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Abstract

Discrepancy measures between probability
distributions are at the core of statistical in-
ference and machine learning. In many ap-
plications, distributions of interest are sup-
ported on different spaces, and yet a mean-
ingful correspondence between data points is
desired. Motivated to explicitly encode con-
sistent bidirectional maps into the discrep-
ancy measure, this work proposes a novel un-
balanced Monge optimal transport formula-
tion for matching, up to isometries, distri-
butions on different spaces. Our formula-
tion arises as a principled relaxation of the
Gromov-Haussdroff distance between met-
ric spaces, and employs two cycle-consistent
maps that push forward each distribution
onto the other. We study structural prop-
erties of the proposed discrepancy and, in
particular, show that it captures the pop-
ular cycle-consistent generative adversarial
network (GAN) framework as a special case,
thereby providing the theory to explain it.
Motivated by computational efficiency, we
then kernelize the discrepancy and restrict
the mappings to parametric function classes.
The resulting kernelized version is coined
the generalized maximum mean discrepancy
(GMMD). Convergence rates for empirical
estimation of GMMD are studied and exper-
iments to support our theory are provided.

1 INTRODUCTION

Discrepancy measures between probability distribu-
tions are ubiquitous in machine learning. In practice,
distributions of interests are often supported on differ-
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ent spaces and the goal is not only to quantify discrep-
ancy, but also to obtain a meaningful and consistent
correspondence between data points. Such problems
arise, e.g., in natural language processing for unsuper-
vised matching across different languages or ontologies
(Alvarez-Melis and Jaakkola, 2018; Grave et al., 2019;
Alvarez-Melis et al., 2020; Le et al., 2021b), shape
matching (Bronstein et al., 2006a; Mémoli, 2011; Xu
et al., 2019), heterogenous domain adaptation (Yan
et al., 2018), generative modeling (Bunne et al., 2019),
and many more.

Among the most popular discrepancies between dis-
tributions on incompatible spaces is the Gromov-
Wasserstein distance (GW) (Mémoli, 2011) (see
Séjourné et al. (2020) for an unbalanced variant).
Computationally, the GW distance amounts to a
quadratic assignment problem that is NP hard (Com-
mander, 2005). To alleviate this impasse, Peyré et al.
(2016) proposed an entropic regularization to the GW
problem, and derived an algorithm with cubic O(n3)
complexity in the number of samples (see Le et al.
(2021a) for recent theoretical advances). More re-
cently, Vayer et al. (2019) proposed slicing the GW dis-
tance, which further reduces the computational com-
plexity to O(n log n). Despite these algorithmic ad-
vances, a common issue with GW-based discrepan-
cies is their lack of generalization to new data points.
These approaches only quantify the distance without
generating a map that captures the correspondence.
This requires recomputing the distance whenever one
wants to account for new data points, thereby incur-
ring an additional cost. This shortcoming motivate
us to explore computationally friendly discrepancies
between distributions on different spaces that explic-
itly encode consistent, bidirectional measure preserv-
ing mappings that capture the correspondence. This
is similar in spirit to the recent interest in learning
Monge optimal transport (OT) maps (Perrot et al.,
2016; Makkuva et al., 2020; Paty et al., 2020; Flamary
et al., 2019).

Specifically, we propose a novel unbalanced divergence
between probability measures supported on different
spaces that explicitly employs two cycle-consistent
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maps that (approximately) push each distribution
onto another. Cycle-consistency here is in the context
of cycle generative adversarial networks (Zhu et al.,
2017; Kim et al., 2017) (GANs), which requires that
the two pushforward maps are roughly inverses one
of another. Note that Mémoli and Needham (2021)
recently proposed a quasi-metric called the Gromov-
Monge distance that employs a single push forward
map. A key advantage of our approach is its cycle
consistency that provides a mathematical framework
for the popular cycle GAN and enables a principled
study thereof.

The main contributions of this paper are:

• We introduce and study in Section 3 the unbalanced
bidirectional Gromov-Monge (UBGM) divergence,
drawing connections between UBGM and the pop-
ular cycle GAN framework.

• Motivated by computational efficiency, we kernel-
ize UBGM in Section 4 and restrict mappings to
parametric function classes, such as neural networks
(NNs). We call the resulting divergence the gener-
alized maximum mean discrepancy (GMMD). We
then derive convergence rates for two-sample empir-
ical estimation of GMMD.

• We present numerical results in Section 5 that sup-
port our theory and demonstrate the computa-
tional efficiency, and generalization capability of the
proposed framework for matching across different
spaces.

2 BACKGROUND AND
PRELIMINARIES

2.1 Notations

Let (X , dX ) be a compact metric space. The diameter
of a set A ⊆ X is diam(A) := supx,x′∈A dX (x, x′). We
use B(x, r) to denote the open ball of radius r > 0 cen-
tered at x ∈ X . For ε > 0, a set Xε is called an ε-cover
of X if for any x ∈ X , infx′∈Xε dX (x, x′) < ε. The
ε-covering number of X is N(X , dX , ε) := inf{|Xε| :
Xε is an ε-cover of X}. When X is a subset of Rd, we
always use the metric induce by the Euclidean norm,
denoted as ‖ · ‖. For a metric space (X , dX ), the di-
ameter of X is defined as supx,x′∈X dX (x, x′).

For 1 ≤ p <∞, let Lp(X , ρ) denote the space of mea-
surable maps f : X → R such that ‖f‖Lp(X ,ρ) :=

(
∫
X |f |

p dρ)1/p < ∞; we use the shorthand Lp(X ),
Lp(ρ), and Lp whenever the omitted object is clear
from the context. The standard extension of these
spaces to p = ∞ is denoted by L∞(X ). The
Lipschitz constant of a function f : X → Y is

‖f‖Lip = supx,x′∈X
dY(f(x),f(x′))

dX (x,x′) , with LipL(X ,Y) =

{f : ‖f‖Lip ≤ L} denoting the Lipschitz ball of radius
L > 0. A mapping f : X → Y between metric spaces
is called an isometry if dX (x, x′) = dY

(
f(x), f(x′)

)
, for

all x, x′ ∈ X , i.e., f preserves the metric structure. For
a class of mappings from X to Y, define the sup-metric
on F as dF

(
f1, f2) := supx∈X dY

(
f1(x), f2(x)

)
.

The probability space on which all random variables
are defined is denoted by (Ω,A,P) (assumed to be suf-
ficiently rich), with E designating the corresponding
expectation. The class of Borel probability measures
over X is denoted by P(X ). For n ∈ N, P⊗n denotes
the n-fold product measure of P . Given a measurable
f : X → Y and P ∈ P(X ), the pushforward of P
through f is f]P (B) := P (f−1(B)), for any Borel set
B. Clearly f]P ∈ P(Y). We also write a .x b when
a ≤ Cxb, where Cx is a constant depending only on x,
and write a . b if the omitted constant is universal.
Also denote n ∧m = min{n,m}.

2.2 Gromov-Haussdroff Distance

To motivate our proposed discrepancy measure, we
start by recalling the Gromov-Hausdorff distance be-
tween metric spaces, which is defined as

dGH(X ,Y) := inf
Z,φX ,φY

dZH
(
φX (X ), φY(Y)

)
, (1)

where the infimum is on an ambient metric space
(Z, dZ) and isometric embeddings φX : X → Z and
φY : Y → Z, with dZH as the Hausdroff distance on Z.

Evidently, the formulation above is not computable.
Nevertheless, dGH has several equivalent forms
(Mémoli, 2011) that, with appropriate relaxations, can
be computed efficiently. Two such forms are as follows.

Correspondence set reformulation. Following
Mémoli and Needham (2021), a correspondence set be-
tween X and Y is a set R ⊂ X × Y whose projections
to X and Y define surjections on R. The set of all such
correspondences is denoted by R(X ,Y). The Gromov-
Hausdroff distance can be reformulated as

dGH(X ,Y) =
1

2
inf

R∈R(X ,Y)
sup

(x,y),(x′,y′)∈R
ΓX ,Y(x, y, x′, y′),

(2)
where ΓX ,Y(x, y, x′, y′) :=

∣∣dX (x, x′) − dY(y, y′)
∣∣ is

the pointwise distortion between (x, x′) ∈ X 2 and
(y, y′) ∈ Y2. Note that (2) can be written in the fol-
lowing compact form as an L∞ norm:

dGH(X ,Y) =
1

2
inf

R∈R(X ,Y)
‖ΓX ,Y‖L∞(R×R) . (3)

Two mappings reformulation. Another impor-
tant reformulation of the Gromov-Hausdroff distance
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in terms of mappings between spaces is:

dGH(X ,Y)=
1

2
inf

f :X→Y
g:Y→X

max
{
∆∞X (f),∆∞Y (g),∆∞X ,Y(f, g)

}
,

(4)
where the distortions ∆∞X , ∆∞Y , and ∆∞X ,Y are given by1

∆∞X (f) := sup
x,x′∈X

∣∣dX (x, x′)− dY
(
f(x), f(x′)

)∣∣
∆∞Y (g) := sup

y,y′∈Y

∣∣dX (g(y), g(y′)
)
− dY(y, y′)

∣∣
∆∞X ,Y(f, g) := sup

x∈X ,y∈Y

∣∣dX (x, g(y)
)
− dY

(
f(x), y

)∣∣.
Formulation (4) thus measures distance by search-
ing for low distortion maps between the two met-
ric spaces, such that the so-called cycle consistency
property holds, i.e., the maps are approximate in-
verses of one another. More specifically following
Mémoli and Sapiro (2005), if dGH(X ,Y) ≤ ε then
there exists f : X → Y and g : Y → X such
that: (1) the induced metric distortions are small, i.e.,
∆∞X (f) ≤ 2ε and ∆∞Y (g) ≤ 2ε; and (2) these functions
are almost inverses one of another, in the sense that
dX
(
x, g(f(x))

)
≤ 2ε and dY

(
f(g(y)), y

)
≤ 2ε (which

follows from
∣∣dX (x, g(y)) − dY(f(x), y)

∣∣ ≤ 2ε by tak-
ing y = f(x) and x = g(y), respectively). Thus, ∆∞X ,Y
ensures cycle consistency of the maps.

3 PROBABILITY DIVERGENCES
ACROSS METRIC MEASURE
SPACES

We are now ready to present the proposed discrepancy
between probability measures on different spaces. In
conjunction with the preceding discussion, such a dis-
crepancy can equivalently be viewed as a distance be-
tween metric measure (mm) spaces (Mémoli, 2011).

Definition 1 (Metric measure spaces). A metric mea-
sure space is a triple (X , dX , P ) where (X , dX ) is a
compact metric space and P ∈ P(X ) has full support.

3.1 The Unbalanced Bidirectional
Gromov-Monge Divergence

Formulation (4) of dGH is computationally appealing
and has lead to many algorithmic relaxations that
approximate the Gromov-Hausdroff distance (Mémoli
and Sapiro, 2004, 2005; Bronstein et al., 2006b). As
a stepping stone towards our unbalanced formulation,
we first adapt this formulation to an extended metric
between two mm spaces (X , dX , P ) and (Y, dY , Q). To

1The superscript ∞ indicates that ∆∞X , ∆∞Y , and ∆∞X ,Y
can be written as L∞ norms of the appropriate pointwise
distortions (e.g., ΓX ,Y

(
x, f(x), x′, f(x′)

)
for ∆∞X ).

that end, we first relax the distortion terms and then
restrict the mappings to be measure persevering, as
described next.

Let (X,X ′) ∼ P⊗2 be independent of (Y, Y ′) ∼ Q⊗2.
For 1 ≤ p <∞, set

∆
(p)
X (f ;P ) :=

(
E
[∣∣dX (X,X ′)− dY

(
f(X), f(X ′)

)∣∣p])1
p

∆
(p)
Y (g;Q) :=

(
E
[∣∣dX (g(Y ), g(Y ′)

)
− dY(Y, Y ′)

∣∣p])1
p

∆
(p)
X ,Y(f,g;P,Q) :=

(
E
[∣∣dX (X,g(Y )

)
−dY

(
f(X),Y

)∣∣p])1
p

,

as the Lp relaxation of the distortion terms from (4).
Restricting the mappings in (4) to be ‘Monge’ mea-
sure preserving, i.e., f]P = Q and g]Q = P , gives
rise to pth order bidirectional Gromov-Monge (BGM)
distance, as defined next.

Definition 2 (Bidirectional Gromov-Monge dis-
tance). Fix 1 ≤ p <∞. The pth order BGM distance
between (X , dX , P ) and (Y, dY , Q) is

Dp(P,Q) := inf
f :X→Y, f]P=Q
g:Y→X , g]Q=P

∆p(f, g;P,Q),

where ∆p(f, g;P,Q) := ∆
(p)
X (f ;P ) + ∆

(p)
Y (g;Q) +

∆
(p)
X ,Y(f, g;P,Q). If the set of measure preserving maps

is empty, then we set Dp(P,Q) =∞.

This definition follows a reasoning similar to Formu-
lation (4) of dGH above: We are looking for measure
preserving maps f, g, that are low metric distortion
(minimizing ∆

(p)
X ,∆

(p)
Y ) and satisfy a cycle consistency

propriety (minimizing ∆
(p)
X×Y , i.e., almost inverses one

of another).

The BGM distance defines an extended metric between
equivalence classes of mm spaces.

Definition 3 (Equivalence classes). Two mm spaces
(X , dX , P ) and (Y, dY , Q) are called equivalent if and
only if (iff) there is an invertible isometry f : X → Y
such that f]P = Q (and hence f−1

] Q = P ). The set of
all such equivalence classes is denoted by M.

Proposition 1 (BGM distance metrizes M). For any
1 ≤ p <∞, Dp defines an extended metric on M.

Remark 1 (Finiteness of BGM). Let (X , dX , P ) be a
mm space, with X uncountable and P atomless. If
C∞ is the subcategory of mm spaces isomorphic to
(X , dX , P ) (Mémoli and Needham, 2021), then BGM
is a finite metric on C∞. This setting is interesting for
matching isomorphic mm spaces (of same dimension),
in image, shape and text matching applications.

The proof of Proposition 1 is given in Supplement A.1.
Positivity, symmetry, and the triangle inequality all
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follow from elementary calculations. The main chal-
lenge is in showing that if Dp nullifies then the consid-
ered spaces are isometrically isomorphic. To that end,
we use the following lemma, that may be of indepen-
dent interest (see Supplement A.2 for the proof).

Lemma 1 (Existence of isometries). Fix P,Q ∈ P(X )
and let F and G be arbitrary function classes such that
inff∈F, g∈G ∆p(f, g;P,Q) = 0. Then there exist mini-
mizing sequences (fn)n∈N ⊂ F and (gn)n∈N ⊂ G that
converge almost surely (a.s.) to isometries f and g,
respectively, such that f = g−1.

Remark 2 (Convergent sequences). Notice that the
convergence stated in the lemma is guaranteed solely
by the first two terms of ∆p(f, g;P,Q). If we drop the
third term, convergent sequences still exists, but the
limits are not guaranteed to be inverse of each other.

While Dp is a valid extended metric on M, its evalua-
tion is computationally challenging as it is unclear how
to optimize over bidirectional Monge maps. Following
the unbalanced OT framework (Chizat et al., 2018;
Frogner et al., 2015), we relax the measure preserving
constraint using divergences2 DX and DY on measures
on X and Y, respectively, and restrict the functions to
pre-specified classes. This gives rise to the unbalanced
Gromov-Monge formulation.

Definition 4 (Unbalanced bidirectional Gromov–
Monge divergence). Fix 1 ≤ p < ∞, let DX and DY
be divergences on X and Y, respectively. Further take
F as a class of mappings from X to Y, and G a class
of mappings from Y to X . The pth order UBGM di-
vergence between (X , dX , P ) and (Y, dY , Q) is

UDF,Gp (P‖Q) := inf
f∈F
g∈G

∆p(f, g;P,Q) + λxDX (g]Q,P )

+ λyDY(f]P,Q),

where ∆p(f, g;P,Q) is given in Definition 2.

Evidently, UDF,Gp no longer requires optimizing over
Monge maps, which alleviates the computational diffi-
culty associated with Dp from Definition 2. The func-
tion classes F and G can also be chosen for computa-
tional convenience (e.g., NNs). The following propo-
sition (see Supplement A.3 for the proof) shows that
UDF,Gp is a continuous divergence.

Proposition 2 (UDF,Gp is a divergence). Suppose that
DX and DY are weakly continuous in their arguments,
and F ,G are rich enough so that they are dense around
the isometric bijections if X ,Y are isometric. Then

1. UDF,Gp is an upper semi-continuous divergence on

M, i.e., UDF,Gp (P‖Q) ≥ 0, for all P ∈ P(X ) and

2A divergence on P(X ) is a functional D : P(X ) ×
P(X )→ R≥0 such that D(P‖Q) = 0 iff P = Q.

Q ∈ P(Y), with equality iff there exists isometries
f, g, such that f]P = Q, g]Q = P , and f = g−1.

2. If further F ,G are compact in the sup-metrics dF
and dG, then UDF,Gp is continuous with respect to
(w.r.t.) weak convergence.

3.2 Cycle GAN as Unbalanced
Gromov-Monge Divergence

If DX and DY are integral probability metrics (IPM)3

(Zolotarev, 1984; Müller, 1997) indexed by the func-
tion classes FX and FY , respectively, then UD1

amounts to a minimax game between the maps f, g
and the witness functions ψ and φ of the IPMs on FX
and FY respectively, as follows:

inf
f :X→Y
g:Y→X

sup
ψ∈FX
φ∈FY

∆1(f, g;P,Q)

+ λx

(
E
[
ψ
(
g(Y )

)]
− E

[
ψ(X)

])
+ λy

(
E
[
φ
(
f(X)

)]
− E

[
φ(Y )

])
, (5)

where X ∼ P and Y ∼ Q.

Written in this form, we see the similarity to the cycle
GAN formulation (Zhu et al., 2017; Kim et al., 2017):

inf
f :X→Y,
g:Y→X

sup
ψ∈FX ,
φ∈FY

E
[
dX
(
X, g◦f(X)

)]
+E
[
dY
(
Y, f ◦g(Y )

)]
+ λx

(
E
[
ψ
(
g(Y )

)]
− E

[
ψ(X)

])
+ λy

(
E
[
φ
(
f(X)

)]
− E

[
φ(Y )

])
. (6)

The first two terms in (6) encourage f and g to be ap-
proximate inverses of one another, similar to the role
of the distortion ∆1(f, g;P,Q) in UD1 from (5). While
the original Cycle GAN formulation did not require f
and g to be isometries, this constraint was introduced
in followup works (Hoshen and Wolf, 2018). We thus
see that Cycle GAN, with a relaxed isometry require-
ment of f and g, is a particular instantiation of the
UBGM divergence.

3.3 Relation to Past Works

We show briefly here the construction of two well-
known discrepancies between mm spaces, namely the
GW distance (Mémoli, 2011), and the Gromov-Monge
(GM) distance (Mémoli and Needham, 2021). The
starting point of defining these two distances is the
‘correspondence set formulation’ of dGH from (3).

Gromov-Wasserstein distance. In a nutshell, the
GW distance is an Lp, p ≥ 1 relaxation of the L∞ norm

3An IPM indexed by a function class F is a pseudomet-
ric on P(X ) defined as dF (µ, ν) := supf∈F

∫
X f d(µ− ν).
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in formulation (3) of dGH, along with a Kantorovich
relaxation of the correspondence set using couplings.

Definition 5 (Gromov-Wasserstein distance (Mémoli,
2011)). The GW distance between (X , dX , P ) and
(Y, dY , Q) is

GW(P,Q) := inf
π∈Π(P,Q)

‖ΓX ,Y‖Lp(π⊗π)

where ΓX ,Y(x, y, x′, y′) :=
∣∣dX (x, x′) − dY(y, y′)

∣∣, and
Π(P,Q) is the set of all couplings of P,Q.

Another closely related formulation is the unbalanced
GW distance from Séjourné et al. (2020). For any
divergence4 DX on X , define its two-fold extension
D⊗2
X (P,Q) := DX (P ⊗ P,Q⊗Q).

Definition 6 (Unbalanced Gromov-Wasserstein dis-
tance (Séjourné et al., 2020)). LetM+(X ) be the set of
all nonnegative Borel measures on X . The unbalanced
GW distance between (X , dX , P ) and (Y, dY , Q) is

UGW(P,Q) :=

inf
π∈M+(X×Y)

‖ΓX ,Y‖L1(π⊗π) +D⊗2
X (π1‖P )+D⊗2

Y (π2‖Q)

where π1, π2 are the marginals of π on X and Y.

The unbalanced relaxation of the GW distance is sim-
ilar to how our UBGM distance (Definition 4) re-
laxes the BGM distance. A crucial difference is that
both the BGM distance and its unbalanced version ex-
plicitly encode bidirectional mappings, which are im-
portant in applications as they alleviate the need to
recompute the coupling matrix given new datapoints.

Gromov-Monge distance. More recently, Mémoli
and Needham (2021) presented another extension of
dGH to a discrepancy between mm spaces. Termed
the GM distance, it considers an Lp Monge relaxation
of (3), as opposed to the Kanotrovich-based approach
of GW. Namely, instead of using couplings, the cor-
respondence set now comprises Monge maps, i.e., all
measurable maps f : X → Y s.t. f]P = Q. Also for
arbitrary f , denote πf := (id, f)]P . Clearly for Monge
maps f that pushes P to Q, πf ∈ Π(P,Q).

Definition 7 (Gromov-Monge distance (Mémoli and
Needham, 2021)). The GM distance between two mm
spaces (X , dX , P ) and (Y, dY , Q) is

GM(P,Q) := inf
f :X→Y, f]P=Q

‖ΓX ,Y‖Lp(πf⊗πf )

where ‖ΓX ,Y‖Lp(πf⊗πf ) = ∆
(p)
X (f ;P ).

4Séjourné et al. (2020) used f-divergences (Csiszár,
1967) for DX and DY , but we provide a general definition.

Comparing Dp to GM above, we see that while the
latter uses a single low metric distortion maps (with a

cost of the form ∆
(p)
X (f ;P )), our BGM distance uses

two such mappings that are approximately inverses (as

enforced by ∆
(p)
X ,Y(f, g;P,Q)). In a sense our definition

is a symmetrized and cycle consistent version of GM.

4 KERNELIZATION:
GENERALIZED MAXIMUM
MEAN DISCREPANCY

Motivated by computational considerations, we now
instantiate the divergences DX and DY in UDF,Gp

(see Definition 4) as maximum mean discrepancies
(MMDs) (Gretton et al., 2012). We coin the result-
ing kernelized divergence as the generalized maximum
mean discrepancy (GMMD). MMDs can be efficiently
computed and offer flexibility in picking the proper
kernel for each space. We start by reviewing prelimi-
naries on MMDs (Section 4.1), after which we present
the kernelized UBGM distance (Section 4.2), and ex-
plore its empirical convergence rates (Section 4.3).

4.1 Reproducing Kernel Hilbert Spaces

We define reproducing kernel Hilbert spaces (RKHS)
and the associated MMD. For a separable space X
and a continuous, positive definite, real-valued ker-
nel kX : X × X → R, let HX denote the corre-
sponding RKHS, in which for any f ∈ HX , we have
f(x) = 〈f(·), k(x, ·)〉HX , for any x ∈ X . See Berlinet
and Thomas-Agnan (2011) for existence and unique-
ness of HX . There is a natural way to embed P(X )
into (HX , kX ), given by the kernel mean embedding

µXP (x) :=

∫
X
kX (x, y) dP (y) = E

[
kX (x, Y )

]
,

where Y ∼ P . This enables defining a discrepancy
measure between probability distribution as the RKHS
distance between their kernel mean embeddings.

Definition 8 (Maximum mean discrepancy). Let HX
be an RKHS. The MMD between P,Q ∈ P(X ) is

MMDX (P,Q) := ‖µXP − µXQ‖HX

=

(∫
kX (x, y) d(P −Q)(x) d(P −Q)(y)

)1/2

.

When the kernel kX is characteristic, as defined next,
MMDX metrizes the space of distributions P(X ).

Definition 9 (Characteristic kernel). The kernel kX
of an RKHS HX is called characteristic if the mean
embedding µX : P(X )→ HX is injective.
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Also recall that characteristic kernels enable defining
a metric on the X space (Sejdinovic et al., 2013).
Namely, defining ρkX (x, x′) := kX (x, x) + kX (x′, x′)−
2kX (x, x′), for x, x′ ∈ X , we have that

(
X ,√ρkX

)
is

a metric space. To simplify notation, we henceforth
denote ρkX by ρX .

4.2 Generalized MMD

The GMMD is defined as follows. Throughout we
assume that X and Y are compact with diameters
bounded by K, and specialize to the case of p = 1.

Definition 10 (Generalized MMD between Metric
Measure Spaces). Let kX and kY be characteristic ker-
nels on X and Y, respectively. The GMMD between
(X , dX , P ) and (Y, dY , Q) is

UDF,G(P‖Q) := inf
f∈F
g∈G

∆1(f, g;P,Q)

+ λxMMDX (P, g]Q) + λyMMDY(f]P,Q)

where λx, λy > 0 are fixed regularization coefficients.

Proposition 3 (GMMD is a divergence). Consider
the GMMD UDF,G defined above and assume that the
function classes F ,G are rich enough, as defined in
Proposition 2. The following hold:

1. UDF,G is a divergence on M, i.e., a nonnegative
discrepancy measure that nullifies iff the two metric
measure spaces are equivalent.

2. If further F ,G are compact w.r.t. their sup-metrics

and ‖kX ‖L∞ , ‖kY‖L∞ < ∞, then UDF,G is weakly
continuous.

This proposition follows directly from Proposition 2,
as MMDs are weakly continuous for bounded kernels.

Remark 3 (Kernels specify GMMD). GMMD can be
fully specified by the kernels if one defines the mm
spaces using the kernel induced metrics ρX and ρY .

4.3 GMMD Empirical Estimation Rates

We now study the convergence rate of the two-sample
plugin estimator of GMMD. Let (Xi)

n
i=1 and (Yi)

m
i=1

be i.i.d. samples from P and Q, respectively. De-
note by Pn := n−1

∑n
i=1 δXi and Qm := m−1

∑m
i=1 δYi

the empirical measures associated with these sam-
ples. Since GMMD is weakly continuous (for compact
F and G), we immediately have UDF,G(Pn‖Qm) →
UDF,G(P‖Q) as n,m → ∞ a.s. The focus of this sec-
tion is the rate at which this convergence happens.

Theorem 1. Suppose kX , kY are uniformly bounded
by a constant C, and the diameters of X and Y are

bounded by K. Further suppose that F and G are com-
pact in dF and dG, respectively. Then

E
[∣∣∣UDF,G(P‖Q)− UDF,G(Pn‖Qm)

∣∣∣]
. λyδn(FkY ) + λxδm(GkX ) + δn,m(F ,G)

+ λxC
1
2n−

1
2 + λyC

1
2m−

1
2 +K(n ∧m)−1

where FkY := {kY ◦ (f, f) : f ∈ F} and

δn(FkY ) := inf
α>0

(
α+

1

n

∫ 2C

α

log
(
N(FkY , ‖·‖∞, τ)

)
dτ

)1
2

,

with GkX and δm(GkX ) defined analogously, and

δn,m(F ,G) := inf
α>0

(
α+

1√
n ∧m

∫ K

α

(
log
(
N(F , dF , τ)

)
+ log

(
N(G, dG , τ)

)) 1
2

dτ

)
.

Theorem 1 bounds the estimation error for general
function classes F and G in terms of the appropri-
ate entropy integrals. The proof is given in Supple-
ment A.4 and relies on standard chaining arguments
and bounds on Rademacher chaos complexity (cf. e.g,
Sriperumbudur (2016)).

In general, the above entropy integrals cannot be fur-
ther simplified due to the dependence on the arbitrary
classes F and G. Nevertheless, the next corollary in-
stantiates Theorem 1 to two particular function classes
of interest and states explicit convergence rates.

Corollary 1 (Special cases). Under the same condi-
tion of Theorem 1, further suppose that X ⊂ Rdx ,Y ⊂
Rdy are compact, and kX , kY are L-Lipschitz in both
slots.5

1. Lipschitz: For F = LipLF
(X ,Y), G = LipLG

(Y,X ),
and dx, dy > 2, we have

E
[∣∣∣UDF,GkX ,kY

(P‖Q)− UDF,GkX ,kY
(Pn‖Qm)

∣∣∣]
.λx,λy,L,LF ,LG ,C,K

(
1

n

) 1
2dx

+

(
1

m

) 1
2dy

.

2. Parametric: Let Θ ⊂ Rk1 ,Φ ⊂ Rk2 be compact pa-
rameter sets with diameters bounded by K ′. Take
F = {fθ : θ ∈ Θ}, with dF (fθ1 , fθ2) ≤ LΘ‖θ1− θ2‖,
for some constant LΘ and all θ1, θ2 ∈ Θ. Suppose
analogously for G = {gφ : φ ∈ Φ} and LΦ. Then

E
[∣∣∣UDF,GkX ,kY

(P‖Q)− UDF,GkX ,kY
(Pn‖Qm)

∣∣∣]
.λx,λy,L,LΘ,LΦ,C,K,K′,k1,k2

(
1

n ∧m

) 1
2

.

5Namely, |kX (x1, x
′
1) − kX (x2, x

′
2)| ≤ L(dX (x1, x2) +

dX (x′1, x
′
2)), and similarly for kY .
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The proof is given in Supplement A.6. The latter
bound for parametric classes is of particular practi-
cal interest, as NNs offer a convenient and trainable
model for the bidirectional maps (see next section).

5 NUMERICAL EXPERIMENTS

We present applications of GMMD in shape matching.
The bidirectional maps f and g are parametrized by
neural networks fθ and gφ, respectively (θ and φ are
the parameters). Algorithm 1 (Supplement B) sum-
marizes the optimization of the GMMD objective as
function of θ and φ. The running code for these ex-
periments are made public on Github.6 All experi-
ments are run on the same machine with 4 core CPUs
and a Tesla T4 GPU. The examples below highlight
the qualitative and quantitative behavior of GMMD,
illustrating the fact that GMMD is applicable to the
same tasks as classical methods such as GW and UGW
for finding correspondences. Further, GMMD amor-
tizes the computational cost, as it results in continuous
mappings that generalize to unseen datapoints drawn
from the same distributions.

5.1 GMMD For Shape Matching

We consider here matching of synthetic shapes, specif-
ically a 2-dimensional heart shape given in Figure 1(a)
and its transformations through rotation (b), scaling
(c) and isometrically embedding into 3-dimensional
space (d). The data is generated via sampling n =
4000 points for each shape. The distributions for each
matching experiment are the empirical measures in-
duced by these samples, with P corresponding to 1(a)
and Qb, Qc, and Qd corresponding to subfigures (b),
(c), and (d), respectively (the subscript is suppressed
when we simultaneously refer to several experiments).

For each matching experiment, we compute GMMD
using Algorithm 1 for λx = λy = λ, where λ ∈
{2−i × 103 : i = 0, · · · , 9}. We use a uniform
mixture of Gaussian kernels to define MMDX and
MMDY and use kernel induced metrics ρX , and
ρY in the distortion ∆1. The bandwidths used
for the Gaussian kernels are median of the metric
×{.0001, .001, .01, .05, .25, 1, 4, 20, 100, 1000}. The ar-
chitecture of the bidirectional maps f and g is a 3 layer
ReLU NN with 200 neurons each, and an output di-
mension matching the target distribution dimension.
We use Adam optimizer (Kingma and Ba, 2014) for
3000 epochs with a learning rate 10−3.

In Figure 2, the first row corresponds to GMMD
matching for λ = 2−6 × 103. For each case, we see

6See https://github.com/ZhengxinZh/GMMD

that the learned bidirectional maps of GMMD suc-
cessfully perform the matching, i.e., f]P ≈ Q and
g]Q ≈ P . We also confirm that they satisfy the
cycle consistency property, i.e., f ◦ g ≈ idY and
g ◦ f ≈ idX . The second row shows entropic GW
matchings (Peyré et al., 2016). We use the POT li-
brary (Flamary et al., 2021) to perform discrete en-
tropic GW for an entropic regularization parameter
ε = 5e−4. Note that entropic GW results in a coupling
matrix π. To obtain discrete mappings of the points
we employ barycentric maps (Ferradans et al., 2014),
i.e., f̃(xi) := (

∑n
j=1 πij)

−1
∑n
j=1 πijyj and g̃(yj) :=

(
∑n
i=1 πij)

−1
∑n
i=1 πijxi.

We see from Figure 2 that the GMMD continuous
maps and the discrete barycentric maps induced by
the GW coupling are on par qualitatively in these
matching tasks. To confirm this quantitatively, we
consider the matching of the heart shape and its ro-
tation (Figure 1(b)) since for this case an isometry
exists, i.e., there are f?, g? with ∆1(f?, g?;P,Qb) = 0.
Tables 1 and 2 state the values of MMDY(f]P,Qb),
MMDX (P, g]Qb), and ∆(f, g;P,Qb) across different
regularization parameters for the GMMD and GW-
based mappings, respectively. We see that GMMD
and GW indeed result in small MMD and distortions
values. GMMD yields a smaller distortion than GW.
Note that we also have evaluated UGW (Séjourné
et al., 2020) with the code provided by the authors and
found that it is sensitive to hyper-parameters choice,
and did not result in an accurate matching on the con-
sidered tasks. We think that more tuning is needed for
UGW. Additional results and ablation on regulariza-
tion parameters and shapes are given in Supplement B.

Figure 3 presents a more complex matching of 3D
shapes that consist in two different biplanes models
from the Princeton Shape benchmark (Shilane et al.,
2004) (for n = 8000). We see that GMMD and GW are
also on par and that the GMMD bidirectional maps re-
sult in less outliers than barycentric GW-based maps.
This robustness of GMMD is due to the use of kernel
induced metrics. Quantitative evaluation is presented
in Supplement B.

Table 1: Evaluating GMMD’s mappings for P vs. Qb.

λ GMMD MMDX MMDY ∆
2−8 × 103 0.310 0.0294 0.0294 0.0801
2−7 × 103 0.0645 4.94e-4 4.05e-4 0.0574
2−6 × 103 0.121 0.00227 0.00190 0.0560
2−5 × 103 2.89 2.90e-4 0.00386 2.76

5.2 GMMD Amortization and Generalization

For the biplane matching experiment with sample size
n = 8000 from each distribution, Table 3 reports the

https://github.com/ZhengxinZh/GMMD
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(a) Heart shape (P ) (b) Rotation (Qb) (c) Scaling (Qc) (d) 3D embedding (Qd)

Figure 1: Heart shape and its transformations.

(a) GMMD: P vs. Qb (b) GMMD: P vs. Qc (c) GMMD: P vs. Qd

(d) GW : P vs. Qb. (e) GW : P vs. Qc. (f) GW : P vs. Qd.

Figure 2: First row: learned continuous GMMD Mappings and their cycle consistency in shape matching. Second
row: discrete entropic GW Barycentric Mappings. The color code in the heatmaps is coordinate based.

(a) Original P and Q. (b) GMMD maps. (c) GW barycentric maps.

Figure 3: Matching 3D shapes with GMMD and entropic GW.

training time for GMMD and the runtime for GW and
UGW computings. The computational complexity of
training GMMD maps amounts to the complexity of
gradient descent in NN training for 3000 epochs, which
is O(n). For entropic GW and UGW, however, the im-
plementations are variants of the Sinkhorn algorithm,
whose complexity scales as O(n3). The longer train-

ing time for GMMD is due to the large number of
epochs used in gradient descent (namely, 3000), but
at inference time this cost is amortized since we ob-
tain continuous maps that generalize to unseen data-
points (see Supplement B for quantitative evaluation
of the generalization). For instance, matching 8000
new datapoints sampled from P and Q each using the
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Table 2: GW barycentric maps for P vs. Qb.

ε GW MMDX MMDY ∆
0.0005 0.00134 0.00420 0.00299 0.696
0.005 0.00660 0.127 0.116 1.73
0.05 0.0424 0.615 0.613 6.69
0.5 0.0686 3.99 4.12 22.9

learned mapping requires 63 ms, while with GW one
would incur the cost of recomputing the coupling (26
minutes)—a three order of magnitude speedup.

Table 3: Training Time (in seconds) comparison using
8000 samples from the biplanes data.

ε GW λ GMMD
0.0005 1566.86 2−1 × 103 5048.11
ε UGW 2−7 × 103 5026.5
0.1 28.7508 2−6 × 103 5052.89

5.3 Word Embedding Alignment

We consider the more realistic of word embedding
alignment between different languages. Such tasks
have been previously considered under the GW frame-
work (Alvarez-Melis and Jaakkola, 2018), using Pro-
crustes methods (Conneau et al., 2017), and more. We
employ the GMMD to learn mappings between En-
glish and French words that are embedded into 300 di-
mensional spaces. A correspondence is then obtained
by searching for the nearest neighbor. Our overall
approach requires minimal fine tuning—see Supple-
ment B.2 for a comprehensive description of the em-
ployed network architecture and hyperparameters val-
ues. The obtained results with comparison to existing
benchmarks are stated in Table 4, where performance
is measured by the percentage of correct matchings.
Specifically, we compare to the entropic GW approach
from Alvarez-Melis and Jaakkola (2018) with regular-
ization parameters ε = 10−4, 10−5, and to the MUSE
method from Conneau et al. (2017).

Table 4: Word matching performance comparison.

EN to FR FR to EN
GMMD 76.1% 74.5%

GW (ε = 10−4) 79.3% 78.3%
GW (ε = 10−5) 81.3% 78.9%

MUSE 82.3% 82.1%

6 CONCLUSION

This paper introduced the UBGM divergence—a novel
discrepancy measure between distributions across het-
erogeneous spaces, which employs bidirectional and
cycle-consistent mappings. We established structural
properties of the UBGM divergence and highlighted
its intimate connection to the so-called cycle GAN. We
also presented a kernelized variant of this divergence,
termed GMMD, and analysed its statistical estimation
from samples. Numerical experiments demonstrated
the promise of this new divergence and compared it to
other known metrics, such as the GW and UGW dis-
tances. Appealing future directions include extending
the GMMD to allow optimization over kernels, sharper
statistical bounds, as well as connections between the
UBGM divergence and the UGW distance (in partic-
ular, under what conditions they coincide).

6.1 Societal Impact

We address potential societal impacts of our work.
Though the paper is largely of theoretical nature, our
empirical results demonstrate that the developed dis-
crepancy measure and may be of practical interest. In
particular, the tie between our GMMD and the popu-
lar Cycle GAN may raise issues related to inappropri-
ate usage of GANs such as deepfakes.
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Supplementary Material:
Cycle Consistent Probability Divergences Across Different Spaces

A PROOFS

To simplify notation we denote LP,Q(f, g) := λxMMDX (P, g]Q) + λyMMDY(f]P,Q) + ∆1(f, g;P,Q), which is

the functional that is optimized in definition of UDF,G .

A.1 Proof of Proposition 1

The symmetry and positivity follows directly from definition and Lemma 1, which is proven below. For the
triangle inequality, fix 3 mm spaces (X , dX , P ), (Y, dY , Q), (Z, dZ , R) and functions f1, f2, g1, g2 (over the ap-
propriate domains) with (f1)]P = Q, (f2)]Q = R, (g1)]Q = P , (g2)]R = Q. We only show the derivation for

∆
(p)
X ,Y ; a similar argument applies to ∆

(p)
X ,∆

(p)
Y . For ∆

(p)
X ,Y , we have

∆
(p)
X ,Y(f1, g1;P,Q) + ∆

(p)
X ,Y(f2, g2;Q,R)

=
(∫
|dX (x, g1(y))− dY(f1(x), y)|p dP (x) dQ(y)

) 1
p

+
(∫
|dY(y, g2(z))− dZ(f2(y), z)|p dQ(y) dR(z)

) 1
p

=
(∫
|dX (x, g1(g2(z)))− dY(f1(x), g2(z))|p dP (x) dR(z)

) 1
p

+
(∫
|dY(f1(x), g2(z))− dZ(f2(f1(x)), z)|p dP (x) dR(z)

) 1
p

≥
(∫
|dX (x, g1(g2(z)))− dZ(f2(f1(x)), z)|p dP (x) dR(z)

) 1
p

= ∆
(p)
X ,Y(f2 ◦ f1, g1 ◦ g2;P,R).

Hence Dp is a metric on M.

A.2 Proof of Lemma 1

Suppose {fn}n∈N and {gn}n∈N are sequence such that ∆p(fn, gn;P,Q)→ 0. We will show that up to extracting
subsequences, these sequences converge P ⊗Q a.s. to isometrics, f and g, respectively, such that f = g−1. The
argument first shows that there is a countable dense S ⊆ X such that the distortion function φn (defined below)
converges on S×S to 0. Then we take a subsequence of fn that converges on S, and show that this subsequence
also converges P -a.s. on X , and the limit is an isometry. After applying the same to {gn}n∈N, we conclude the
desired convergence and demonstrate that the limits f and g satisfy f = g−1.

We first consider the term ∆
(p)
X (fn;P ). Since∫ ∣∣dX (x, x′)− dY

(
fn(x), fn(x′)

)∣∣p dP (x) dP (x′)→ 0,

we may assume that, up to extraction of subsequences, we have

φn(x, x′) :=
∣∣dX (x, x′)− dY

(
fn(x), fn(x′)

)∣∣→ 0, P⊗2 − a.s.

Set Ω = {(x, x′) : φn(x, x′)→ 0} as the set of pairs for which the convergence occurs, and let Ωx = {x′ : (x, x′) ∈
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Ω} be the slice at x ∈ X in the first coordinate. Then P⊗2((X × X )− Ω
)

= 0, and by Fubini’s theorem∫
X
P (Ωx) dP (x) = P⊗2(Ω) = 1.

Denoting A = {x : P (Ωx) = 1}, we thus have P (A) = 1, and hence A is dense. We next construct S as a
countable dense subset of A.

Step 1 – Separability of convergence points: We present an inductive construction of a countable dense subset
S ⊂ X such that φn converges to 0 on S × S. First take any x0 ∈ A and define

S0 :=
{
x′ : φn(x0, x

′) does not converge to 0
}

= X − Ωx0
,

then P (S0) = 0 since x0 ∈ A. Suppose we have points x0, ..., xk ∈ A, such that φ(xi, xj)→ 0 for i, j = 0, . . . , k,
and define Si = X − Ωxi for i = 0, . . . , k. Define function

ψk(x) := min
0≤i≤k

{dX (x, xi)},

and set wk = argmaxψk(x). Suppose ψk(wk) > 0, otherwise x0, ..., xk is already dense. Since ψk(x) is continuous,
Bk = {ψk(x) > ψk(wk)/2} is a nonempty open set on X . Notice that set Ck = A−∪0≤i≤kSi still have probability
1, and any point x′ ∈ Ck satisfies that φn(x′, xi) converges for all i = 0, ..., k. Since P has full support, Bk∩Ck is
not empty, hence we pick xk+1 ∈ Bk ∩Ck. Inductively we have sequence {xk}k∈N such that φn(xi, xj) converges
for any i, j ∈ N. Denote S = {xk}k∈N.

Now we prove that S is dense in X . Suppose it is not, then there is an ε > 0 and an x̃ ∈ X such that
dX (x̃, xk) > ε, for all k ∈ N. So ψk(wk) ≥ ψk(x̃) > ε. By construction, dX (xk+1, xi) ≥ ψk(wk)/2 ≥ ε/2, for all
i ≤ k, so dX (xi, xj) ≥ ε/2 for any i 6= j. This is a contradiction since X is compact.

Step 2 – Convergence to isometry: Next we find a subsequence of {fn}n∈N such that it converges on S to an
isometry f , and extend this convergence to a.s. on X . Now we have a countable set S ⊆ A that is dense
in X such that φn(s, t) → 0, ∀s, t ∈ S. We can thus take a subsequence of {fn}n∈N such that it converges
on S pointwise to a mapping f . Without loss of generality (WLOG) we assume fn converges, for any s ∈
S, as any subsequence still approaches infinum and the subsequent φn still converges to 0 on S × S. Since
limn→∞

∣∣dX (s, t) − dY
(
fn(s), fn(t)

)∣∣ = 0, by continuity we have dX (s, t) = dY(f(s), f(t)). For any x 6∈ S, fix a
sequence {s`}`∈N ⊆ S with s` → x, and define

f(x) := lim
`→∞

f(s`).

So

dY
(
f(x), f(x′)

)
= lim
`→∞

d
(
f(s`), f(t`)

)
= lim
`→∞

dX (s`, t`) = dX (x, x′)

for x, x′ ∈ X , and s` → x, t` → x′. So f is extended to an isometry on X .

Now consider any x ∈ C = ∩s∈SΩs, where P (C) = 1. Clearly for all s ∈ S,

lim
n→∞

dY
(
fn(x), fn(s)

)
= dX (x, s).

We have a sequence {s`}`∈N in S such that s` → x, and

dY
(
fn(x), f(x)

)
≤ dY

(
fn(x), fn(s`)

)
+ dY

(
fn(s`), f(s`)

)
+ dY

(
f(s`), f(x)

)
,

which is true for all `. Fix `, and take upper limit in n, we have

lim sup
n

dY
(
fn(x), f(x)

)
≤ 2dX (s`, x),

which holds for all `. Then we can take `→∞ which shows that limn→∞ fn(x) = f(x), i.e. fn converges on C.
So fn converges to f P -a.s. Similarly, via subsequence extraction, we can find gn that also converges Q-a.s. to
an isometry g. As X ,Y are compact, the limits f and g are both surjective and have inverses.
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Now consider the third term, i.e.,
∫ ∣∣dX (x, gn(y)

)
− dY

(
fn(x), y

)∣∣p dP (x) dQ(y) → 0. Since X ,Y are bounded,
by dominated convergence theorem we have∫ ∣∣dX (x, g(y)

)
− dY

(
f(x), y

)∣∣p dP (x) dQ(y)

= lim
n

∫ ∣∣dX (x, gn(y)
)
− dY

(
fn(x), y

)∣∣p dP (x) dQ(y) = 0.

Thus dX (x, x′) = dX
(
g ◦ f(x), x′

)
holds P ⊗ g]Q-a.s., hence holds densely on X × X . By continuity this holds

for all X × X . So g ◦ f(x) = x, i.e. f = g−1.

A.3 Proof of Proposition 2

Non-negativity of UDF,Gp (P‖Q) is immediate. The fact that it nullifies when the mm spaces are equivalent, as
specified in Definition 3, is also straightforward. For the opposite implication, let (X , dX , P ) and (Y, dY , Q) be
mm spaces such that UDF,Gp (P‖Q) = 0. Since all summands in the definition of UDF,Gp (P‖Q) are nonnegative
we have that

inf
f∈F,g∈G

∆p(f, g;P,Q) = 0.

By Lemma 1, there exist infimizing sequences {fn}n∈N ⊂ F and {gn}n∈N ⊂ G that converge P,Q-a.s. to
isometries f : X → Y and g : Y → X , respectively. This further implies weak convergence of the pushforward
measures, i.e., (fn)]P

w→ f]P and (gn)]Q
w→ g]Q. In fact, for any bounded continuous function φ on Y, φ ◦ fn

converges to φ ◦ f P -a.s. Consequently, we have∫
φ(fn(x)) dP (x)→

∫
φ(f(x)) dP (x),

and hence (fn)]P
w→ f]P (the argument for gn is analogous). Since DX and DY are weakly continuous in their

arguments, we have

0 = lim
n→∞

∆p(fn, gn;P,Q) + DX
(
(gn)]Q

∥∥P )+ DY
(
(fn)]P

∥∥Q)
= DX (g]Q‖P

)
+ DY(f]P‖Q),

which further implies that DX (g]Q‖P ) = DY(f]P‖Q) = 0. We conclude that f]P = Q and g]Q = P for the
isometries f and g that are inverses of each other, which establishes equivalence of the mm space.

We next prove continuity. Suppose Pn
w→ P and Qn

w→ Q. For any fixed f ∈ F and g ∈ G,

UDF,Gp (Pn‖Qn) ≤ ∆p(f, g;Pn, Qn) + λxDX (g]Qn‖Pn) + λyDY(f]Pn‖Qn),

and by infimizing over F ,G, we have

lim sup
n→∞

UDF,Gp (Pn‖Qn) ≤ inf
f∈F,g∈G

lim
n→∞

∆p(f, g;Pn, Qn) + λxDX (g]Qn‖Pn) + λyDY(f]Pn‖Qn)

= UDF,Gp (P‖Q).

Thus UDF,Gp is upper semi-continuous. If further F ,G are both compact, let f?n, g
?
n be minimizers

for UDF,Gp (Pn‖Qn). Suppose {kn}n∈N is the index sequence of a lim inf subsequence of the sequence

{UDF,Gp (Pn‖Qn)}n∈N. Since F ,G are both compact, we may also assume that {f?kn}n∈N converges in F , and
{g?kn}n∈N converges in G. Denote by f? and g? the limits of {f?kn}n∈N and {g?kn}n∈N, respectively. Also by
Prokhorov’s theorem, WLOG we can suppose that (f?kn)]Pkn and (g?kn)]Qkn both converges weakly. Now we
identify their limits. Since F ,G are assumed to be compact in sup-metrics, {(f?kn , g

?
kn

)}n∈N converges uniformly,
hence for any bounded continuous Lipschitz function φ on Y, φ(f?kn(x)) converges uniformly to φ(f?(x)), hence∫

φ(f?kn(x)) dPkn(x)→
∫
φ(f?(x)) dP (x).

So (f?kn)]Pkn
w→ f?] P , and similarly (g?kn)]Qkn

w→ g?]Q. So

UDF,Gp (P‖Q) ≤ ∆p(f
?, g?;P,Q) + λxDX (g?]Q‖P ) + λyDY(f?] P‖Q)



Zhengxin Zhang, Youssef Mroueh, Ziv Goldfeld, Bharath K. Sriperumbudur

= lim
n

∆p(f
?
kn , g

?
kn ;Pkn , Qkn) + λxDX ((g?kn)]Qkn‖Pkn) + λyDY((f?kn)]Pkn‖Qkn)

= lim inf
n

UDF,Gp (Pn‖Qn)

≤ lim sup
n

UDF,Gp (Pn‖Qn)

≤ UDF,Gp (P‖Q),

hence limn UD
F,G
p (Pn‖Qn) = UDF,Gp (P‖Q), as desired.

A.4 Proof of Theorem 1

To prove Theorem 1 it suffices to upper bound E
[

supf,g
∣∣LP,Q(f, g)− LPn,Qm(f, g)

∣∣]. We have

sup
f,g

∣∣LP,Q(f, g)−LPn,Qm(f, g)
∣∣

= sup
f,g

∣∣∣λx‖µXP − µX g]Q‖HX − λx‖µXPn − µX g]Qm‖HX

+ λy‖µYQ− µYf]P‖HY − λy‖µYQm − µYf]Pn‖HY

+ ∆1(f, g;Pn, Qm)−∆1(f, g;P,Q)
∣∣∣

≤ sup
g
λx

∣∣∣‖µXP − µX g]Q‖HX − ‖µXPn − µX g]Qm‖HX

∣∣∣
+ sup

f
λy

∣∣∣‖µYQ− µYf]P‖HY − ‖µYQm − µYf]Pn‖HY

∣∣∣
+ sup

f,g

∣∣∣∆1(f, g;Pn, Qm)−∆1(f, g;P,Q)
∣∣∣

≤ sup
g
λx‖µX g]Q− µX g]Qm‖HX + λx‖µXP − µXPn‖HX

+ sup
f
λy‖µYf]P − µYf]Pn‖HY + λy‖µYQ− µYQm‖HY

+ sup
f,g

∣∣∣∆1(f, g;Pn, Qm)−∆1(f, g;P,Q)
∣∣∣. (7)

We control each of the terms in the last line via the following technical lemmas (whose proof is deferred to the
Appendix A.5).

Lemma 2 (Convergence of MMD). For mapping class F , recall that FkY := {kY ◦ (f, f) : f ∈ F}. Under the
same condition of Theorem 1, we have

E

[
sup
f

∥∥µYf]Pn − µYf]P∥∥HY

]
. inf
α>0

(
α+

1

n

∫ 2C

α

log
(
N(FkY , ‖ · ‖∞, τ)

)
dτ

)1/2

+

√
C

n
.

Lemma 3 (Convergence of ∆1). Under the same condition of Theorem 1, we have

E

[
sup
f,g

∣∣∣∆1(f, g;Pn, Qm)−∆1(f, g;P,Q)
∣∣∣]

. inf
α>0

(
α+

1√
n ∧m

∫ K

α

√
log
(
N(F , dF , τ)

)
+ log

(
N(G, dG , τ)

)
dτ

)
+

K

n ∧m
.

Proceeding from (7) and using the lemmas, we obtain the desired bound:

E
[∣∣∣UDF,G(P‖Q)− UDF,GkX ,kY

(Pn‖Qm)
∣∣∣]

.
K

n ∧m
+ λy inf

α>0

(
α+

1

n

∫ 2C

α

log
(
N(FkY , ‖ · ‖∞, τ)

)
dτ

)1/2

+ λy

√
C

m
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+ λx inf
α>0

(
α+

1

m

∫ 2C

α

log
(
N(GkX , ‖ · ‖∞, τ)

)
dτ

)1/2

+ λx

√
C

n

+ inf
α>0

(
α+

1√
n ∧m

∫ K

α

√
log
(
N(F , dF , τ)

)
+ log

(
N(G, dG , τ

)
) dτ

)
.

A.5 Complementary Proofs for Theorem 1

A.5.1 Proof of Lemma 2

First observe that
∥∥µYf]Pn − µYf]P∥∥HY

=
∥∥n−1

∑n
i=1 kY

(
·, f(Xi)

)
− µYf]P

∥∥
HY

. Let {εi}i∈N be a sequence of

i.i.d. Rademacher random variables and consider the following symmetrization. Suppose X ′1, · · · , X ′n are another
i.i.d sequence from P that is independent of X1, · · · , Xn. By Jensen’s inequality we have

E

[
sup
f

∥∥ 1

n

n∑
i=1

kY
(
·, f(Xi)

)
− µYf]P

∥∥
HY

]

= E

sup
f

∥∥∥∥∥E
[

1

n

n∑
i=1

kY
(
·, f(Xi)

)
− 1

n

n∑
i=1

kY
(
·, f(X ′i)

)∣∣∣∣∣X1, . . . , Xn

]∥∥∥∥∥
HY


≤ E

sup
f

∥∥∥∥∥ 1

n

n∑
i=1

kY
(
·, f(Xi)

)
− 1

n

n∑
i=1

kY
(
·, f(X ′i)

)∥∥∥∥∥
HY


= E

sup
f

∥∥∥∥∥ 1

n

n∑
i=1

εi

(
kY
(
·, f(Xi)

)
− kY

(
·, f(X ′i)

))∥∥∥∥∥
HY


≤ 2

n
E

E
sup

f

∥∥∥∥∥
n∑
i=1

εikY
(
·, f(Xi)

)∥∥∥∥∥
HY

∣∣∣∣∣∣X1, . . . , Xn

 . (8)

The RKHS norm inside the conditional expectation can be further bounded as∥∥∥∥∥
n∑
i=1

εikY
(
·, f(Xi)

)∥∥∥∥∥
HY

=

(
n∑

i,j=1

εiεjkY
(
f(Xi), f(Xj)

))1/2

≤

(
2

∣∣∣∣∣
n∑
i<j

εiεjkY
(
f(Xi), f(Xj)

)∣∣∣∣∣
)1/2

+
√
nC,

Inserting this back into (8), we obtain

E

[
sup
f

∥∥µYf]Pn − µYf]P∥∥HY

]

≤ 2

n
E


2E

[
sup
f

∣∣∣∣ n∑
i<j

εiεjkY
(
f(Xi), f(Xj)

)∣∣∣∣
∣∣∣∣∣∣X1, . . . , Xn

]1/2
+ 2

√
C

n
. (9)

Recall that the Rademacher chaos complexity (Sriperumbudur, 2016) of a kernel class G is define as

U(G, x1, . . . , xn) := E

sup
g∈G

∣∣∣∣∣
n∑
i<j

εiεjg(xi, xj)

∣∣∣∣∣
 .
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Evidently, the inner expectation of the right-hand side (RHS) of 9 corresponds to the Rademacher chaos com-
plexity of the class FkY , and using Lemma A.2 from Sriperumbudur (2016) we have

U(FkY , X1, . . . , Xn) . n2 inf
α>0

(
α+

1

n

∫ 2C

α

log
(
N(FkY , ‖ · ‖∞, τ)

)
dτ

)
+ nC.

Combining all previous bounds we have that

sup
f
‖µYf]Pn − µYf]P‖HY ≤

2

n
E
[(

2E
[
U(FkY , X1, . . . , Xn)

∣∣∣X1, . . . , Xn

])1/2
]

+ 2

√
C

n

. inf
α>0

(
α+

1

n

∫ 2C

α

log
(
N(FkY , ‖ · ‖∞, τ)

)
dτ

)1/2

+

√
C

n
.

A.5.2 Proof of Lemma 3

Recalling the definition of ∆1 from Definition 2, to prove the lemma we separately bound the

terms supf
∣∣∆(1)
X (f ;Pn) − ∆

(1)
Y (f ;P )

∣∣, supg
∣∣∆(1)
Y (g;Qm) − ∆

(1)
Y (g;Q)

∣∣, and supf,g
∣∣∆(1)
X ,Y(f, g;Pn, Qm) −

∆
(1)
X ,Y(f, g;P,Q)

∣∣. For the first, we have

E

[
sup
f

∣∣∣∆(1)
X (f ;Pn)−∆

(1)
X (f ;P )

∣∣∣]

≤ 2K

n
+ E

sup
f

∣∣∣∣∣∣ 1

n(n− 1)

n∑
i 6=j

∣∣∣dX (Xi, Xj)− dY
(
f(Xi), f(Xj)

)∣∣∣−∆(f ;P )

∣∣∣∣∣∣
 ,

which follows because the summands with i = j are all 0. Also recall that K is the bound of diameters of X ,Y.
Denote

hf (x, x′) :=
∣∣dX (x, x′)− dY

(
f(x), f(x′)

)∣∣−∆
(1)
X (f ;P ),

and note that it is a bounded, symmetric, and centered (w.r.t. P ) kernel. By Theorem 3.5.3 in (De la Pena and
Giné, 2012), we have

E

sup
f

∣∣∣∣ 1

n(n− 1)

n∑
i 6=j

hf (Xi, Xj)

∣∣∣∣
 . E

sup
f

∣∣∣∣ 1

n(n− 1)

n∑
i 6=j

εihf (Xi, Xj)

∣∣∣∣


where {εi}i∈N is a sequence of i.i.d. Rademacher variables, independent of the samples X1, . . . , Xn. To control
the RHS above, we shall apply Dudley’s entropy integral bound to sub-Gaussian processes (see, for example,
Theorem 5.22 from Wainwright (2019)). To that end we need a handle on the covering number of the function
class {hf : f ∈ F} w.r.t. the sup-norm. Specifically, we next bound this covering number in terms of that of the
original class F . Define

Af :=
1√

n(n− 1)

n∑
i6=j

εihf (Xi, Xj),

Observe that, conditioned on the samples X1, . . . , Xn, Af is sub-Gaussian in L2(P̃ ) norm where P̃ :=
1

n(n−1)

∑n
i 6=j δXi,Xj , since for any function h,

n∑
i=1

 1√
n(n− 1)

n∑
j 6=i

h(Xi, Xj)

2

=

n∑
i=1

1

n(n− 1)2

 n∑
j 6=i

h(Xi, Xj)

2

≤ 1

n(n− 1)

n∑
i 6=j

h(Xi, Xj)
2.
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Also

|Af −Af ′ | ≤ 1

n− 1

 n∑
i=1

 n∑
j 6=i

(hf − hf ′)(Xi, Xj)

2


1/2

≤ 1√
n− 1

(
n∑
i 6=j

(hf − hf ′)(Xi, Xj)
2

)1/2

=
√
n‖hf − hf ′‖L2(P̃ ).

Further note that ‖hf − hf ′‖∞ ≤ 4dF (f, f ′), hence we see that the covering number of {hf : F} is bounded by
that of F in dF : N

(
{hf : f ∈ F}, ‖ · ‖∞, τ

)
≤ N(F , dF , τ/4). By Dudley’s entropy integral bound we have

E

sup
f

∣∣∣∣ 1

n(n− 1)

n∑
i 6=j

εihf (Xi, Xj)

∣∣∣∣
∣∣∣∣∣∣X1, . . . , Xn


= E

[
sup
f

∣∣∣∣Af√n
∣∣∣∣
∣∣∣∣∣X1, . . . , Xn

]

. inf
α>0

(
α+

1√
n

∫ 4K

α

√
log
(
N
(
{hf : f ∈ F}, ‖ · ‖∞, τ

))
dτ

)
.

So

E

sup
f

∣∣∣∣ 1

n(n− 1)

n∑
i6=j

hf (Xi, Xj)

∣∣∣∣


. E

sup
f

∣∣∣∣ 1

n(n− 1)

n∑
i 6=j

εihf (Xi, Xj)

∣∣∣∣


. inf
α>0

(
α+

1√
n

∫ 4K

α

√
log
(
N
(
{hf : f ∈ F}, ‖ · ‖∞, τ

))
dτ

)

. inf
α>0

(
α+

1√
n

∫ K

α

√
log
(
N(F , dF , τ)

)
dτ

)
.

By a similar argument, we also have

E
[
sup
g

∣∣∣∆(1)
Y (g;Qm)−∆

(1)
Y (g;Q)

∣∣∣]
.

2K

m
+ inf
α>0

(
α+

1√
m

∫ K

α

√
log
(
N(G, dG , τ)

)
dτ

)
.

For the third term, we decouple the samples into several stacks that have the same distribution, and within each
stack the points are i.i.d. samples from P ⊗ Q. This allows us to apply again the entropy integral bound to
each stack of samples. Suppose n ≤ m, and consider the samples sets {(Xi, Yi+j−1)}ni=1, for j = 1, . . . ,m, where

the index of Yi+j−1 is modulo m. Denote Zji := (Xi, Yi+j−1), for i = 1, . . . , n and j = 1, . . . ,m, and further set

Zj := {Zji }ni=1. Note that for each j = 1, . . . ,m, the Zj comprises n i.i.d. samples from P ⊗Q. Denoting

hf,g(x, y) :=
∣∣dX (x, g(y)

)
− dY

(
f(x), y

)∣∣−∆
(1)
X ,Y(f, g;P,Q),

we now have

E

[
sup
f,g

∣∣∣∆(1)
X ,Y(f, g;Pn, Qm)−∆

(1)
X ,Y(f, g;P,Q)

∣∣∣] = E

sup
f,g

∣∣∣∣ 1

nm

n∑
i=1

m∑
j=1

hf,g(Xi, Yj)

∣∣∣∣

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≤ E

sup
f,g

∣∣∣∣ 1

m

m∑
j=1

1

n

n∑
i=1

hf,g(Z
j
i )

∣∣∣∣


≤ 1

m

m∑
j=1

E

[
sup
f,g

∣∣∣∣ 1n
n∑
i=1

hf,g(Z
j
i )

∣∣∣∣
]

= E

[
sup
f,g

∣∣∣∣ 1n
n∑
i=1

hf,g(Z
1
i )

∣∣∣∣
]
.

Notice that up to a factor of
√
n, the quantity within the absolute value is an empirical process of n i.i.d.

samples {Z1
i }ni=1 from P ⊗ Q, that is indexed by function class {hf,g : f ∈ F , g ∈ G}. Further note that

‖hf,g − hf ′,g′‖∞ ≤ 2dF (f, f ′) + 2dG(g, g′), hence the covering number of this function class is bounded as
N
(
{hf,g : f ∈ F , g ∈ G}, ‖ · ‖∞, τ

)
≤ N(F , dF , τ/4)N(G, dG , τ/4). Applying the entropy integral bound (see

Lemma 2.14.3 in van der Vaart and Wellner (1996)), we have

E

[
sup
f,g

∣∣∣∆(1)
X ,Y(f, g;Pn, Qm)−∆

(1)
X ,Y(f, g;P,Q)

∣∣∣]

≤ E

[
sup
f,g

∣∣∣∣ 1n
n∑
i=1

hf,g(Z
1
i )

∣∣∣∣
]

. inf
α>0

(
α+

1√
n

∫ 4K

α

√
log
(
N
(
{hf,g : f ∈ F , g ∈ G}, ‖ · ‖∞, τ

))
dτ

)

. inf
α>0

(
α+

1√
n

∫ K

α

√
log
(
N(F , dF , τ)

)
+ log

(
N(G, dG , τ)

)
dτ

)
.

Combining all 3 terms we have

E

[
sup
f,g

∣∣∣∆1(f, g;Pn, Qm)−∆1(f, g;P,Q)
∣∣∣]

.
K

n ∧m
+ inf
α>0

(
α+

1√
n ∧m

∫ K

α

√
log
(
N(F , dF , τ)

)
+ log

(
N(G, dG , τ)

)
dτ

)
.

A.6 Proof of Corollary 1

The proof of Corollary 1 employs the 1-Wasserstein distance, as defined next.

Definition 11 (1-Wasserstein distance). The 1-Wasserstein distance between P,Q ∈ P(X ) is

W1(P,Q) := inf
π∈Π(P,Q)

∫
X×X

‖x− y‖ dπ(x, y),

where Π(P,Q) is the set of couplings of P and Q.

We also make use of the following technical lemma.

Lemma 4. Under the assumptions of Corollary 1, and take F = LipLF
(X ,Y), G = LipLG

(Y,X ), we have

E

[
sup
f,g

∣∣∣∆1(f, g;Pn, Qm)−∆1(f, g;P,Q)
∣∣∣].(LF+1)E

[
W1(P, Pn)

]
+(LG+1)E

[
W1(Q,Qm)

]
,

E
[
sup
g
‖µX g]Q− µX g]Qm‖HX

]
≤
√

2LLGE
[
W1(Q,Qm)

]
,

E

[
sup
f
‖µYf]P − µYf]Pn‖HY

]
≤
√

2LLFE
[
W1(P, Pn)

]
.
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Proof. We first give bounds for ∆
(1)
X ,∆

(1)
Y ,∆

(1)
X ,Y using the coupling trick, i.e. we treat integration of different

variables as marginals of a joint distribution, and optimize over all such choice with the chosen marginals. This
leads to the 1-Wasserstein distance in the resulting bound. For any π ∈ Π(P⊗2

n , P⊗2) we have

∆
(1)
X (f ;Pn)−∆

(1)
X (f ;P )

=

∫ ∣∣dX (x, x′)− dY
(
f(x), f(x′)

)∣∣− ∣∣dX (w,w′)− dY
(
f(w), f(w′)

)∣∣dπ(x, x′, w, w′).

Consequently, we may infimize over π ∈ Π(P⊗2
n , P⊗2) to obtain

∆
(1)
X (f ;Pn)−∆

(1)
X (f ;P )

= inf
π

∫ ∣∣dX (x, x′)− dY
(
f(x), f(x′)

)∣∣− ∣∣dX (w,w′)− dY
(
f(w), f(w′)

)∣∣dπ(x, x′, w, w′)

≤ inf
π

∫
|dX (x, x′)− dX (w,w′)|+

∣∣dY(f(x), f(x′)
)
− dY

(
f(w), f(w′)

)∣∣dπ(x, x′, w, w′)

≤ inf
π

∫
dX (x,w) + dX (x′, w′) + dY

(
f(x), f(w)

)
+ dY

(
f(x′), f(w′)

)
dπ(x, x′, w, w′)

≤ inf
π

∫
dX (x,w) + dX (x′, w′) + LFdX (x,w) + LFdX (x′, w′) dπ(x, x′, w, w′)

= 2(LF + 1)W1(P, Pn),

where W1 is the 1-Wasserstein distance. The last line is because the minimum is achieved by π⊗2 where π is the
1-Wasserstein optimal coupling between Pn and P , hence

E
[∣∣∆(1)
X (f ;Pn)−∆

(1)
X (f ;P )

∣∣] ≤ 2(LF + 1)E[W1(P, Pn)].

A similar derivation applies to ∆
(1)
Y . For ∆

(1)
X ,Y , abbreviate the coupling set notation as Πn,m := Π(Pn⊗Qm, P⊗Q)

and consider:

∆
(1)
X ,Y(f, g;Pn, Qm)−∆

(1)
X ,Y(f, g;P,Q)

= inf
π∈Πn,m

∫ ∣∣dX (x, g(y)
)
− dY

(
f(x), y

)∣∣− ∣∣dX (x′, g(y′)
)
− dY

(
f(x′), g(y′)

)∣∣dπ(x, y, x′y′)

≤ inf
π∈Πn,m

∫
dX (x, x′) + dY(y, y′) + dX

(
g(y), g(y′)

)
+ dY

(
f(x), f(x′)

)
dπ(x, y, x′y′)

≤ inf
π∈Πn,m

∫
dX (x, x′) + dY(y, y′) + LGdY(y, y′) + LFdX (x, x′) dπ(x, y, x′y′)

= (LF + 1)W1(P, Pn) + (LG + 1)W1(Q,Qm).

So we have

E

[
sup
f,g

∣∣∣∆1(f, g;Pn, Qm)−∆1(f, g;P,Q)
∣∣∣] . (LF + 1)E[W1(P, Pn)] + (LG + 1)E[W1(Q,Qm)].

For the MMD terms we use the same method:

‖µX g]Q− µX g]Qm‖2HX
=

∫
kX (x, x′) d(g]Q− g]Qm)(x) d(g]Q− g]Qm)(x′)

=

∫
kX
(
g(y), g(y′)

)
dQ(y) dQ(y′)

+

∫
kX
(
g(w), g(w′)

)
dQm(w) dQm(w′)

−
∫

2kX
(
g(y), g(w)

)
dQ(y) dQm(w)

≤ inf
π∈Π(Q,Qm)

∫
2LdX

(
g(y), g(w)

)
dπ(y, w)
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≤ 2LLG inf
π∈Π(Q,Qm)

∫
dY(y, w) dπ(y, w)

= 2LLGW1(Q,Qm).

Similarly we have supf ‖µYf]P − µYf]Pn‖2HY
≤ 2LLFW1(P, Pn), which concludes the proof.

Proof of Corollary 1. We still adopt the same decomposition in proof of Theorem 1, but bound each term
explicitly. We first prove part 1. For simplicity we apply Lemma 4 instead of the general claim in Theorem 1.
Combined with the fact that E[W1(P, Pn)] . n−1/dx for dx > 2 (see, e.g., Weed and Bach 2019), we have the
overall rate of convergence is

E
[∣∣∣UDF,G(P‖Q)− UDF,G(Pn‖Qm)

∣∣∣]
. λy

√
LLF

(
1

n

) 1
2dx

+ λx
√
LLG

(
1

m

) 1
2dy

+ (LF + 1)

(
1

n

) 1
dx

+ (LG + 1)

(
1

m

) 1
dy

+ λx

√
C

n
+ λy

√
C

m
.

For part 2, notice that the entropy integral is finite when taking α = 0. Following Theorem 1, we know
that the rate in terms of m,n is bounded by (n ∧ m)−1/2, with a multiplicative constant depending on
λx, λy, L, LΘ, LΦ, C,K,K

′, k1, k2.

Remark 4. For part one in Corollary 1, recall that Weed and Bach 2019 claims

E[W1(P, Pn)] .

{
n−1/2, dx = 1

n−1/2 log(1 + n), dx = 2
.

One can easily adapt the bound to the case where dx or dy is no larger than 2. The bounds obtained in Corollary
1 for Lipschitz classes, although they use different proof techniques, they essentially lead to similar rates in m,n
to the ones obtained by simply applying the general bound in Theorem 1.

A.7 Continuity of the Functional L

Recall that LP,Q(f, g) := λxMMDX (P, g]Q) + λyMMDY(f]P,Q) + ∆1(f, g;P,Q).

Proposition 4. Suppose F ,G are Lipschitz subclasses with Lipschitz constants LF , LG respectively, and kernels
kX , kY are Lipschitz on both slots with constant L. We have the continuity of L in all of it’s arguments:∣∣LP,Q(f, g)− LP ′,Q′(f ′, g′)

∣∣ ≤ λxMMDX (P, P ′) + λyMMDY(Q,Q′)

+ λxMMDX (g]Q, g]Q
′) + λyMMDY(f]P, f]P

′)

+ 3(1 + LF )W1(P, P ′) + 3(1 + LG)W1(Q,Q′)

+ (2Lλy + 3)dF (f, f ′) + (2Lλx + 3)dG(g, g′).

Proof of Proposition 4. We prove separately for the MMD and ∆.∣∣MMDX (P, g]Q)−MMDX (P ′, g′]Q
′)
∣∣

=
∣∣‖µXP − µX g]Q‖HX − ‖µXP ′ − µX g′]Q′‖HX

∣∣
≤ MMDX (P, P ′) + ‖µX g′]Q′ − µX g]Q‖HX

≤ MMDX (P, P ′) + 2LdG(g, g′) + MMDX (g]Q, g]Q
′).

Also for any coupling π(x, x′, w, w′) of P ⊗ P and P ′ ⊗ P ′∣∣∆(1)
X (f ;P )−∆

(1)
X (f ′;P ′)

∣∣
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≤
∫
dX (x,w) + dX (x′, w′) + dY

(
f(x), f ′(w)

)
+ dY

(
f(x′), f ′(w′)

)
dπ(x, x′, w, w′)

≤ 2dF (f, f ′) +

∫
(1 + LF )dX (x,w) + (1 + LF )dX (x′, w′) dπ(x, x′, w, w′).

And similarly for any coupling η(x, y, x′, y′) of P ⊗Q and P ′ ⊗Q′

|∆(1)
X ,Y(f, g;P,Q)−∆

(1)
X ,Y(f ′, g′;P ′, Q′)|

≤
∫
dX (x, x′) + dY(y, y′) + dX

(
g(y), g′(y′)

)
+ dY

(
f(x), f ′(x′)

)
dη(x, y, x′, y′)

≤ dF (f, f ′) + dG(g, g′) +

∫
(1 + LF )d(x, x′) + (1 + LG)d(y, y′) dη(x, y, x′, y′).

Apply the same coupling trick as in the previous section, we have∣∣∆1(f, g;P,Q)−∆1(f ′, g′;P ′, Q′)
∣∣

≤
∣∣∆(1)
X (f ;P )−∆

(1)
X (f ′;P ′)

∣∣+
∣∣∆(1)
Y (g;Q)−∆

(1)
Y (g′;Q′)

∣∣
+
∣∣∆(1)
X ,Y(f, g;P,Q)−∆

(1)
X ,Y(f ′, g′;P ′, Q′)

∣∣
≤ 3dF (f, f ′) + 3dG(g, g′) + 3(1 + LF )W1(P, P ′) + 3(1 + LG)W1(Q,Q′),

which concludes the proof.
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B EXPERIMENTS

B.1 Algorithm

Algorithm 1 Cycle consistent Monge map computation

Require: X ∈ Rn×dX , Y ∈ Rm×dY . α, the learning rate. b, the batchsize.
while θ has not converged do

Sample {xi}bi=1 a batch from the rows of X, forming Pb.
Sample {yi}bi=1 a batch from the rows of Y , forming Qb.
v ← ∇θLPb,Qb(fθ, gφ)
u← ∇φLPb,Qb(fθ, gφ)
θ ← Adam(v, θ, α)
w ← Adam(u, φ, α)

end while
return (fθ, gφ).

B.2 Additional High Dimensional Experiments on Unaligned Word Embeddings

We present here an additional experiment for alignment of word embedding spaces (see Alvarez-Melis and
Jaakkola (2018) for experiment details), which demonstrates the applicability of GMMD method to higher
dimensional scenarios. Specifically, we consider words from English and French that are embedded into 300
dimensional spaces. We apply our GMMD method to obtain mappings between these two spaces, and obtain
correspondence by searching for the nearest neighbor. We verify how well the learned mappings align these spaces
by checking how many words in the English-French dictionary are correctly matched. The word embedding data
sets are from Bojanowski et al. (2016), and dictionaries are from Conneau et al. (2017).

For training we use the 20k most frequent words, and learning rate 0.01. The kernel is a single Gaussian kernel
with bandwidth 1, and λ = 0.01. Batchsize is 500, and we train the NNs for 1000 epochs. The NNs are both
single linear layer without bias. See Table 5 for comparison with the GW method (Alvarez-Melis and Jaakkola,
2018) and the MUSE method (Conneau et al., 2017). The MUSE method outperforms GMMD and GW on this
task. GMMD matching is not far behind the GW method.

Note that the MUSE method uses a linear orthonormal mapping that maps only in one direction as follows:

min
U: UU>=Id

sup
f∈F

E
[
f(UX)

]
− E

[
f(X)

]
,

where X ∼ P and Y ∼ Q (in fact, MUSE uses a GAN objective to learn the witness function f and not an IPM
objective as we present it here). Mémoli and Needham (2021) showed that this form of the MUSE algorithm is
related to the Gromov-Monge distance (Section A.3 in Mémoli and Needham (2021)). As Conneau et al. (2017)
pointed out, learning the kernel or the discriminator is advantageous for the word alignment task. We believe
that GMMD will benefit from learning the kernels similar to MUSE in order to further improve its performance.
The min-max formulation of GMMD with learned kernels (Equation (5)) is left for future work in terms of
analysis and practical implementations.

Table 5: Word matching performance comparison.

EN to FR FR to EN
GMMD 76.1% 74.5%

GW (ε = 10−4)
Alvarez-Melis and Jaakkola (2018)

79.3% 78.3%

GW (ε = 10−5) 81.3% 78.9%
MUSE

Conneau et al. (2017)
82.3% 82.1%
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B.3 Comparison to GW and UGW

We present full results of the comparison between continuous GMMD mappings and discrete GW Barycentric
Mappings. In Figure 4 we illustrate the results for different λ and 4 cases: heart vs. rotated/scaled/embedded
heart, and biplanes. For each test case we present both the image of the learned mappings and the cycle
consistency of the mappings. Figure 5 contains results for the same test cases, using barycentric mapping from
entropic GW. The parameter ε in Figure 5 corresponds to the entropic regularizer.

We also provide full tables of the quantitative behavior of GMMD and GW on the test cases. In Table 6 to 17,
the marginal MMDs and ∆ for GMMD, GW and UGW are computed across different parameters respectively.
For GMMD we use λ = 10−3×2{0,1,··· ,9}; for GW we use entropic regularizer ε = 5×10{0,−1,−2,−3,−4}; for UGW
we use entropic regularizer 10{−2,−1,0,1}. For GW and UGW we only list results for hyperparameters that don’t
fail using POT Flamary et al. (2021) and UGW’s code of Séjourné et al. (2020).

Figure 4: Learned continuous GMMD Mappings and their cycle consistency in shape matching. First row: heart
(P ) and rotated heart (Qb). Second row: heart (P ) and scaled heart (Qc). Third row: heart (P ) and embedded
heart (Qd). Last row: biplanes.

B.4 Amortization

To illustrate the performance of the trained GMMD maps on unseen data, we push 8000 new datapoints through
the learned networks. Note that GMMD was trained on only 4000 points. The output of the pushforward maps
on unseen data points during training is shown in Figure 6. We see that GMMD maps successfully generalizes
to unseen data. We also quantitatively demonstrate the amortization in Table 18 to 21, where for the same set
of parameters λ as previously, we push the 8000 new points through the NNs ( trained with 4000 points ), and
compute the resulting marginal MMDs and ∆. As is shown in the tables, the MMDs remain small which means
the marginals are well matched.
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Figure 5: GW Barycentric Mappings. First row: heart (P ) and rotated heart (Qb). Second row: heart (P ) and
scaled heart (Qb). Third row: heart (P ) and embedded heart (Qb). Last row: biplanes.

Table 6: Evaluation of GMMD mappings between heart (P ) and rotated heart (Qb).

λ GMMD MMDX MMDY ∆
2−9 × 103 2.60 0.0524 0.00207 2.50
2−8 × 103 0.310 0.0294 0.0294 0.0801
2−7 × 103 0.0645 4.94e-4 4.05e-4 0.0574
2−6 × 103 0.121 0.00227 0.00190 0.0560
2−5 × 103 2.89 2.90e-4 0.00386 2.76
2−4 × 103 3.62 0.00137 3.33e-4 3.51
2−3 × 103 1.70 0.00188 0.00181 1.24
2−2 × 103 0.201 2.85e-4 2.55e-4 0.0661
2−1 × 103 3.12 0.00149 0.00147 1.64
2−0 × 103 3.78 0.00118 0.00114 1.47

Table 7: GW and its induced MMDs and ∆ between heart (P ) and rotated heart (Qb).

ε GW MMDX MMDY ∆
0.0005 0.00134 0.00420 0.00299 0.696
0.005 0.00660 0.127 0.116 1.73
0.05 0.0424 0.615 0.613 6.69
0.5 0.0686 3.99 4.12 22.9
5 0.0699 4.86 4.89 26.2

Table 8: UGW and its induced MMDs and ∆ between heart (P ) and rotated heart (Qb).

ε UGW MMDX MMDY ∆
10 0.277856 5.00562 5.00562 25.8038
1 0.199544 4.96044 4.96038 25.6224
0.1 0.189629 4.57678 4.57691 24.0855
0.01 0.178746 3.34716 3.34713 19.1421
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Table 9: Evaluation of GMMD mappings between biplanes.

λ GMMD MMDX MMDY ∆
2−9 × 103 0.615 0.124 0.124 0.131
2−8 × 103 1.11 0.125 0.125 0.134
2−7 × 103 0.211 0.00704 0.00669 0.104
2−6 × 103 0.259 0.00594 0.00619 0.0691
2−5 × 103 3.97 0.00891 0.00947 3.40
2−4 × 103 1.67 0.00892 0.00812 0.602
2−3 × 103 4.46 0.00637 0.00548 2.98
2−2 × 103 6.08 0.00305 0.00532 3.98
2−1 × 103 5.75 0.00343 0.00252 2.79
2−0 × 103 11.6 0.00397 0.00409 3.58

Table 10: GW and its induced MMDs and ∆ between biplanes.

ε GW MMDX MMDY ∆
5 0.0699 4.86 4.89 26.2
0.5 0.0686 3.99 4.12 22.9
0.05 0.0424 0.615 0.613 6.68
0.005 0.00660 0.127 0.116 1.73
0.0005 0.00134 0.00420 0.00299 0.696

Table 11: UGW and its induced MMDs and ∆ between biplanes.

ε UGW MMDX MMDY ∆
10 0.277856 5.00562 5.00562 25.8038
1 0.199544 4.96044 4.96038 25.6224
0.1 0.189629 4.57678 4.57691 24.0855
0.01 0.178746 3.34716 3.34713 19.1421

Table 12: Evaluation of GMMD mappings between heart (P ) and scaled heart (Qc).

λ GMMD MMDX MMDY ∆
2−9 × 103 0.0707 0.00145 0.00150 0.0649
2−8 × 103 0.0578 0.00144 0.00147 0.0464
2−7 × 103 0.527 0.0247 0.0251 0.139
2−6 × 103 0.100 0.00139 0.00145 0.0556
2−5 × 103 3.00 0.000462 0.00444 2.85
2−4 × 103 0.126 0.000612 0.000598 0.0500
2−3 × 103 3.51 0.00137 0.00307 2.96
2−2 × 103 2.17 0.00108 0.00215 1.36
2−1 × 103 5.20 0.00106 0.00128 4.03
2−0 × 103 5.06 0.000304 0.00159 3.17
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Table 13: GW and its induced MMDs and ∆ between heart (P ) and scaled heart (Qc).

ε GW MMDX MMDY ∆
5 0.0776 5.00 5.00 25.8
0.5 0.0770 4.93 4.93 25.5
0.05 0.0498 0.483 0.483 5.89
0.005 0.00483 0.00307 0.00307 0.378
0.0005 0.000470 0.000227 0.000227 0.0833

Table 14: UGW and its induced MMDs and ∆ between heart (P ) and scaled heart (Qc).

ε UGW MMDX MMDY ∆
10 2.47 4.09 4.84 23.6
1 1.79 3.02 4.28 20.4
0.1 1.50 2.90 4.22 20.0

Table 15: Evaluation of GMMD mappings between heart (P ) and embedded heart (Qd).

λ GMMD MMDX MMDY ∆
2−9 × 103 0.104 0.00157 0.00151 0.0979
2−8 × 103 0.244 0.0256 0.0255 0.0446
2−7 × 103 0.114 0.00177 0.00154 0.0881
2−6 × 103 0.0956 0.00145 0.00148 0.0500
2−5 × 103 2.94 0.00179 0.00338 2.78
2−4 × 103 1.28 0.00222 0.00213 1.00
2−3 × 103 4.31 0.00152 0.00194 3.88
2−2 × 103 4.65 0.00152 0.00117 3.97
2−1 × 103 1.15 0.000984 0.000964 0.172
2−0 × 103 6.83 0.00143 0.00131 4.09

Table 16: GW and its induced MMDs and ∆ between heart (P ) and embedded heart (Qd).

ε GW MMDX MMDY ∆
5 0.0776 5.00 5.00 25.8
0.5 0.0770 4.93 4.93 25.5
0.05 0.0498 0.483 0.483 5.89
0.005 0.00483 0.00307 0.00307 0.378
0.0005 0.000470 0.000227 0.000227 0.0833

Table 17: UGW and its induced MMDs and ∆ between heart (P ) and embedded heart (Qd).

ε UGW MMDX MMDY ∆
10 0.278 5.01 5.01 25.8
1 0.200 4.96 4.96 25.6
0.1 0.190 4.58 4.58 24.1
0.01 0.179 3.35 3.35 19.1
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Figure 6: GMMD amortization. Each pair shows the image through the learned GMMD mapping. The pairs
from left to right: heart (P ) vs. rotated/scaled/embedded heart (Qb/Qc/Qd), and biplanes. All 4 cases here are
trained with λ = 2−6 × 103.

Table 18: GMMD amortization between heart (P ) and rotated heart (Qb).

λ GMMD MMDX MMDY ∆
2−9 × 103 2.60 5.43e-02 1.67e-03 2.49
2−8 × 103 0.286 0.0262 0.0262 0.0809
2−7 × 103 0.0617 0.000276 0.000215 0.0579
2−6 × 103 0.111 0.00199 0.00152 0.0564
2−5 × 103 2.92 1.46e-04 4.86e-03 2.76
2−4 × 103 3.58 7.75e-04 1.82e-04 3.51
2−3 × 103 1.85 0.00242 0.00243 1.24
2−2 × 103 0.142 0.000162 0.000141 0.0660
2−1 × 103 3.38 0.00174 0.00173 1.64
2−0 × 103 4.91 1.70e-03 1.73e-03 1.47

Table 19: GMMD amortization between heart (P ) and scaled heart (Qc).

λ GMMD MMDX MMDY ∆
2−9 × 103 0.0678 0.000555 0.000856 0.0650
2−8 × 103 0.0520 0.000599 0.000787 0.0466
2−7 × 103 0.553 0.0261 0.0268 0.139
2−6 × 103 0.0763 0.000577 0.000716 0.0561
2−5 × 103 3.03 3.00e-04 5.05e-03 2.86
2−4 × 103 9.56 0.000366 0.000361 0.0501
2−3 × 103 3.54 1.60e-03 3.23e-03 2.94
2−2 × 103 2.38 0.00210 0.00196 1.37
2−1 × 103 5.95 1.76e-03 2.01e-03 4.05
2−0 × 103 4.89 1.75e-04 1.59e-03 3.12

Table 20: GMMD amortization between heart (P ) and embedded heart (Qd).

λ GMMD MMDX MMDY ∆
2−9 × 103 0.101 0.000721 0.000717 0.0985
2−8 × 103 0.257 0.0272 0.0271 0.0446
2−7 × 103 0.104 0.00126 0.000716 0.0885
2−6 × 103 0.0673 0.000566 0.000516 0.0504
2−5 × 103 2.93 1.52e-03 3.98e-03 2.76
2−4 × 103 1.24 0.00199 0.00194 0.990
2−3 × 103 4.40 1.62e-03 2.77e-03 3.85
2−2 × 103 4.90 1.92e-03 1.93e-03 3.95
2−1 × 103 1.44 0.00131 0.00122 0.173
2−0 × 103 6.89 1.48e-03 1.34e-03 4.07
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Table 21: GMMD amortization between biplanes.

λ GMMD MMDX MMDY ∆
2−9 × 103 0.617 0.123 0.124 0.134
2−8 × 103 1.11 0.124 0.124 0.137
2−7 × 103 0.214 0.00664 0.00660 0.111
2−6 × 103 0.258 0.00596 0.00636 0.0658
2−5 × 103 3.97 0.00852 0.00953 3.40
2−4 × 103 1.82 0.00995 0.00953 0.600
2−3 × 103 4.59 0.00666 0.00627 2.97
2−2 × 103 5.83 2.83e-03 4.58e-03 3.98
2−1 × 103 5.65 3.31e-03 2.30e-03 2.83
2−0 × 103 12.1 3.96e-03 4.51e-03 3.60


