Neural Networks

with Stochastic Differential Equations

A PROOFS

Notation. Denote as φ the vector of variational parameters, fq as the approximate posterior on weights, fp as
the prior on weights, fh as the dynamics of hidden units, and σ as the diffusion function. Denote the Euclidean
norm of a vector u by |u|. For function f denote its Jacobian as ∇f .

A.1 Derivation of an Alternative Monte Carlo Estimator

The goal of this section is to derive a Monte Carlo estimator of the KL-divergence on path space that is similar to
the fully Monte Carlo estimator described in Roeder et al. (2017). This will serve as the basis for the subsequent
heuristic derivation of the continuous-time sticking-the-landing trick.

Let w0 be a fixed initial state. Let w1, ..., wN be states at times ∆t, 2∆t, . . . , N∆t = T generated by the Euler
discretization:

wi+1 = wi + fq(wi)∆t+ σ(wi)(Bt+∆t −Bt) (13)

= wi + fq(wi)∆t+ σ(wi)∆t1/2εi+1, εi+1 ∼ N (0, 1). (14)

where {Bt}t≥0 is the Brownian motion. This implies that conditional on the previous state, the current state is
normally distributed:

wi+1|wi ∼ N (wi + fq(wi)∆t,σ(wi)
2∆t).

Thus, the log-densities can be evaluated as

log q(wi+1|wi) = −1

2
log(2πσ(wi)

2∆t)− 1

2

(wi+1 − (wi + fq(wi)∆t))2

σ(wi)2∆t
, i = 0, . . . N − 1. (15)

On the other hand, if at any time, the next state was generated from the current state based on the prior process,
we would have the following log-densities:

log p(wi+1|wi) = −1

2
log(2πσ(wi)

2∆t)− 1

2

(wi+1 − (wi + fp(wi)∆t))2

σ(wi)2∆t
, i = 0, . . . N − 1. (16)

Now, we substitute the form of wi+1 based on equation 13 into equation 15 and equation 16 and obtain

log q(wi+1|wi) =− 1

2
log(2πσ(wi)

2∆t)− 1

2
ε2i+1,

log p(wi+1|wi) =− 1

2
log(2πσ(wi)

2∆t)

− 1

2

(
(fq(wi)− fp(wi))2

σ(wi)2
∆t+

2(fq(wi)− fp(wi))εi+1

σ(wi)
∆t1/2 + ε2i+1

)
.

The KL divergence on the path space could then be regarded as a sum of infinitely many KL-divergences between
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Gaussians:

lim
N→∞

N∑

i=0

Ewi [DKL (q(wi+1|wi)||p(wi+1|wi))] (17)

= lim
N→∞

N∑

i=0

Ewi

[
Ewi+1∼q(wi+1|wi)

[
log

q(wi+1|wi)

p(wi+1|wi)

]]
(18)

= lim
N→∞

N∑

i=0

Ewi

[
Eεi+1

[
(fq(wi)− fp(wi))2

2σ(wi)2
∆t+

(fq(wi)− fp(wi))

σ(wi)
∆t1/2εi+1

]]
(19)

= E
[
1

2

∫ T

0
|ut|2 dt+

∫ T

0
ut dBt

]
. (20)

A.2 Sticking-the-landing in Continuous Time

For a non-sequential latent variable model, the sticking-the-landing (STL) trick removes from the fully Monte
Carlo ELBO estimator a score function term of the form ∂ log q(w,φ)/∂φ, where w is sampled using the
reparameterization trick and may depend on φ. The score function term has 0 expectation, but may affect the
variance of the gradient estimator for the inference distribution’s parameters.

Here, we exploit this intuition and apply it to each step before taking the limit. More precisely, we apply the STL
trick to estimate the gradient of DKL(q(wi+1|wi)||p(wi+1|wi)) for i = 1, 2, . . . , N , and thereafter take the limit as
the mesh size of the discretization goes to 0. For each individual term, the score function term to be removed is

∂

∂φ
log q(wi+1|wi,φ) =− 1

2σ2(wi)∆t

∂

∂φ

[
(wi+1 − (wi + fq(wi,φ)∆t))2

]

=
∂

∂φ

[
fq(wi,φ)

σ(wi)

]
εi+1∆t1/2.

Now, we sum up all of these terms and take the limit as ∆t → 0. This gives us

lim
N→∞

N∑

i=0

Ewi

[
Ewi+1∼q(wi+1|wi)

[
∂

∂φ
log q(wi+1|wi)

]]

= lim
N→∞

N∑

i=0

Ewi

[
Eεi+1

[
∂

∂φ

[
fq(wi,φ)

σ(wi)

]
εi+1∆t1/2

]]

= E
[∫ T

0

∂

∂φ

[
fq(wt,φ)

σ(wt)

]
dBt

]

= E
[∫ T

0

∂

∂φ
[ut] dBt

]
.

Removing this term from the fully Monte Carlo estimator in equation 20 gives rise to the following estimator of a
surrogate objective that facilitates implementation:

ÊLBO = log p(D | w)−
∫ t1

t0

1

2
‖u(wt, t,φ)‖22 dt

−
∫ t1

t0

u(wt, t, stop_gradient(φ)) dBt, w(·) ∼ qφ().
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B EXPERIMENTAL SETTINGS

Table 2: These are the hyper-parameters for each method of evaluation pertaining to results in the toy and
classification tasks of Table 1. Each model was run on a single Nvidia RTX6000 GPU on our compute clusters.
SDE and learning optimization parameters were tuned according to a validation set sampled randomly from
10% of the training set. No schedules of any kind on the hyper-parameters were used in training. Settings with
high overlap with another model are indicated using <model> with additional parameters overridden as necessary.
Each block is separated either by a downsampling or upsampling convolutional layer (i.e., the -’s).

Experiments

Model Hyper-parameter 1D Regression MNIST Deng (2012) CIFAR-10 Krizhevsky et al. (2014)

ResNet32 Learning Rate – 1e-3 7e-4
Batch Size – 128 128
Activation – tanh tanh
Epochs – 100 500

ODEnet Augment dim. 2 2 2
# blocks 1 1 2-2-2
Diffusion σ 0 0 0
KL coef. 0 0 0
Learning Rate 1e-3 1e-3 7e-4
# Solver Steps 10 20 20
Batch Size 40 128 128
Activation swish tanh tanh
Epochs 800 100 500

HyperODEnet <ODEnet> – <ODEnet> <ODEnet>
KL coef. – 1e-3 1e-3
Drift fw dim. – 1-64-1 1-128-1

MFVI ResNet32 <ResNet32> – <ResNet32> <ResNet32>
KL coef. – 1e-3 1e-3

MFVI ODEnet <ODEnet> – <ODEnet> <ODEnet>
KL coef. – 1e-3 1e-3

MFVI HyperODEnet <MFVI ODEnet> – <MFVI ODEnet> <MFVI ODEnet>
Drift fw dim. – 1-64-1 1-128-1

SDE BNN <ODEnet> <ODEnet> <ODEnet> <ODEnet>
Learning Rate 1e-3 1e-3 7e-4
# blocks 1 1 2-2-2
Drift fx dim. 32 32 64
Drift fw dim. 32 1-64-1 2-128-2
Diffusion σ 0.2 0.1 0.1
# Posterior Samples 20 1 1

SDE BNN (+ STL) <SDE BNN> <SDE BNN> <SDE BNN> <SDE BNN>
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C ADDITIONAL RESULTS

C.1 Augmentation in Differential Equation Models

(a) Non-augmented dimension (b) from 2nd augmented dimension (c) from last augmented dimension

Figure 8: Example flows sampled from learned SDE dynamics. All continuous-depth models were trained by
augmenting the state by 2 dimensions, refer to Figure 1 for main results. Left: The SDE-BNN learns meaningful
parameterizations on the non-extraneous dimensions of the input state vector. In the case of a true function
being monotonic, the augmented dimensions simply help the main output. Middle: The model learns to ignore
dimensions that are not necessary to train on, especially on simpler tasks as in the toy setting. Samples in
augmented dimensions can overlap for different input values in the given domain (−5, 5). Right: Similarly, the
last output dimension was also associated with augmentation and was not a well learned representation of the
data, ignoring the initial inputs entirely (all values are 0).

C.2 Classification Results

Table 3: Classification accuracy and expected calibration error on MNIST (100th epoch) and CIFAR-10 (300th
epoch) for additional baseline to the ones in Table 1. Values are compared at the 100th epoch for MNIST and
300th for CIFAR-10. Here w0, the initial drift of the posterior SDE, is inferred using a Gaussian prior rather than
being a fixed value. The best prior variance was selected in a preliminary sweep between values in the range [0.1,
0.44]. The performance is slightly worse than the point estimate but displays better calibration as a trade-off. It
can be noted that calibration may appear better earlier on in training, as in prior to converging and reaching
non-uniform confidence, but model predictions are not necessarily correct.

MNIST CIFAR-10

Model Accuracy (%) ECE (×10−2) Accuracy (%) ECE (×10−2)

SDE BNN 99.30 ± 0.09 0.63 ± 0.10 88.08 ± 1.25 7.53 ± 0.44
SDE BNN (+ STL) 99.10 ± 0.09 0.78 ± 0.12 87.95 ± 1.32 7.94 ± 0.59
SDE BNN w0 inferred 99.04 ± 0.03 0.73 ± 0.04 88.04 ± 0.30 6.56 ± 0.62
SDE BNN w0 inferred (+ STL) 99.05 ± 0.00 0.79 ± 0.04 87.37 ± 0.63 6.44 ± 0.10
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C.3 Sticking the Landing Results

Table 4: Training with STL estimator on CIFAR-10 shows training time improvements in accuracy, negative log
likelihood, and ELBO objective in addition to reducing variance. This improvement to the standard gradient
estimator can be especially useful in settings where the approximate posterior is sufficiently flexible (i.e. the drift
neural net is very large relative to the state size).

Method Accuracy (%) Negative
Log-likelihood (×10−4) ELBO

SDE BNN 95.91 ± 0.2 1.17 ± 0.309 1.40 ± 0.2
SDE BNN (+STL) 96.89 ± 0.2 0.309 ± 0.15 1.183 ± 0.2

C.4 Calibration Results

(a) Model vs Classification Error (b) Model vs Expected Calibration Error

(c) Model vs Brier Score (d) Corruption severity vs Brier Score

Figure 9: Figures 9a-9c show that the SDE BNN and SDE BNN + STL models outperform their non-continuous
depth ResNet counterparts on all three robustness metrics when evaluated on the corrupt CIFAR-10C benchmarks.
Figure 9d indicates that the accuracy of predictions is relatively consistent across all severity levels with the
SDE-BNN and SDE-BNN + STL models having relatively better calibrated predictions.
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C.5 Comparisons with Other Bayesian Models

Table 5: Properties of various Bayesian supervised learning approaches.

Method Posterior over
Stochastic Process

Flexible
Approximate Posterior

Adaptive
Computation References

Bayes by Backprop ! ! ! Blundell et al. (2015)
MCMC for BNNs ! " ! (Neal, 1996; Wenzel et al., 2020; Izmailov et al., 2021)
Bayesian Hypernets ! " ! Krueger et al. (2018)
BBVI for SDEs " ! ! Ryder et al. (2018)

Bayesian Neural ODEs ! ! "
Yıldız et al. (2019)

Dandekar et al. (2020)
SDE-BNN " " " current work

C.6 Other Bayesian Methods

Figure 10: Approximate posteriors from other common Bayesian statistical models. Left: Gaussian Process.
Center: Deep Ensemble K=8. Right: MFVI. Different variances and extrapolations are learned from the SDE-BNN
across other Bayesian model parameterizations, which can result in more or less reasonable uncertainty bounds
depending on interpretation.

C.7 Robustness to solver error at test time

(a) 160 steps (b) 176 steps (c) 192 steps (d) 208 steps

Figure 11: CIFAR10 image classification with a SDE-BNN. Better calibration can be obtained by increasing
solver step sizes during inference without substantially changing the training error.
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(a) 154 steps (b) 160 steps (c) 176 steps (d) 192 steps

Figure 12: CIFAR10 image classification with a SDE-BNN. Generalization improves marginally compared to a
trained model during inference in 12b, as tuning solver step size does not yield significant differences in calibration
outcomes.

C.8 SDE solver and adjoint settings

These were run with a SDE-BNN for MNIST image classification, to compare the performance and run-time cost
across different solver settings. Comparably, backpropagation through the solver averaged 162.58 sec / epoch
while the adjoint method averaged 135.90 sec / epoch in terms of wall clock time.

Figure 13: Backpropagation through the SDE solver yields similar optimization dynamics but is less time efficient
than the adjoint method.

Figure 14: Trade-off between solver speed and convergence during training. Adaptive refers to training with the
stochastic adjoint in both forward and reverse modes here.

Figure 15: Trade-off between solver speed and precision during training. Adaptive-order optimization trajectories
were comparable to fixed-order solvers and were thus not applied to the classification tasks since computational
resources were not under constraint.


