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Abstract

We consider the problem of tracking an ad-
versarial state sequence in a linear dynamical
system subject to adversarial disturbances
and loss functions, generalizing earlier set-
tings in the literature. To this end, we develop
three techniques, each of independent inter-
est. First, we propose a comparator-adaptive
algorithm for online linear optimization with
movement cost. Without tuning, it nearly
matches the performance of the optimally
tuned gradient descent in hindsight. Next,
considering a related problem called online
learning with memory, we construct a novel
strongly adaptive algorithm that uses our first
contribution as a building block. Finally, we
present the first reduction from adversarial
tracking control to strongly adaptive online
learning with memory. Summarizing these in-
dividual techniques, we obtain an adversarial
tracking controller with a strong performance
guarantee even when the reference trajectory
has a large range of movement.1

1 INTRODUCTION

Regulation and tracking are two iconic branches of
linear control problems based on the system equation

xt+1 = Atxt +Btut + wt.

By designing the action ut, a regulation controller re-
jects the disturbance wt such that the state xt remains
close to the origin. In comparison, a tracking controller

1Future versions available at https://arxiv.org/abs/
2102.01623.
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aims at steering the state xt to follow a reference tra-
jectory x∗t . Recently, there have been growing efforts
applying online learning ideas to linear control, in-
cluding the online Linear Quadratic Regulator (LQR)
(Abbasi-Yadkori and Szepesvári, 2011; Cohen et al.,
2018; Dean et al., 2019), its adversarial generalizations
(Agarwal et al., 2019a,b) and model-predictive control
(Li et al., 2019; Yu et al., 2020). However, most of
these advances are based on the regulation problem,
and their application to tracking requires that the con-
troller already knows the reference trajectory.

In this paper, we address this gap by first solving a gen-
eral online learning problem: strongly adaptive online
learning with movement cost. Ordinary (non-adaptive)
algorithms aim to produce actions whose performance
is strong on average over the entire operation of the
algorithm. In contrast, a strongly-adaptive algorithm’s
performance must be strong over any time interval of
operation. This additional requirement significantly
complicates the algorithm design. In fact, standard ap-
proaches to achieving strong adaptivity fail to account
for movement costs, and cannot be easily modified to
incorporate this extra performance metric.

Subsequently, we come back to control and consider a
general adversarial tracking problem with the following
challenges.

1. The system dynamics (At, Bt) are time-varying.

2. The reference trajectory is fully adversarial. That
is, x∗t can freely adapt to past actions of the con-
troller, and we do not impose any assumption on its
movement speed ‖x∗t − x∗t−1‖.

3. The loss function l∗t that quantifies the tracking
performance is adversarial, and we do not require
its minimizer to be unique. This generalizes the
quadratic loss from existing works on adversarial
tracking, and allows the modeling of target regions.

4. The disturbance wt is adversarial, possibly combin-
ing noise, modeling error and (minor) nonlinearity.

Such a setting is useful for many practical problems,
especially when the target to be tracked is hard to

https://arxiv.org/abs/2102.01623
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model and predict. However, due to the confluence
of these challenges, existing controllers either cannot
be applied, or cannot produce a regret bound that
competes with a strong enough baseline. Taking a
conceptual leap, we will provide a solution by exploiting
a novel connection between adversarial tracking control
and strongly adaptive online learning.

1.1 Our contribution

In this paper, we develop three techniques, each using
the previous one as its building block.

1. We propose the first comparator-adaptive algorithm
for Online Linear Optimization (OLO) with move-
ment cost. This is nontrivial as the per-step move-
ment of existing comparator-adaptive OLO algo-
rithms can be exponentially large in T . (Section 2)

2. We propose a novel strongly adaptive algorithm for
Online Convex Optimization with Memory (OCOM),
and the obtained bound further adapts to the ob-
served gradients. (Section 3)

3. We propose the first reduction from adversarial
tracking control to strongly adaptive OCOM. Our
approach establishes a connection between two sep-
arate notions of tracking from online learning and
linear control, which could facilitate the application
of online learning ideas in a wider range of control
problems. (Section 4)

Combining these individual techniques, we design a
strongly adaptive adversarial tracking controller: on
any time interval I contained in the time horizon [1 : T ],
the proposed controller suffers Õ(

√
|I|) regret against

the best I-dependent static controller, where |I| is the
length of this time interval. More intuitively, on any
time interval I, the proposed controller always pursues
the best fixed action for I. Such a performance guar-
antee significantly improves existing results, especially
when the reference trajectory has a large range of move-
ment. Finally, our theoretical results are supported by
experiments.

1.2 Background and notation

Linear tracking control Tracking control is a
decades old problem in linear control theory. Despite
the empirical success of heuristic approaches (e.g., the
PID controller), classical theoretical analysis typically
requires strong assumptions on the reference trajec-
tory: either (i) the reference trajectory is generated by
a known linear system (Astolfi, 2015); or (ii) predictions
are available (Limon and Alamo, 2015).

For us, the most relevant works are the learning-based

approaches with regret guarantees of the form

L(alg)−min
C∈C

L(C) ≤ Regret bound.

C is a set of baseline controllers called comparator
class. L(alg) and L(C) are the cumulative loss of the
proposed algorithm and a comparator C ∈ C, respec-
tively. A strong guarantee requires not only a small
regret bound, but also a comparator class that contains
a good tracking baseline. From this perspective, we
discuss the limitation of existing works as follows.

1. Abbasi-Yadkori et al. (2014); Foster and Simchowitz
(2020) proposed algorithms for tracking fully ad-
versarial targets, and a nonconstructive minimax
guarantee was proposed by Bhatia and Sridharan
(2020). However, regret bounds are only established
on the entire time horizon [1 : T ], and the com-
parator controllers are static and affine in the state
(ut = −Kxt + c) which only perform well if the
reference trajectory is roughly constant (on [1 : T ]).

2. Another line of research (Agarwal et al., 2019a,b;
Simchowitz, 2020; Simchowitz et al., 2020; Minasyan
et al., 2021) considered nonstochastic control, a gen-
eral control setting with adversarial disturbances
and loss functions. The comparator class is a col-
lection of stabilizing linear controllers, therefore the
implicitly assumed goal is disturbance rejection (i.e.,
regulation) rather than tracking. We will provide a
detailed discussion in Section 4.2.

In summary, designing an adversarial tracking con-
troller with a strong theoretical guarantee remains an
open problem. Next, we review classical settings of
online learning and a special tracking concept therein.

Basic online learning models There are two stan-
dard online learning models (Zinkevich, 2003) relevant
to our purpose: Online Convex Optimization (OCO)
and Online Linear Optimization (OLO). OCO is a
two-person game: in each round, a player makes a
prediction xt in a convex set V , observes a convex loss
function lt selected by an adversary and suffers the
loss lt(xt). If lt is linear, then the problem is also
called OLO. The standard performance metric is the
static regret: Regret[1:T ] =

∑T
t=1 lt(xt)−minu∈V lt(u).

In general, OCO can be converted into OLO through
the inequality Regret[1:T ] ≤ maxu∈V

∑T
t=1〈gt, xt − u〉

where gt ∈ ∂lt(xt), so it suffices to only consider OLO.

Adaptive online learning In this paper, we call
adaptivity the property of an OLO algorithm such
that on any time interval I ⊂ [1 : T ], it guaran-
tees small regret bound RegretI against the best I-
dependent static comparator. Early works (Hazan and
Seshadhri, 2009; Adamskiy et al., 2016) studied weakly
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adaptive algorithms where RegretI = Õ(
√
T ). Improv-

ing on those, recent advances (Daniely et al., 2015;
Jun et al., 2017; Zhang et al., 2019a,b) focused on a
more powerful concept called strong adaptivity : an
algorithm is strongly adaptive if for all I ⊂ [1 : T ],
RegretI = O(poly(log T )·

√
|I|). This is much stronger

than weak adaptivity, especially on short time intervals.

To associate adaptivity with adversarial tracking con-
trol, let us consider the tracking regret (Herbster and
Warmuth, 1998; Bousquet and Warmuth, 2002) in on-
line learning as an intermediate step, where an OLO
algorithm is compared to all sequences with bounded
amount of switching. This generalizes the static regret,
and interestingly, Daniely et al. (2015) showed that
near-optimal tracking regret can be derived from strong
adaptivity. The key idea is that strongly adaptive OLO
algorithms can quickly respond to the incoming losses,
resulting in a near-optimal regret on the entire time
horizon compared to nonstationary comparators. This
bears an intriguing similarity to tracking nonstationary
targets in linear control, which we exploit later.

As for the design of adaptive OLO algorithms, the pre-
dominant approach is a two-level composition pioneered
by Hazan and Seshadhri (2009). Notably, Cutkosky
(2020) proposed an alternative framework based on
comparator-adaptive online learning (McMahan and
Orabona, 2014; Orabona and Pál, 2016; Foster et al.,
2018; van der Hoeven, 2019; Mhammedi and Koolen,
2020). Our construction will incorporate movement
cost into the latter, which is a highly nontrivial task.

Strongly adaptive OCOM The performance of
control suffers from past mistakes, therefore when we
reduce it to online learning the resulting setting should
also model this behavior, leading to a popular prob-
lem called Online Convex Optimization with Memory
(OCOM) (Anava et al., 2015). A weakly adaptive
OCOM algorithm was proposed in (Gradu et al., 2020),
but achieving strong adaptivity is a much more chal-
lenging task due to two contradictory requirements: (i)
strong adaptivity requires the predictions to move (i.e.,
respond to incoming information) very quickly; but (ii)
movement cost requires the predictions to move slowly.

Recently, Daniely and Mansour (2019) proposed a
strongly adaptive algorithm for OCOM with one-step
memory, and its key component is an asymmetrical
expert algorithm from Kapralov and Panigrahy (2010).
In comparison, our approach (Contribution 2) is based
on a fundamentally different mechanism and analysis.
Our obtained bound adapts to the observed gradients,
and more importantly provides an alternative line of
intuition to the regret-movement trade-off in strongly
adaptive online learning.

For conciseness, further discussion on existing works is
deferred to Appendix A, including a series of related but
incomparable works on linear control with prediction.

Notation We use ‖·‖ for the Euclidean norm of vec-
tors and the spectral norm of matrices. These are the
default norms throughout this paper. Let 0 be a zero
vector or matrix. Let ΠV(x) be the Euclidean projec-
tion of x to a set V. Bd(x, r) denotes the Euclidean
norm ball centered at x ∈ Rd with radius r.

For two integers a ≤ b, [a : b] is the set of all integers c
such that a ≤ c ≤ b; the brackets are removed when on
the subscript, denoting a finite sequence with indices
in [a : b]. Let |·| be the cardinality of a finite set.
Given square matrices Ma:b, define their product as∏b
i=aMi = Mb · · ·Ma. (When b < a, the product

is the identity matrix.) Finally, log denotes natural
logarithm when the base is omitted.

2 COMPARATOR-ADAPTIVE OLO
WITH MOVEMENT COST

Starting with our first contribution, we introduce a
comparator-adaptive algorithm for a variant of OLO
called OLO with movement cost. The difference from
standard OLO is that in each round, besides suffering
the instantaneous loss lt(xt), the player also suffers a
movement cost λ |xt − xt−1| where λ is a known con-
stant. Movement penalties have been studied in online
learning in various forms (Kalai and Vempala, 2005;
Cesa-Bianchi et al., 2013; Gofer, 2014; Bhaskara et al.,
2021; Sherman and Koren, 2021), sometimes under
the name switching cost originated from the bandit
problems. Since this paper focuses on the continuous
domain, we name it as movement cost to avoid con-
fusion. Notably, our setting is different from another
classical problem called Smoothed OCO (Chen et al.,
2018; Goel et al., 2019), where the loss function is
observed before making the prediction.

Our algorithm is first developed on a one-dimensional
domain [0, R̄], and then extended to higher dimensions.

2.1 The one-dimensional algorithm

We present the one-dimensional version in Algorithm 1.
It critically relies on a duality between OLO and the
coin-betting game (Orabona and Pál, 2016), which we
summarize in Appendix B.1. Four hyperparameters
are required: λ is the weight of movement costs, γ is a
regularization weight, G is the Lipschitz constant (as-
sumed known) of the OLO losses, and ε is the “budget”
for the cumulative cost and movement.

To get the gist of this algorithm, let us briefly ignore the
surrogate loss g̃t from Line 3 and the projection of x̃t+1
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from Line 6 (i.e., assume R̄ = ∞). With gt = g̃t and
xt+1 = x̃t+1, Algorithm 1 becomes an unconstrained
OLO algorithm with predictions recommended by the
following betting scheme: A bettor has money Wealtht
in the t-th round. After choosing a betting fraction
βt+1, he bets money xt+1 = βt+1Wealtht on the next
loss gradient gt+1. The favorable outcome is gt+1xt+1

being negative which means the OLO algorithm suf-
fers negative loss. Therefore, after observing gt+1, the
bettor treats −gt+1xt+1 as the money he gains and
updates his wealth accordingly. Since large movement
is also undesirable, the bettor further loses money pro-
portional to the change of his betting amount; this
is an important and novel step in our approach. Us-
ing this procedure, regret minimization is converted to
wealth maximization. By choosing the betting fraction
βt properly, one can simultaneously ensure low cost
and low movement in OLO.

Theorem 1. For all λ, γ ≥ 0, G > 0 and 0 < ε ≤
GR̄, with any loss sequence such that |gt|≤ G for all t,
applying Algorithm 1 yields the following guarantee.

1. For all T ∈ N+ and u ∈ V1d, with C defined in
Line 1 of the algorithm,

T∑
t=1

(
gtxt − gtu+ λ |xt − xt+1|+

γ√
t
|xt|
)

≤ ε+ uC
√

2T

(
3

2
+ log

√
2uCT 5/2

ε

)
.

2. For all a ≤ b, ∑b
t=a |xt − xt+1| ≤ 48R̄

√
b− a+ 1.

The highlights of Theorem 1 are the following.

1. Part 1 provides the first comparator-adaptive bound
for OLO with movement cost: the sum of movement
cost and regret with respect to the null comparator
u = 0 is at most a user-specified constant, and the
sum grows almost linearly in |u| which is the optimal
rate (Orabona, 2020, Chapter 5). This leads to an
important parameter-free property: without knowing
the optimal comparator u∗ in advance, Algorithm 1
automatically adapts to it, and the performance
bound almost matches the optimally-tuned Online
Gradient Descent (OGD) whose learning rate de-
pends on u∗. Note that the latter is a hypothetical
(unimplementable) baseline, since the optimal com-
parator u∗ in hindsight is unknown before all the
losses are revealed. Nonetheless, our algorithm is
still able to (nearly) match it using a perfectly im-
plementable procedure.

Furthermore, Part 1 does not need a bounded do-
main; the same bound holds even with R̄ = ∞,
making Algorithm 1 an appealing approach for gen-
eral unconstrained settings as well.

Algorithm 1 One-dimensional comparator-adaptive
OLO with movement cost.

Require: Hyperparameters (λ, γ, ε,G), with λ, γ ≥ 0
and ε,G > 0; a 1-dimensional domain V1d = [0, R̄];
loss gradients g1, g2, . . . ∈ R with |gt| ≤ G, ∀t.

1: Initialize internal variables as Wealth0 = ε, and
β1, x1, x̃1 = 0. Define C = G+ λ+ γ.

2: for t = 1, 2, . . . do
3: Make a prediction xt, observe a loss gradient gt.

Define the surrogate loss g̃t as

g̃t =

{
gt, if gtx̃t ≥ gtxt,
0, otherwise.

4: Let β̂t+1 = −∑t
i=1 g̃i/(2C

2t). Define Bt+1 =

[0, 1/(C
√

2t)] and let βt+1 = ΠBt+1(β̂t+1).
5: Assign Wealtht as the solution to the following

equation (uniqueness shown in Lemma B.2),

Wealtht = (1− g̃tβt − γβt/
√
t)Wealtht−1

− λ|βtWealtht−1 − βt+1Wealtht|. (1)

6: Let x̃t+1 = βt+1Wealtht and xt+1 = ΠV1d(x̃t+1).
7: end for

2. As for Part 2, we bound the movement cost alone
over any time interval, which is also technically non-
trivial. Our surrogate loss g̃t (Line 3) is due to
an existing black-box reduction from unconstrained
OLO to constrained OLO (see Appendix B.2). How-
ever, the proof of Part 2 requires a non-black-box
use of this procedure: we investigate how using the
surrogate loss g̃t instead of the true loss gt changes
the growth rate of Wealtht, an internal quantity of
the unconstrained OLO algorithm. To the best of
our knowledge, this is the first analysis that takes
this perspective. The revealed insights could be of
separate interest.

2.2 Extension to higher dimensions

After the one-dimensional analysis, we present Algo-
rithm 2, which extends Algorithm 1 to a higher dimen-
sional ball Bd(0, R̄) via a polar decomposition. Intu-
itively, Algorithm 2 learns the direction and magnitude
separately: the former via standard OGD on the unit
norm ball, and the latter via Algorithm 1. Such an idea
was first proposed by Cutkosky and Orabona (2018);
here we further incorporate movement cost into its
analysis. The performance guarantee has a similar
flavor as Theorem 1; for conciseness, we defer it to
Appendix B.4.
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Algorithm 2 Extension of Algorithm 1 to Bd(0, R̄).

Require: Hyperparameters (λ, ε,G) with λ ≥ 0 and
ε,G > 0; g1, g2, . . . ∈ Rd with ‖gt‖≤ G, ∀t.

1: Define Ar as Algorithm 1 on the domain [0, R̄],
with hyperparameters (λ, λ, ε,G).

2: Define AB as Online Gradient Descent (OGD) on
Bd(0, 1) with learning rate ηt = 1/(G

√
t), initial-

ized at the origin 0.
3: for t = 1, 2, . . . do
4: Obtain yt ∈ R from Ar and zt ∈ Rd from AB.

Predict xt = ytzt ∈ Rd, observe gt ∈ Rd.
5: Return 〈gt, zt〉 and gt as the t-th loss gradient to

Ar and AB , respectively.
6: end for

3 STRONGLY ADAPTIVE OCOM

Next, we introduce our second contribution - a novel
strongly adaptive algorithm for Online Convex Opti-
mization with Memory (OCOM) (Anava et al., 2015).
After introducing the problem setting, we present our
approach step-by-step which builds on Algorithms 1
and 2.

3.1 Problem setting of OCOM

Consider a convex and compact domain V ⊂ Bd(0, R)
with R > 0. Without loss of generality, assume V
contains the origin 0.2 In each round, a player makes a
prediction xt ∈ V , observes a loss function lt : VH+1 →
R and suffers the loss lt(xt−H , . . . , xt) that depends on
the H-round prediction history. For all t ≤ 0, xt = 0.

We define an instantaneous loss function as l̃t(x) =
lt(x, . . . , x). Two assumptions are imposed: (i) lt is L-
Lipschitz with respect to each argument separately; (ii)
l̃t(x) is convex and G̃-Lipschitz, with 0 < G̃ ≤ L(H+1).

For this OCOM problem, our goal is a strongly adaptive
regret bound on the policy regret: for all time intervals
I = [a : b] ⊂ [1 : T ],

b∑
t=a

lt(xt−H:t)−min
x∈V

b∑
t=a

l̃t(x)

= O
(

poly(log T ) ·
√
|I|
)
, (2)

where O(·) subsumes polynomial factors on the problem
constants. In other words, on any time interval I ⊂
[1 : T ], the regret compared to the best I-dependent
fixed prediction should be Õ(

√
|I|).

2By shifting the coordinate system, this can be achieved
for any nonempty set V.

3.2 Preliminary: GC intervals

First of all, we review an important concept. Similar to
achieving strong adaptivity without memory (Daniely
et al., 2015; Cutkosky, 2020), our OCOM algorithm
has a hierarchical structure. It maintains a subroutine
on each Geometric-Covering (GC) interval, and the
overall prediction combines the outputs from all the
active subroutines. Such a structure benefits from a
nice property (Daniely et al., 2015): an online learning
algorithm is strongly adaptive if it has the desirable
strongly adaptive guarantee on all the GC intervals.
Consequently for our objective (2), we can only focus
on achieving this bound on GC intervals instead of
general intervals I ⊂ [1 : T ].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
[    ][    ][    ][    ][    ][    ][    ][    ][    ][    ][    ][    ][    ][    ][    ] ...

[ ][ ][ ][ ][ ][ ][ ] ...
[ ][ ][ ] ...

[ ] ...
... ...

Figure 1: Geometric-Covering intervals.

The class of GC intervals is visualized in Figure 1.
Concretely, for all k ∈ N and i ∈ N+, a GC interval is
defined as Ik,i = [2ki : 2k(i+ 1)− 1]. If it contains t,
then we say it is active in the t-th round.

3.3 Subroutine on GC intervals

The next step is to construct the subroutine on each
GC interval. It consists of two parts:

1. Subroutine-1d, an OLO algorithm operating on the
one-dimensional domain [0, 1].

2. Subroutine-ball, an OLO algorithm operating on the
ball Bd(0, R) that contains V.

Intuitively, each Subroutine-1d produces the “confi-
dence” on its corresponding Subroutine-ball. Then, the
Subroutine-ball with higher confidence contributes a
larger portion in the prediction of the meta-algorithm.
Algorithms 1 and 2 constitute the basis of these two
parts respectively, but we need one extra step (Algo-
rithm 3): Subroutine-1d is the version of Algorithm 3
with Line 1(a) and gt ∈ R, while Subroutine-ball is the
version with Line 1(b) and gt ∈ Rd. Note that the time
index t in the pseudo-code represents the local clock
counting from the start of the considered GC interval.
That is, if we consider Ik,i starting from the 2ki-th
round, then the index t in Algorithm 3 represents the
(2ki− 1 + t)-th round globally.

Algorithm 3 serves two purposes: (i) improving the
dependence on hyperparameters G and λ (ultimately,
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Algorithm 3 Subroutine on GC intervals.

Require: Hyperparameters (λ, ε,G) with λ ≥ 0 and
ε,G > 0; gradients g1, g2, . . ., with ‖gt‖≤ G, ∀t.

1: (a) Subroutine-1d: Define A as Algorithm 1 with
hyperparameters (λ, 0, ε,max{λ,G} + G), on the
domain [0, 1] ⊂ R.
(b) Subroutine-ball: Define A as Algorithm 2 with
hyperparameters (λ, ε,max{λ,G}+G), on the do-
main Bd(0, R).

2: Initialize i = 1 and an accumulator Zi = 0. Query
the first output of A and assign it to wi.

3: for t = 1, 2, . . . do
4: Predict xt ← wi, observe gt, let Zi ← Zi + gt.
5: if ‖Zi‖> max{λ,G} then
6: Send Zi to A as the i-th loss. Let i← i+ 1.
7: Set Zi = 0. Query the i-th output of A and

assign it to wi.
8: end if
9: end for

problem constants of OCOM); and (ii) achieving adap-
tivity to the observed gradients, which leads to better
practical performance. Its key mechanism is to adap-
tively “slow down” the base algorithm A. To this end,
an accumulator Zi tracks the sum of the received loss
gradients. The base algorithm A is only queried when
Zi exceeds a threshold max{λ,G}. Using this proce-
dure, we essentially replace the time horizon T in the
performance guarantee of A by an adaptive quantity∑T
t=1‖gt‖/max{λ,G}.

3.4 Meta-algorithm

Given the two-part subroutine, we now introduce our
OCOM meta-algorithm. Compared to online learn-
ing without memory (Cutkosky, 2020), our technical
improvement is the incorporation of movement cost
which is a nontrivial task. The complete pseudo-code is
deferred to Appendix C.2, and an abridged version (Al-
gorithm 4) is provided here. Specifically, Algorithm 4
simplifies a complicated projection scheme by allowing
improper predictions (xt /∈ V).

In each round, Algorithm 4 combines the subroutines
by recursively running Line 6. Such a procedure is
different from the well-known boosting strategy (Fre-
und and Schapire, 1997; Beygelzimer et al., 2015) ap-
plied in (Daniely and Mansour, 2019), as the updated

temporary prediction x
(k)
t is not a convex combina-

tion of the old temporary prediction x
(k+1)
t and the

output w
(k)
t from Subroutine-ball. By plugging the

comparator-adaptive property of the subroutines into
Line 6, Algorithm 4 achieves an important property:

for all k, x
(k)
t matches the performance of w

(k)
t on time

Algorithm 4 The OCOM meta-algorithm. (Abridged
from Algorithm 7)

Require: T ≥ 1; a hyperparameter ε0 > 0.
1: for t = 1, . . . , T do
2: Find the (k, i) index pair for all the GC intervals

that start in the t-th round. For each pair, ini-
tialize AkB as a copy of Subroutine-ball and Ak1d
as a copy of Subroutine-1d, with some hyper-
parameters that depend on k, ε0 and problem
constants. If AkB and Ak1d already exist in the
memory, overwrite them.

3: Define Kt = dlog2(t+ 1)e − 1; x
(Kt+1)
t = 0 ∈ Rd.

4: for k = Kt, . . . , 0 do
5: Query a prediction from AkB and assign it to

w
(k)
t ; query a prediction from Ak1d and assign

it to z
(k)
t .

6: Let x
(k)
t = (1− z(k)

t )x
(k+1)
t + w

(k)
t .

7: end for
8: Predict xt = x

(0)
t , suffer lt(xt−H:t), receive lt,

obtain a subgradient gt ∈ ∂l̃t(xt).
9: for k = 0, . . . ,Kt do

10: Return gt to AkB and −〈gt, x(k+1)
t 〉 to Ak1d as

the loss gradients respectively.
11: end for
12: end for

intervals of length 2k while achieving the performance

of x
(k+1)
t on longer time intervals.3 As the result, the

final prediction x
(0)
t matches the performance of any

subroutine on its corresponding GC interval.

To recap, we demonstrate the structure of our OCOM
algorithm in Figure 2. Collecting all the pieces, we
state the performance guarantee in Theorem 2.

Algorithm 1
1d movement-aware OLO

Algorithm 2
OLO on 𝐁𝑑(0, 𝑅)

Algorithm 4
Meta-algorithm

Polar decomposition
AdaptivityAdaptivity

Subroutine-1d
on GC intervals

Subroutine-ball
on GC intervals

Figure 2: An overview of our OCOM strategy.

Theorem 2. Consider running our OCOM algorithm
(the complete version, Algorithm 7) for T rounds. If
ε0 = G̃R/(T + 1), then on any time interval I = [a :

3Compared to (Daniely and Mansour, 2019), this intu-
itively generalizes the “easy-to-combine” idea from expert
problems to OLO.
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b] ⊂ [1 : T ],

b∑
t=a

lt(xt−H:t)−min
x∈V

b∑
t=a

l̃t(x)

= O(RLH3 log |I|)+Õ

RLH2 +RH

√√√√L

b∑
t=a

‖gt‖

 ,

where gt ∈ ∂l̃t(xt), O(·) subsumes absolute constants,
and Õ(·) subsumes poly-logarithmic factors on problem
constants and T .

Notice that the obtained bound is not only strongly
adaptive according to Equation (2), but also adaptive
to the observed gradients. In easy environments, it
would be a lot better than Õ(

√
|I|).

Remark 3.1. Strongly adaptive regret is not the only
performance metric that compares to dynamic compara-
tors; alternatives include dynamic regret and competi-
tive ratio (see Appendix A for an overview). If we have
an algorithm A with such (alternative) guarantees on
[1 : T ] and a slow-moving property similar to Part 2
of Theorem 1, then we can assign the prediction of

A to x
(Kt+1)
t . The resulting algorithm would not only

remain strongly adaptive, but also essentially achieve
the dynamic regret or competitive ratio guarantee of A
on [1 : T ].

4 ADVERSARIAL TRACKING
CONTROL

Finally we present our third contribution: a reduction
from adversarial tracking control to strongly adaptive
OCOM. Let us start with the problem setting.

4.1 Problem setting of adversarial tracking

We consider a time-varying linear system

xt+1 = Atxt +Btut + wt.

Matrices At ∈ Rdx×dx and Bt ∈ Rdx×du are known.
For all t ≤ 0, xt = 0, ut = 0; for all t < 0, wt = 0.

The system has the following interaction protocol. At
the beginning of the t-th round, after observing xt, the
controller commits to an action ut. Then, an adversary
selects the disturbance wt, a reference state-action pair
(x∗t , u

∗
t ) and a loss function lt, possibly depending on

past controller actions u1, . . . , ut. (x∗t , u
∗
t ) and lt to-

gether induce a tracking loss function l∗t (x, u|x∗t , u∗t ) :=
lt(x − x∗t , u − u∗t ) for all (x, u) ∈ Rdx × Rdu , which is
revealed to the controller and incurs a loss l∗t (xt, ut).
After that, the state evolves to xt+1 following the sys-
tem equation. Intuitively, lt represents the shape of

the loss function and (x∗t , u
∗
t ) is the location parame-

ter; an example is the quadratic control problem with
lt(x, u) = ‖x‖2+‖u‖2.

Our goal is a strongly adaptive tracking guarantee with
the following shape: on any time interval I contained
in the time horizon [1 : T ], for all action sequences uC1:T

that are fixed on I,

∑
t∈I

l∗t (xt, ut)
∣∣∣
our algorithm

−
∑
t∈I

l∗t
(
xCt , u

C
t

) ∣∣∣
induced by uC

1:T

= Õ
(√
|I|
)
.

Such a guarantee subsumes the conventional static
regret bound as one can choose I = [1 : T ]. Moreover,
the key benefit is that on any time interval I, the
optimal comparator is optimized for I instead of the
entire time horizon [1 : T ]. From this perspective, we
aim at a considerably stronger goal than existing works
(Abbasi-Yadkori et al., 2014; Foster and Simchowitz,
2020).

For our setting, we impose the following assumptions.
κ, γ, U and L∗ are assumed to be known.

Assumption 1 (On the system). There exist κ ≥ 1
and U,W, γ > 0 such that for all t, ‖Bt‖≤ κ, ‖ut‖≤ U ,
‖wt‖≤W and ‖At‖≤ 1− γ.

Assumption 2 (On the losses). For all t, l∗t is convex.
In addition, l∗t (x, u) is L∗-Lipschitz with respect to each
argument separately, on the set {(x, u); ‖x‖≤ γ−1(κU +
W ), ‖u‖≤ U}.
Remark 4.1. The assumption ‖At‖≤ 1−γ may seem
restrictive as many real world systems are not open-loop
stable. However, such an assumption allows a simplified
exposition without excessively altering the essence of
the problem. For general (open-loop unstable) systems,
we can assume oracle stabilizing controllers (matrices)

K1:∞ such that ‖∏s+k
t=s (At +BtKt)‖≤ const · (1− γ)k

for all s and k, and the multiplying constant can be
larger than 1. Such an extension is somewhat stan-
dard in the analysis of linear time-varying systems
(Minasyan et al., 2021, Appendix A.2). Given K1:∞,
we can replace our action ut with Ktxt + ut so that a
similar analysis follows.

4.2 Difference with nonstochastic regulation

Before proceeding, we (re)-emphasize the difference be-
tween our work and a series of nonstochastic regulation
controllers (most notably, Agarwal et al. 2019a). For
a clear comparison, consider time-invariant dynamics
(At = A, Bt = B) and state-tracking (l∗t only depends
on xt). The procedure of (Agarwal et al., 2019a) can
be summarized as follows.
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1. Before observing any data, the controller computes
a stabilizing feedback matrix K based on (A,B).

2. The actions are determined by a specific parameteri-
zation called Disturbance-Action Controller (DAC):

ut = −Kxt +

H∑
i=1

M
[i]
t wt−i,

where H is a constant, wt−i is a past disturbance,

and M
[1]
t , . . . ,M

[H]
t are parameter matrices updated

via online gradient descent. The idea is to stabilize
the system by −Kxt, and adapt to the disturbances
by applying their linear combinations.

3. It can be shown that the DAC class approximates a
class of stabilizing linear controllers, therefore the
regret guarantee can be stated with respect to the
latter (as the comparator class).

Such an approach works well for the regulation problem,
but in tracking it has a substantial limitation. Consider
a simple example: what if the system is disturbance-
free? In that case, the controller reduces to a static
linear feedback, and the gain matrix is determined
without seeing any data. In other words, nothing is
learned. The state sequence would converge to the
origin, therefore the tracking loss can be always high as
long as the target state x∗t is far away from the origin.

If x∗t is known a priori, there is a standard remedy (Yu
et al., 2020, Section 2): define a shifted state x̃t as
the tracking error xt − x∗t and apply the DAC on the
shifted system to determine ut. However, this is not
applicable in our adversarial tracking problem, as x∗t
is not revealed before ut is committed. (Even worse,
x∗t can adapt to ut and sabotage any controller that
selects ut based on an assumed or predicted x∗t .) In
this paper, instead of fixing this framework, we propose
an approach with a different principle.

Finally, our approach can be complementary to (Agar-
wal et al., 2019a) in two ways: (i) Our strongly adaptive
OCOM algorithm (Algorithm 7) can be combined with
DAC to improve a recent regulation controller for time-
varying systems (Gradu et al., 2020). On all I ⊂ [1 : T ],
the regret of regulation is improved from Õ(

√
T ) to

Õ(
√
|I|). (ii) Our adversarial tracking controller could

be added to a regulation controller to achieve both
goals simultaneously.

4.3 Reduction to strongly adaptive OCOM

Now we sketch the key idea of our reduction, which is
to truncate history and directly optimize on the action
space. To the best of our knowledge, our approach is
the first that uses the “tracking” property of online
learning algorithms in tracking control.

Algorithm 5 A reduction from adversarial tracking
control to strongly adaptive OCOM.

Require: Time horizon T > 1 and a strongly adaptive
OCOM algorithm.

1: Initialize the strongly adaptive OCOM algorithm
as A, with time horizon T . Problem constants
for OCOM are defined using those for adversar-
ial tracking: V ← Bdu(0, U), R ← U , H ←
max{d− log T/log(1− γ)e , 2γ−1}, L ← κL∗ and
G̃← 2κγ−1L∗.

2: for t = 1, . . . , T do
3: Observe xt and compute wt−1 = xt−At−1xt−1−

Bt−1ut−1.
4: Obtain ut from A, apply it, observe the loss

function l∗t and suffer l∗t (xt, ut).
5: Compute the ideal loss function ft from (3), and

return it to A.
6: end for

To begin with, note that old actions have diminishing
effect on future states due to the stability of the system.
Therefore, given a large enough memory constant H,
the actual state xt can be approximated by an ideal
state

yt(ut−H:t−1) =

t−1∑
i=t−H

 t−1∏
j=i+1

Aj

 (Biui + wi) ,

which is the value xt would take if xt−H = 0. Using
yt to replace xt, the actual loss l∗t (xt, ut) can also be
approximated by an ideal loss

ft(ut−H:t) = l∗t (yt(ut−H:t−1), ut). (3)

Compared to l∗t (xt, ut), the ideal loss ft(ut−H:t) only de-
pends on a finite length action history ut−H:t instead of
all the past actions. Therefore, one may use a strongly
adaptive OCOM algorithm to dynamically track the
optimal input that minimizes ft, which should be close
to the optimal action that minimizes l∗t . Formally, we
present the pseudo-code in Algorithm 5.

Technically, the main benefit of our approach is that on
any time interval it guarantees a regret bound against
an interval-dependent comparator class.

Definition 4.1 (Interval-dependent comparator class).
Given any time interval I = [a : b] ⊂ [H + 1 : T ],
the comparator class CI is defined as the set of action
sequences uC1:T such that for all t ∈ [a−H : b], uCt = uCb .

In other words, the comparator class CI contains all
action sequences that are essentially fixed on the investi-
gated time-interval I, but arbitrarily varying elsewhere.

The performance guarantee of Algorithm 5 is stated
in Theorem 3. We write xt(u

A
1:t−1) and uAt as the
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state-action pair induced by Algorithm 5. Similarly,
xt(u

C
1:t−1) is the state induced by a comparator. (Su-

perscripts A and C represent “Adversarial tracking”
and “Comparator”.)

Theorem 3. Given any strongly adaptive OCOM al-
gorithm satisfying Equation (2), for all I = [a : b] ⊂
[H + 1 : T ], Algorithm 5 guarantees

b∑
t=a

l∗t
(
xt(u

A
1:t−1), uAt

)
− min
uC
1:T∈CI

b∑
t=a

l∗t
(
xt(u

C
1:t−1), uCt

)
= Õ

(√
|I|
)
,

where Õ(·) subsumes problem constants and poly(log T ).

Theorem 3 can be interpreted as: on any time interval,
the cumulative tracking loss approaches that of the
best interval-dependent action. If Algorithm 5 uses our
strongly adaptive OCOM algorithm, then the obtained
bound further adapts to the observed gradients.

Notably, Theorem 3 improves existing results on ad-
versarial tracking (e.g., Abbasi-Yadkori et al. 2014),
especially when the reference trajectory has a large
range of movement. To make it clear, consider track-
ing a piecewise constant reference trajectory. In that
case, existing regret bounds are only established on
the entire time horizon [1 : T ], and the comparator
class only contains static linear controllers which are
weak baselines for tracking this moving target. In com-
parison, Theorem 3 induces a regret bound on any
time interval, including [1 : T ] and its much shorter
sub-intervals. The regret bound on [1 : T ] suffers from
the same problem (the comparator class is weak). How-
ever, on all time intervals where the target is fixed, the
interval-dependent comparator class is strong, and the
regret bound makes much more sense.

To make the above discussion even more concrete, we
construct the following example. Here we can further
derive a non-comparative tracking error bound.

Example 1. Consider a time interval I = [a : b] ⊂
[H + 1 : T ]. For all t ∈ I, we assume

1. (I −At)−1Bt = BI for some time-invariant matrix
BI , which includes static At and Bt as a special
case. Note that I −At is invertible since ‖At‖< 1.

2. The target x∗t = x∗I for some time-invariant x∗I ∈
{BIu; ‖u‖≤ U}, and l∗t (x, u) = ‖x− x∗t ‖.

Corollary 4. Consider running Algorithm 5 on an
adversarial tracking problem that satisfies Example 1

on a time interval I. For all t ∈ I = [a : b],

1

t− a+ 1

t∑
i=a

∥∥xi(uA1:i−1)− x∗I
∥∥ ≤

γ−1W + Õ
(

(t− a+ 1)−1/2
)
.

Corollary 4 directly characterize the tracking error with-
out any comparator which is the performance metric
of interest in most classical control-theoretic literature.
Further applying Jensen’s inequality, the time-average
of the states on any time interval satisfying Example 1
converges to a norm ball around the target. Notably,
Algorithm 5 does not need to know any favorable prob-
lem structure a priori: when running on a long time
horizon [1 : T ], it can automatically exploit the inac-
tivity of the target (if any) on shorter sub-intervals.
This is fundamentally different from the classical idea
in tracking control where a generative model of the
target is hard-coded into the controller.

Experiments For conciseness, we defer experimental
results to Appendix E. All three components of our
contribution (cf. Section 1.1) are tested numerically
there.

5 CONCLUSION

We consider tracking adversarial targets in a general
linear system. Three techniques are developed in a
hierarchical manner, and their combination is a strongly
adaptive tracking controller that significantly improves
existing results. Our approach could facilitate the
application of online learning ideas to a wider range of
linear control problems.
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Supplementary Material:
Adversarial Tracking Control via Strongly Adaptive Online Learning

with Memory

Organization Appendix A contains additional discussion of existing works omitted in the main paper. Ap-
pendix B, C and D contain details of our three technical contributions. Finally, empirical results are provided in
Appendix E.

A ADDITIONAL DISCUSSION OF EXISTING WORKS

As reviewed in Section 1.2, our approach to adversarial tracking control relies on its connection to tracking
nonstationary comparators in online learning. There are multiple performance metrics to quantify the latter goal.
In this paper we choose strong adaptivity. Other than this, one may use dynamic regret or competitive ratio. We
briefly review them as follows.

Dynamic regret In the context of OLO, dynamic regret (Jadbabaie et al., 2015; Zhang et al., 2016, 2018;
Zinkevich, 2003) is the regret that directly compares to a nonstationary prediction sequence u1:T on the entire
time horizon [1 : T ]. Such bounds in general depend on the cumulative variation of the comparator over [1 : T ]
(the path length), and sometimes also the variation of the loss function. The path length can be defined in multiple

ways; when defined as P =
∑T
t=1‖ut − ut+1‖, the optimal dynamic regret bound is O(

√
PT ). The idea is that if

the comparator is static (P = 0), then the dynamic regret reduces to the static regret; with a large path length
(P = O(T )), the dynamic regret becomes vacuous.

Existing works (Cutkosky, 2020; Zhang et al., 2018, 2020) have investigated the relation between dynamic regret
and strongly adaptive regret in OLO. It has been suggested that the former could be a slightly weaker notion
than the latter, as dynamic regret is derived from strongly adaptive regret in (Cutkosky, 2020; Zhang et al.,
2018) while no result in the opposite direction has been given (to the best of our knowledge). Generalizing it
from OLO to online learning with memory, (Zhao et al., 2021) provided a dynamic regret analysis of OCOM and
nonstochastic control. It is possible that such a result could be achieved via strongly adaptive approaches (such
as our Algorithm 7 or (Daniely and Mansour, 2019)), although detailed analysis is beyond the scope of this paper.

Competitive ratio Competitive ratio is a largely different performance metric in online learning compared to
the regret framework. For online control, the relevant setting for competitive ratio analysis is Smoothed Online
Convex Optimization (SOCO) (Chen et al., 2015, 2018; Goel et al., 2019). It has two key differences with OCO:

1. The loss function lt is revealed to the player before his prediction xt is made.

2. In addition to the loss lt(xt), the player further suffers a movement cost c(xt−1, xt) in each round, where
c(·, ·) is some penalty function for large movements.

From this setting, SOCO and the accompanying competitive ratio analysis are particularly suitable for online
control with predictions, as we review later. The general form of a competitive ratio guarantee is

Cost on [1 : T ] ≤ α · Comparator cost on [1 : T ] + β,

where α and β are constants, and α is defined as the competitive ratio. The comparator class contains all the
prediction sequences, therefore intrinsically the benchmarks are nonstationary. Compared to a dynamic regret
bound, the competitive ratio analysis (i) does not depend on the path length; and (ii) characterizes the cost of
the algorithm in a multiplicative manner with respect to the comparator cost, instead of an additive one.

Advantages of strong adaptivity in adversarial tracking Following the above discussion, we next discuss
the advantages of strong adaptivity over the other two performance metrics in adversarial tracking. First,
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compared to the other two, a strongly adaptive regret guarantee is local : on all sub-intervals in [1 : T ] we
have a regret bound that compares to the interval-dependent optimal comparator, and the bound depends on
the sub-interval length instead of T . In contrast, the other two performance metrics are stated for the entire
time horizon. Second, both (Daniely and Mansour, 2019) and our Algorithm 7 can incorporate algorithms with
dynamic regret or competitive ratio guarantees (for our approach, see Remark 3.1). The resulting algorithm
guarantees the best of both worlds. Third, as we discussed above, dynamic regret could be conceptually weaker
than strongly adaptive regret, and competitive ratio analysis requires a different setting (predictions).

Linear control with predictions Inspired by the classical idea of model-predictive control, a series of recent
works (Li et al., 2019; Shi et al., 2020; Yu et al., 2020) considered learning-based approaches for linear control
with predictions. Specifically for tracking, predictions of the reference trajectory are typically required, which is
less general than our fully adversarial setting. Furthermore, the loss functions are strongly convex, resulting in
less modeling power (e.g., for modeling target regions, where the minimizer of the loss function is not unique).

Notably, for online learning, (Shi et al., 2020) presented an interesting generalization of SOCO called OCO with
structured memory :

1. The one-step memory in SOCO is generalized to longer memory similar to OCOM.

2. Accurate prediction of the loss function is not required. In each round, the adversary first reveals a function
ht. After the player picks xt ∈ V, the adversary further reveals vt ∈ V and induces a loss ht(xt − vt). In
other words, the player only needs to accurately predict the shape of the loss function; the actual incurred
loss is further shifted by an adversarial component.

Based on this new setting, (Shi et al., 2020) provided a competitive ratio analysis of the regulation control
problem. It is possible that such analysis could be extended to track fully adversarial targets, but still, (i) accurate
predictions of strongly convex loss functions are required; (ii) the resulting algorithm could be combined with our
approach, as discussed in Remark 3.1.

B DETAILS ON COMPARATOR-ADAPTIVE OLO WITH MOVEMENT
COST

This section presents details on our first contribution, movement-aware OLO. We rely heavily on a duality between
unconstrained OLO and the coin-betting game, which is summarized in Appendix B.1. After that, Appendix B.2
introduces an existing reduction from constrained OLO to unconstrained OLO, adopted in our Algorithm 1 and
Algorithm 7. The last two subsections provide detailed analysis of Algorithm 1 and 2, respectively.

B.1 An overview of coin-betting and unconstrained OLO

We start from the definition of the coin-betting game: A player has initial wealth Wealth0 = ε. In each round,
he picks a betting fraction βt ∈ [−1, 1] and bets an amount xt = βtWealtht−1. Then, an adversarial coin
tossing ct ∈ [−1, 1] is revealed, and the wealth of the player is changed by ctxt. In other words, the player wins
money if ctxt > 0, and loses money if ctxt < 0. The goal of the player is to design betting fractions β1, β2, . . .
such that his wealth in the T -th round is maximized. We are particularly interested in parameter-free betting
strategies, for example the Krichevsky-Trofimov (KT) bettor: βt =

∑t−1
i=1 ci/t. Notice that it does not rely on any

hyperparameters.

We can associate the coin-betting game to one-dimensional unconstrained OLO (Orabona 2020, Theorem 9.6).
For an OLO problem with loss gradient gt ∈ R, one can maintain a coin-betting algorithm with ct = −gt, and
predict exactly its betting amount xt in OLO. The wealth lower bound for coin-betting is equivalent to a regret
upper bound for OLO. Induced by a parameter-free bettor (such as KT), the resulting OLO algorithm can enjoy
the following benefits: (i) There are no hyperparameters to tune. (ii) The regret bound has optimal dependence
on the comparator norm. (iii) When the comparator is the null comparator 0, the regret upper bound reduces to
a constant. In other words, the cumulative cost is at most a constant. Properties (ii) and (iii) are often called
comparator-adaptivity.

To further appreciate the power of such approach, let us compare the resulting 1d unconstrained OLO algorithm
to standard Online Gradient Descent (OGD).
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1. Analytically, with an unconstrained domain, L-Lipschitz losses and learning rate η, OGD has the regret
bound

T∑
t=1

〈gt, xt − u〉 ≤
|u− x1|2

2η
+
ηL2T

2
, ∀u ∈ R.

Since the optimal comparator u is unknown beforehand, one has to choose η = O(1/(L
√
T )), leading to the

sub-optimal regret bound O(|u|2L
√
T ). In comparison, KT-based OLO algorithm guarantees a regret bound

Õ(|u|L
√
T ), matching the lower bound up to logarithmic factors.

2. Intuitively, assume the loss gradients are

gt =

{
−1, if xt ≤ x∗,
1, otherwise,

where x∗ is a fixed “target”. With a pre-determined learning rate η, OGD approaches the target linearly.
However, since x∗ is unknown, there are always cases where x∗ is far enough from the starting point of
OGD, making OGD very slow to find x∗. In comparison, KT-based OLO algorithm approaches x∗ with
exponentially increasing speed (Orabona, 2020, Figure 9.1), finding x∗ a lot faster.

As a final note, in this paper we aim to bound the sum of regret and movement in coin-betting-based OLO
algorithms. Although the exponentially increasing per-step movement is good for regret minimization, it poses a
significant challenge for the control of movement cost. Using a movement-restricted bettor (Algorithm 1), we
achieve this in Theorem 1.

B.2 Adding constraints in OLO

Our approach requires a reduction from constrained OLO to unconstrained OLO, proposed in (Cutkosky, 2020).
The pseudo-code is Algorithm 6. We use this reduction in both the movement-aware OLO algorithm (Algorithm 1)
and the OCOM meta-algorithm (Algorithm 7).

Algorithm 6 Adding constraints in OLO.

Require: An OLO algorithm A and an arbitrary nonempty, closed and convex domain V.
1: for t = 1, . . . , T do
2: Obtain the prediction x̃t from A.
3: Predict xt = ΠV(x̃t) and receive the loss subgradient gt.
4: Define a surrogate loss function ht as

ht(x) =

{
〈gt, x〉, if 〈gt, x̃t〉 ≥ 〈gt, xt〉,
〈gt, x〉+ 〈gt, xt − x̃t〉‖x−ΠV(x)‖

‖xt−x̃t‖ , otherwise.

5: Obtain a subgradient g̃t ∈ ∂ht(x̃t) and return it to A as the t-th loss subgradient.
6: end for

Lemma B.1 (Cutkosky 2020, Theorem 2). Algorithm 6 has the following properties for all t: (1) ht is a convex
function on V. (2) ‖g̃t‖≤ ‖gt‖. (3) For all u ∈ V, 〈gt, xt − u〉 ≤ 〈g̃t, x̃t − u〉.

B.3 Analysis of Algorithm 1

This subsection provides analysis of Algorithm 1, which is organized as follows. We first show the well-posedness
of Line 5 (the existence and uniqueness of solution). After that, we present a few useful lemmas before proving
the performance guarantee of Algorithm 1 (Theorem 1).

Lemma B.2. For all t ≥ 1, Equation (1) has a unique solution and the solution is positive.

Proof of Lemma B.2. For clarity, Equation (1) is copied here.

Wealtht = (1− g̃tβt − γβt/
√
t)Wealtht−1 − λ|βtWealtht−1 − βt+1Wealtht|.
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By definition, |λβt+1|≤ 1/2. The RHS of (1) is 1/2-Lipschitz with respect to Wealtht, and the LHS is Wealtht
itself. Therefore, a solution exists and is unique.

To prove Wealtht > 0, we use induction. Wealth0 = ε > 0. Suppose Wealtht−1 > 0, then

Wealtht ≥ (1− g̃tβt − γβt/
√
t)Wealtht−1 − λβtWealtht−1 − λβt+1 |Wealtht| .

Let z = λβt+1sign(Wealtht). Note that |z|≤ 1/2 and |g̃t + γ/
√
t+ λ|βt ≤ 1/2. Therefore,

Wealtht ≥
1− g̃tβt − γβt/

√
t− λβt

1 + z
Wealtht−1 > 0.

B.3.1 Auxiliary lemmas for Algorithm 1

The first auxiliary lemma states that the betting fraction βt changes slowly.

Lemma B.3. For all t ≥ 1, |βt+1 − βt|≤ 2/(Ct).

Proof of Lemma B.3. The result for t = 1 trivially holds. We only consider t ≥ 2.

Since the Euclidean projection to a closed convex set is contractive, we have∣∣∣ΠBt(β̂t)−ΠBt(β̂t+1)
∣∣∣ ≤ ∣∣∣β̂t − β̂t+1

∣∣∣ =

∣∣∣∣∣ g̃t + 2C2β̂t
2C2t

∣∣∣∣∣ ≤ G

C2t
.

Moreover, ∣∣∣ΠBt
(β̂t+1)−ΠBt+1

(β̂t+1)
∣∣∣ ≤ ∣∣∣∣ 1√

2C
√
t− 1

− 1√
2C
√
t

∣∣∣∣ ≤ 1

2
√

2C
√
t(t− 1)

≤ 1

Ct
.

Applying the triangle inequality yields the result.

The next lemma quantifies the movement of Algorithm 1 using Wealtht. By doing this, bounding the movement
cost (Part 2 of Theorem 1) reduces to bounding the growth of Wealtht.

Lemma B.4. For all t ≥ 1,

|x̃t − x̃t+1| ≤
6

Ct
Wealtht−1.

Proof of Lemma B.4. Assume t > 1 for the rest of this proof; the case of t = 1 can be verified similarly. Starting
from (1), some simple algebra yields

x̃t+1 − x̃t = βt+1Wealtht − βtWealtht−1

=

(
βt+1 − βt − βt+1g̃tβt − βt+1βt

γ√
t

)
Wealtht−1 − λβt+1 |βt+1Wealtht − βtWealtht−1| .

From Lemma B.2, Wealtht−1 > 0, therefore,

(1− λβt+1) |βt+1Wealtht − βtWealtht−1| ≤
∣∣∣∣βt+1 − βt − βt+1g̃tβt − βt+1βt

γ√
t

∣∣∣∣Wealtht−1.

Note that 1− λβt+1 ≥ 1/2.

|βt+1Wealtht − βtWealtht−1| ≤ 2

∣∣∣∣βt+1 − βt − βt+1g̃tβt − βt+1βt
γ√
t

∣∣∣∣Wealtht−1

≤ 2 |βt+1 − βt|Wealtht−1 + 2βtβt+1

∣∣∣∣g̃t +
γ√
t

∣∣∣∣Wealtht−1.

Applying Lemma B.3 and the definition of βt and βt+1,

‖x̃t − x̃t+1‖ ≤
(

4

Ct
+

2C

2C2
√
t(t− 1)

)
Wealtht−1 ≤

6

Ct
Wealtht−1.
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Following the reasoning from the previous lemma, we next bound the growth rate of Wealtht in Lemma B.5
which could be of special interest. The key idea is that, the surrogate loss (Line 3 of Algorithm 1) incentivizes
the unconstrained prediction x̃t to be bounded. Equivalently, the betting amount in the coin-betting algorithm
is bounded, and hence the wealth cannot grow too fast. (For some background knowledge on this argument,
Appendix B.1 provides an overview of the interplay between coin-betting and OLO.)

As discussed in Section 2, our proof makes a novel use of the black-box reduction from unconstrained OLO to
constrained OLO (Algorithm 6): actually, we do not use it as a black-box, but rather analyze its impact on the
unconstrained algorithm. To our knowledge, this is the first analysis that takes this perspective.

Lemma B.5. For all t ≥ 1, Wealtht ≤ 4R̄C
√
t.

Proof of Lemma B.5. Note that from Lemma B.2, Wealtht ≥ 0. Additionally from our definition of βt, we have
βt, xt, x̃t ≥ 0.

We prove this lemma in three steps. First, we show a weaker result, Wealtht ≤ GR̄(t+ 1). Using this result, we
then prove that x̃t ≤ 2

√
2R̄. In other words, even though x̃t is the output of a coin-betting-based OLO algorithm

that works in the unbounded domain, it is actually bounded due to the effect of the surrogate losses. Finally, we
revisit wealth and show that Wealtht ≤ 4R̄C

√
t.

Step 1 Prove that for all t ≥ 0, Wealtht ≤ GR̄(t+ 1).

Consider the two cases in the definition of g̃t. If gtx̃t ≥ gtxt, then g̃t = gt, and

Wealtht = Wealtht−1 − g̃tx̃t − λ|x̃t − x̃t+1|−
γ√
t
|x̃t|

≤Wealtht−1 − gtxt ≤Wealtht−1 + |gt|R̄.

If gtx̃t < gtxt, then g̃t = 0 and Wealtht ≤Wealtht−1. An induction and ε ≤ GR̄ yield the result.

Step 2 Prove that for all t ≥ 1, x̃t ≤ 2
√

2R̄.

This holds trivially for t = 1. We use induction: suppose this result holds for t, and we need to show x̃t+1 ≤ 2
√

2R̄.
There are two cases: (1) x̃t /∈ V1d; (2) x̃t ∈ V1d. Note that the first case is only possible when t > 1.

Case (1.1) x̃t /∈ V1d, gtx̃t ≥ gtxt.
In this case, g̃t = gt ≥ 0 and gtxt ≥ 0. It follows,

Wealtht ≤Wealtht−1 − gtxt ≤Wealtht−1.

Next we consider the three cases of βt.

(i) First, note that βt 6= 0; otherwise x̃t = βtWealtht−1 = 0 ∈ V1d.

(ii) If βt = β̂t = −∑t−1
i=1 g̃i/[2C

2(t− 1)], then

βt+1 ≤
∣∣∣β̂t+1

∣∣∣ =
1

2C2t

∣∣∣∣∣−
t∑
i=1

g̃i

∣∣∣∣∣ =

∣∣2C2(t− 1)βt − gt
∣∣

2C2t
≤ max

{
t− 1

t
βt,

gt
2C2t

}
.

The last inequality is due to βt, gt ≥ 0. Therefore,

x̃t+1 = βt+1Wealtht ≤ max
{
βtWealtht−1, GWealtht−1/(2C

2t)
}
≤ max{2

√
2R̄,G2R̄/(2C2)} ≤ 2

√
2R̄,

where we use the result from Step 1.

(iii) If βt = 1/(C
√

2(t− 1)), then

x̃t+1 = βt+1Wealtht ≤
1

C
√

2t
Wealtht−1 ≤

1

C
√

2(t− 1)
Wealtht−1 = βtWealtht−1 ≤ 2

√
2R̄.
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Case (1.2) x̃t /∈ V1d, gtx̃t < gtxt.

In this case, g̃t = 0 and Wealtht ≤ Wealtht−1. Same as Case (1.1), βt 6= 0, leading to β̂t ≥ 0 and

βt = min{β̂t, 1/(C
√

2(t− 1))}. Also note that

∣∣∣β̂t+1

∣∣∣ =
1

2C2t

∣∣∣∣∣−
t∑
i=1

g̃i

∣∣∣∣∣ =
1

2C2t

∣∣∣∣∣−
t−1∑
i=1

g̃i

∣∣∣∣∣ ≤ 1

2C2(t− 1)

∣∣∣∣∣−
t−1∑
i=1

g̃i

∣∣∣∣∣ =
∣∣∣β̂t∣∣∣ .

Therefore,

βt+1 ≤ min

{∣∣∣β̂t+1

∣∣∣ , 1

C
√

2t

}
≤ min

{∣∣∣β̂t∣∣∣ , 1

C
√

2(t− 1)

}
= βt,

and x̃t+1 = βt+1Wealtht ≤ βtWealtht−1 ≤ x̃t ≤ 2
√

2R̄.

Case (2) x̃t ∈ V1d.

In this case, x̃t = xt and g̃t = gt. x̃t+1 = βt+1Wealtht ≤ (1− gtβt)βt+1Wealtht−1.

If t = 1, then x̃t+1 = βt+1Wealtht ≤
√

2GR̄/C ≤
√

2R̄, where we use Wealth1 ≤ 2GR̄ from Step 1 and
β2 ≤ 1/(

√
2C).

If t > 1, we consider the three cases of βt as follows. (For the rest of the discussion assume t > 1.)

(i) If βt = 0, then from Lemma B.3 we have βt+1 ≤ 2/(Ct), and x̃t+1 ≤ (1 − gtβt)βt+1Wealtht−1 =
βt+1Wealtht−1 ≤ 2GR̄/C ≤ 2R̄.

(ii) If βt = β̂t = −∑t−1
i=1 g̃i/[2C

2(t− 1)], then

βt+1 ≤
∣∣∣β̂t+1

∣∣∣ =
1

2C2t

∣∣∣∣∣−
t∑
i=1

g̃i

∣∣∣∣∣ =

∣∣2C2(t− 1)βt − gt
∣∣

2C2t
≤ t− 1

t
βt +

G

2C2t
.

Note that since x̃t ∈ V1d, we have βtWealtht−1 ≤ R̄. Using x̃t+1 ≤ (1− gtβt)βt+1Wealtht−1 and |gtβt|≤ 1/2
we have

x̃t+1 ≤
3

2

(
t− 1

t
βtWealtht−1 +

G

2C2t
Wealtht−1

)
≤ 3

2

(
1 +

G2

2C2

)
R̄ ≤ 2

√
2R̄.

(iii) If βt = 1/(C
√

2(t− 1)), then

βt+1 ≤ 1/(C
√

2t) ≤ 1/(C
√

2(t− 1)) = βt,

x̃t+1 ≤ (1− gtβt)βt+1Wealtht−1 ≤ 2βtWealtht−1 ≤ 2R̄.

Step 3 Prove that for all t ≥ 1, Wealtht ≤ 4R̄C
√
t.

Considering βt+1, there are three cases: (1) βt+1 = 1/(C
√

2t); (2) βt+1 = β̂t+1; and (3) βt+1 = 0. For the first
case, this result follows from x̃t+1 = βt+1Wealtht ≤ 2

√
2R̄. Now consider the second case.

log Wealtht ≤ log ε+

t∑
i=1

log(1− g̃iβi)

≤ log ε−
t∑
i=1

g̃iβi

= log ε−
t∑
i=1

(
g̃iβi + C2β2

i

)
+ C2

t∑
i=1

β2
i .

βt is the output of Follow the Leader (FTL) on the strongly convex losses ψt(β) = g̃tβ + C2β2 + I{0 ≤ β ≤
1/(C

√
2t)}(β), where I{0 ≤ β ≤ 1/(C

√
2t)}(β) is a convex function of β that equals 0 when 0 ≤ β ≤ 1/(C

√
2t)

and infinity otherwise. Therefore we can use standard FTL results to show that the regret is non-negative.
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Let Ft(β) =
∑t−1
i=1 ψi(β), then βt ∈ arg minFt(β). From Lemma 7.1 of (Orabona, 2020), for any u ∈ R,

t∑
i=1

[ψi(βi)− ψi(u)] =

t∑
i=1

[Fi(βi)− Fi+1(βi+1) + ψi(βi)] + Ft+1(βt+1)− Ft+1(u).

Note that if u = βt+1, we have RHS ≥ 0. Therefore,

log Wealtht ≤ log ε− min
0≤β≤1/(C

√
2t)

t∑
i=1

(
g̃iβ + C2β2

)
+ C2

t∑
i=1

β2
i

≤ log ε−min
β∈R

t∑
i=1

(
g̃iβ + C2β2

)
+ C2

t∑
i=1

β2
i

≤ log ε+

(∑t
i=1 g̃i

)2

4C2t
+

1

2

t−1∑
τ=1

τ−1.

The last term is bounded by (1 + log t)/2. From the assumption of the second case, |∑t
i=1 g̃i|< C

√
2t. Combining

everything we have log Wealtht ≤ 1 + log ε+ (log t)/2 and Wealtht ≤ eε
√
t ≤ eR̄C

√
t.

Finally consider the third case. Same as the above, we have

log Wealtht ≤ log ε− min
0≤β≤1/(C

√
2t)

t∑
i=1

(
g̃iβ + C2β2

)
+ C2

t∑
i=1

β2
i .

Since βt+1 = 0, we have
∑t
i=1 g̃i ≥ 0. Therefore,

log Wealtht ≤ log ε+ C2
t∑
i=1

β2
i ≤ log ε+

1

2
(1 + log t),

and Wealtht ≤
√
eR̄C

√
t.

B.3.2 Proof of Theorem 1

Now we are ready to prove Theorem 1, the performance guarantee of Algorithm 1. This is our first main theoretical
result.

Theorem 1. For all λ, γ ≥ 0, G > 0 and 0 < ε ≤ GR̄, with any loss sequence such that |gt|≤ G for all t, applying
Algorithm 1 yields the following guarantee.

1. For all T ∈ N+ and u ∈ V1d, with C defined in Line 1 of the algorithm,

T∑
t=1

(
gtxt − gtu+ λ |xt − xt+1|+

γ√
t
|xt|
)
≤ ε+ uC

√
2T

(
3

2
+ log

√
2uCT 5/2

ε

)
.

2. For all a ≤ b, ∑b
t=a |xt − xt+1| ≤ 48R̄

√
b− a+ 1.

Proof of Theorem 1. We prove the two parts of Theorem 1 separately, starting from the second part.

Combining Lemma B.4 and Lemma B.5, for all t ≥ 2,

|x̃t − x̃t+1| ≤
6

Ct
· 4R̄C

√
t− 1 ≤ 24R̄

1√
t
.

For t = 1, the same result can be verified. Therefore, for all [a : b] ⊂ [1 : T ],

b∑
t=a

|xt − xt+1| ≤ 24R̄

b∑
t=a

1√
t
≤ 24R̄

∫ b

a−1

1√
x
dx ≤ 24R̄

(
2
√
b− 2

√
a− 1

)
≤ 48R̄

√
b− a+ 1.

The fourth inequality is due to
√
b−
√
a− 1 ≤

√
b− a+ 1.

Now consider the proof of the first part of the theorem. Due to the complexity, we proceed in steps.
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Step 1 The overall strategy

The considered bound does not rely on the bounded domain, therefore the first step is to apply the reduction
from constrained OLO to unconstrained OLO (Lemma B.1) and the contraction property of Euclidean projection
to show that

T∑
t=1

(
gtxt − gtu+ λ |xt − xt+1|+

γ√
t
|xt|
)
≤

T∑
t=1

(
g̃tx̃t − g̃tu+ λ |x̃t − x̃t+1|+

γ√
t
|x̃t|
)
. (4)

Note that Wealtht−1 is positive due to Lemma B.2, and βt ≥ 0 from our construction. Therefore, x̃t ≥ 0. From
here, we can focus on bounding the RHS of (4) with |x̃t| replaced by x̃t. Also note that |g̃t| ≤ |gt| ≤ G from
Lemma B.1.

From (1), we can rewrite wealth as

WealthT = ε−
T∑
t=1

(
g̃tx̃t + λ |x̃t − x̃t+1|+

γ√
t
x̃t

)
.

If we guarantee WealthT ≥ F (−∑T
t=1 g̃t) for an arbitrary function F , then

T∑
t=1

(
g̃tx̃t − g̃tu+ λ |x̃t − x̃t+1|+

γ√
t
x̃t

)
= ε+

〈
−

T∑
t=1

g̃t, u

〉
−WealthT

≤ ε+

〈
−

T∑
t=1

g̃t, u

〉
− F

(
−

T∑
t=1

g̃t

)
≤ ε+ sup

X∈R
(〈X,u〉 − F (X)) = ε+ F ∗(u),

where F ∗ is the Fenchel conjugate of F . Therefore, our goal is to find such an lower bound for WealthT , and
then take its Fenchel conjugate.

Step 2 Recursion on the wealth update

Now consider (1). There are two cases: (i) βtWealtht−1 ≥ βt+1Wealtht; (ii) βtWealtht−1 < βt+1Wealtht. If
βtWealtht−1 ≥ βt+1Wealtht, then

(1− λβt+1)Wealtht = (1− g̃tβt − λβt − γβt/
√
t)Wealtht−1,

log Wealtht = log Wealtht−1 + log[1− βt(g̃t + λ+ γ/
√
t)]− log(1− λβt+1).

Note that βt|g̃t+λ+γ/
√
t|≤ 1/2 and λβt+1 < 1. Applying log(1−x) ≥ −x−x2 for all x ≤ 1/2 and log(1+x) ≤ x

for all x > 1, we have

log Wealtht ≥ log Wealtht−1 − βt(g̃t + λ+ γ/
√
t)− β2

t (g̃t + λ+ γ/
√
t)2 + λβt+1

≥ log Wealtht−1 − g̃tβt − γβt/
√
t− C2β2

t + λ(βt+1 − βt).

Similarly, if βtWealtht−1 < βt+1Wealtht, then

log Wealtht ≥ log Wealtht−1 − g̃tβt − γβt/
√
t− C2β2

t + λ(βt − βt+1).

Therefore, combining both cases, we have

log Wealtht ≥ log Wealtht−1 − g̃tβt − γβt/
√
t− C2β2

t + λ|βt − βt+1|,

and summed over [1 : T ],

log WealthT ≥ log ε−
T∑
t=1

g̃tβt − C2
T∑
t=1

β2
t − γ

T∑
t=1

βt√
t
− λ

T∑
t=1

|βt − βt+1|. (5)
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Step 3 Bounding the sums on the RHS of (5)

We start from the first two sums on the RHS of (5). βt is the output of Follow the Leader (FTL) on the strongly
convex losses ψt(β) = g̃tβ + C2β2 + I{0 ≤ β ≤ 1/(C

√
2t)}(β), where I{0 ≤ β ≤ 1/(C

√
2t)}(β) is a convex

function of β that equals 0 when 0 ≤ β ≤ 1/(C
√

2t) and infinity otherwise. Note that ψt is 2C2-strongly convex,
therefore a standard result shows that the regret of this FTL problem is logarithmic in T . Concretely, from
Corollary 7.17 of (Orabona, 2020),

T∑
t=1

(
g̃tβt + C2β2

t

)
− min

0≤u≤1/(C
√

2T )

T∑
t=1

(
g̃tu+ C2u2

)
≤ G2

4C2
(1 + log T ) .

Moreover, taking u = 1/(C
√

2T ),

min
0≤u≤1/(C

√
2T )

T∑
t=1

(
g̃tu+ C2u2

)
≤
∑T
t=1 g̃t

C
√

2T
+

1

2
.

As for the other sums in (5),
T∑
t=1

βt√
t

=
1√
2C

T∑
t=1

1

t
≤ 1√

2C
(1 + log T ).

Applying Lemma B.3,
T∑
t=1

|βt − βt+1|≤
2

C

T∑
t=1

1

t
≤ 2

C
(1 + log T ).

Plugging the above into (5),

log WealthT ≥ log ε−
∑T
t=1 g̃t

C
√

2T
− 2(1 + log T )− 1

2
,

WealthT ≥
ε

exp(5/2) · T 2
exp

(
−
∑T
t=1 g̃t

C
√

2T

)
.

Step 4 Taking Fenchel conjugate

From the Fechel conjugate table, if f(x) = a exp(bx) with a, b > 0, then for all θ ≥ 0,

f∗(θ) =
θ

b

(
log

θ

ab
− 1

)
.

Applying this result on

F (x) =
ε

exp(5/2) · T 2
exp

(
x

C
√

2T

)
,

for all u ≥ 0 we have

F ∗(u) = uC
√

2T

(
3

2
+ log

√
2uCT 5/2

ε

)
.

Combining the above with Step 1 completes the proof.

B.4 Analysis of Algorithm 2

Algorithm 2 extends the one-dimensional coin-betting-based OLO algorithm to higher dimensions via a polar
decomposition. Here we incorporate movement cost into the analysis of (Cutkosky and Orabona, 2018).

Theorem 5. For all λ ≥ 0, G > 0 and 0 < ε ≤ GR, applying Algorithm 2 yields the following performance
guarantee:
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1. For all T ∈ N+ and u ∈ Bd(0, R),

T∑
t=1

〈gt, xt − u〉+ λ

T−1∑
t=1

‖xt − xt+1‖ ≤ ε+ ‖u‖ Õ
[
(G+ λ)

√
T
]
,

where Õ(·) subsumes logarithmic factors on u, G, λ, T and ε−1.

2. For all b ≥ a ≥ 1,
b−1∑
t=a

‖xt − xt+1‖ ≤ 50R
√
b− a.

Proof of Theorem 5. We only consider the case of u 6= 0. If u = 0, the result can be easily verified. Notice that
|〈gt, zt〉|≤ G, therefore we can apply Theorem 1 on Ar.

T∑
t=1

〈gt, ytzt − u〉+ λ

T−1∑
t=1

‖ytzt − yt+1zt+1‖

≤
T∑
t=1

(〈gt, zt〉 yt − 〈gt, zt〉 ‖u‖) + ‖u‖
T∑
t=1

〈
gt, zt −

u

‖u‖

〉
+ λ

T−1∑
t=1

|yt − yt+1| ‖zt+1‖+ λ

T−1∑
t=1

‖zt − zt+1‖ |yt|

≤
T∑
t=1

(〈gt, zt〉 yt − 〈gt, zt〉 ‖u‖) + λ

T−1∑
t=1

|yt − yt+1|+
T−1∑
t=1

λ√
t
yt + ‖u‖

T∑
t=1

〈
gt, zt −

u

‖u‖

〉
. (6)

The last inequality is due to ‖zt+1‖≤ 1 and ‖zt − zt+1‖≤ ηtG = 1/
√
t.

The first three terms of (6) are bounded by Theorem 1,

T∑
t=1

(〈gt, zt〉 yt − 〈gt, zt〉 ‖u‖) + λ

T−1∑
t=1

|yt − yt+1|+
T−1∑
t=1

λ√
t
yt

≤ ε+ ‖u‖ (G+ 2λ)
√

2T

(
3

2
+ log

√
2 ‖u‖ (G+ 2λ)T 5/2

ε

)
.

As for the last term of (6), we can use the standard OGD regret bound. From Section 4.2.1 of (Orabona, 2020),

T∑
t=1

〈
gt, zt −

u

‖u‖

〉
≤ 3

2
G
√
T .

Combining everything so far yields the first part of the theorem.

As for the second part of the theorem, for all b ≥ a ≥ 1,

b−1∑
t=a

‖xt − xt+1‖ ≤
b−1∑
t=a

(
|yt − yt+1|+

R√
t

)
≤ 50R

√
b− a.

The last inequality is due to Theorem 1 and
∑b−1
t=a 1/

√
t ≤ 2

√
b− a.

C DETAILS ON STRONGLY ADAPTIVE OCOM

This section provides detailed analysis of our strongly adaptive OCOM algorithm. We first present the performance
guarantees of our subroutines based on Algorithm 3. Then, we introduce the complete version of our meta-
algorithm (Algorithm 7) and present its analysis.
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C.1 Analysis of Algorithm 3

Algorithm 3 is used to define our two-part subroutine (on GC intervals). The idea of adaptively slowing down
the base algorithm is inspired by Algorithm 7 of (Cutkosky, 2018) for memoryless OLO. Here we make two
improvements: (i) incorporating movement costs; (ii) using this framework to achieve better dependence on
problem constants.

Theorem 6. For all λ,G > 0 and 0 < ε ≤ G, Subroutine-1d defined from Algorithm 3 yields the following
performance guarantee:

1. For all T ∈ N+ and u ∈ [0, 1],

T∑
t=1

gt(xt − u) + λ

T−1∑
t=1

|xt − xt+1| ≤ ε+ |u| Õ

max{λ,G}+

√√√√max{λ,G}
T∑
t=1

|gt|

 ,

where Õ(·) subsumes logarithmic factors on u, G, λ, T and ε−1.

2. For all b ≥ a ≥ 1,
b−1∑
t=a

‖xt − xt+1‖ ≤ 48

1 +

√ ∑b−1
t=a |gt|

max{λ,G}

 .

Theorem 7. For all λ,G > 0 and 0 < ε ≤ GR, Subroutine-ball defined from Algorithm 3 yields the following
performance guarantee:

1. For all T ∈ N+ and u ∈ Bd(0, R),

T∑
t=1

〈gt, xt − u〉+ λ

T−1∑
t=1

‖xt − xt+1‖ ≤ ε+ ‖u‖ Õ

max{λ,G}+

√√√√max{λ,G}
T∑
t=1

‖gt‖

 ,

where Õ(·) subsumes logarithmic factors on u, G, λ, T and ε−1.

2. For all b ≥ a ≥ 1,
b−1∑
t=a

‖xt − xt+1‖ ≤ 50R

1 +

√∑b−1
t=a ‖gt‖

max{λ,G}

 .

We only prove the guarantee on Subroutine-ball (Theorem 7). The guarantee on Subroutine-1d (Theorem 6) is
similar, therefore the proof is omitted.

Proof of Theorem 7. Consider the first part of the theorem. Let iT be the index i at the beginning of the T -th
round, and let Z1, . . . , ZiT be their final value at the end of the algorithm. Notice that

T∑
t=1

〈gt, xt − u〉+ λ

T−1∑
t=1

‖xt − xt+1‖ =

iT∑
i=1

〈Zi, wi − u〉+ λ

iT−1∑
i=1

‖wi − wi+1‖ .

For the RHS we can use Theorem 5, since for all i, ‖Zi‖≤ max{λ,G}+G. The remaining task is to bound iT .

Note that
∑iT
i=1‖Zi‖≤

∑T
i=1‖gt‖ and ‖Zi‖> max{λ,G} for all i < iT , therefore iT ≤ 1 + (

∑T
t=1‖gt‖)/max{λ,G}.

Plugging this into Theorem 5 completes the proof of the first part.

As for the second part of the theorem, let ia, ib be the index i at the beginning of the a-th and the b-th round.

b−1∑
t=a

‖xt − xt+1‖ =

ib−1∑
i=ia

‖wi − wi+1‖ .

Next consider ib − ia. Let Z∗ia and Z∗ib be the value of accumulators Zia and Zib at the beginning of the a-th
round and the b-th round, respectively. Note that

∥∥Zia − Z∗ia∥∥+
∥∥Z∗ib∥∥+

ib−1∑
i=ia+1

‖Zi‖ ≤
b−1∑
t=a

‖gt‖ ,
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and ‖Zi‖> max{λ,G} for all i ∈ [ia + 1, ib − 1]. Therefore, ib − ia ≤ 1 + (
∑b−1
t=a‖gt‖)/max{λ,G}. Applying the

second part of Theorem 5 completes the proof.

C.2 Analysis of the meta-algorithm

Now we proceed to our meta-algorithm for strongly adaptive OCOM. The pseudo-code is Algorithm 7. Before
providing its performance guarantee, we present a lemma that explains the adopted projection scheme. (Line 6
and 15)

Algorithm 7 The meta-algorithm for strongly adaptive OCOM. (The complete version of Algorithm 4)

Require: Time horizon T ≥ 1 and a hyperparameter ε0 > 0.
1: Define a constant λ = LH(H + 1).
2: for t = 1, . . . , T do
3: Find the (k, i) index pair for all the GC intervals that start in the t-th round. For each, (i) initialize a copy

of Subroutine-ball as AkB , with hyperparameters (λ, 2kε0, G̃); and (ii) initialize a copy of Subroutine-1d as
Ak1d, with hyperparameters (λR, 2kε0, G̃R). If AkB and Ak1d already exist in the memory, overwrite them.

4: Define Kt = dlog2(t+ 1)e − 1. Let x̃
(Kt+1)
t = 0 ∈ Rd.

5: for k = Kt, . . . , 0 do

6: Let x
(k+1)
t = ΠBd(0,R)(x̃

(k+1)
t ).

7: Query a prediction from AkB and assign it to w
(k)
t ; query a prediction from Ak1d and assign it to z

(k)
t .

8: Let x̃
(k)
t = (1− z(k)

t )x
(k+1)
t + w

(k)
t .

9: end for
10: Let x̃t = x̃

(0)
t , predict xt = ΠV(x̃t), suffer lt(xt−H:t), receive lt.

11: Obtain a subgradient gt ∈ ∂l̃t(xt). Define a surrogate loss function ht as

ht(x) =

{
〈gt, x〉, if 〈gt, x̃t〉 ≥ 〈gt, xt〉,
〈gt, x〉+ 〈gt, xt − x̃t〉‖x−ΠV(x)‖

‖xt−x̃t‖ , otherwise.

12: Obtain a subgradient g̃t ∈ ∂ht(x̃t). Let g
(0)
t = g̃t.

13: for k = 0, . . . ,Kt do

14: Return g
(k)
t to AkB , and −〈g(k)

t , x
(k+1)
t 〉 to Ak1d as the loss gradients.

15: Let e
(k+1)
t = x̃k+1

t /‖x̃k+1
t ‖, and

g
(k+1)
t =

{
g

(k)
t , if 〈g(k)

t , x̃
(k+1)
t 〉 ≥ 〈g(k)

t , x
(k+1)
t 〉,

g
(k)
t −

〈
g

(k)
t , e

(k+1)
t

〉
e

(k+1)
t , otherwise.

16: end for
17: end for

Lemma C.1. For all t,

1. ‖g(Kt+1)
t ‖≤ ‖g(Kt)

t ‖≤ . . . ≤ ‖g(0)
t ‖≤ ‖gt‖≤ G̃.

2. For all k ∈ [0 : Kt] and x ∈ V,
〈
g

(k)
t , x

(k+1)
t − x

〉
≤
〈
g

(k+1)
t , x̃

(k+1)
t − x

〉
.

Observe that Line 6 and 15 of Algorithm 7 are essentially applying Algorithm 6 on the unprojected prediction

x̃
(k+1)
t . Therefore, the proof of Lemma C.1 follows from recursively applying Lemma B.1. Line 11 follows a

similar principle.

Now we are ready to prove the performance guarantee.

Theorem 2. Consider running our OCOM algorithm (the complete version, Algorithm 7) for T rounds. If
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ε0 = G̃R/(T + 1), then on any time interval I = [a : b] ⊂ [1 : T ],

b∑
t=a

lt(xt−H:t)−min
x∈V

b∑
t=a

l̃t(x) = O(RLH3 log |I|) + Õ

RLH2 +RH

√√√√L

b∑
t=a

‖gt‖

 ,

where gt ∈ ∂l̃t(xt), O(·) subsumes absolute constants, and Õ(·) subsumes poly-logarithmic factors on problem
constants and T .

Proof of Theorem 2. Our strategy is to associate the regret of the meta-algorithm on any GC interval with
the regret of the corresponding subroutines (Theorem 6 and Theorem 7). Then, applying these performance
guarantees yields Õ(

√
|Ik,i|) regret on all GC interval Ik,i ⊂ [1 : T ]. This can be further extended to all general

intervals I ⊂ [1 : T ] using an argument similar to (Daniely et al., 2015).

To this end, we proceed in steps. Let Ik∗,i∗ = [q : s] ⊂ [1 : T ] be a GC interval with indices k∗ and i∗. Since
the amount of active GC intervals cannot increase in the duration of any GC interval, we can replace Kt for all
t ∈ Ik∗,i∗ by a constant K∗. In other words, for all t ∈ Ik∗,i∗ , Kt = K∗ ≤ blog2(T + 1)c − 1.

Step 1 Reducing to one-step movement.

We start from the Lipschitzness of lt. For all t,

lt(xt−H:t) ≤ l̃t(xt) + L

H∑
h=1

‖xt−h − xt‖ ≤ l̃t(xt) + L

H∑
h=1

h∑
j=1

‖xt−j − xt−j+1‖ .

Using the convexity of l̃t, for all x ∈ V,

s∑
t=q

[
lt(xt−H:t)− l̃t(x)

]
≤

s∑
t=q

〈gt, xt − x〉+ L

s∑
t=q

H∑
h=1

h∑
j=1

‖xt−j − xt−j+1‖ .

Observe that

s∑
t=q

H∑
h=1

h∑
j=1

‖xt−j − xt−j+1‖ ≤
1

2
H(H + 1)

s−1∑
t=q

‖xt − xt+1‖+

H∑
h=1

1

2
(H + 1− h)(H + 2− h) ‖xq−h − xq−h+1‖

≤ 1

2
H(H + 1)

s−1∑
t=q

‖xt − xt+1‖+R

H∑
h=1

h(h+ 1)

=
1

2
H(H + 1)

s−1∑
t=q

‖xt − xt+1‖+
1

3
RH(H + 1)(H + 2).

Therefore, combining the above and plugging in λ for conciseness,

s∑
t=q

[
lt(xt−H:t)− l̃t(x)

]
≤

s∑
t=q

〈gt, xt − x〉+
1

2
LH(H + 1)

s−1∑
t=q

‖xt − xt+1‖+O(RLH3)

≤
s∑
t=q

〈g̃t, x̃t − x〉+
λ

2

s−1∑
t=q

‖x̃t − x̃t+1‖+O(RLH3),

where the last line is due to Lemma B.1 and the contraction property of Euclidean projection.

Step 2 Showing that the “temporary” prediction x
(k∗)
t after combining A(k∗)

B and A(k∗)
1d is good enough for the

considered GC interval, although improper.

Starting from the definition of x̃
(k∗)
t , for all x ∈ V,〈

g
(k∗)
t , x̃

(k∗)
t − x

〉
=
〈
g

(k∗)
t , w

(k∗)
t − x

〉
+
(
−
〈
g

(k∗)
t , x

(k∗+1)
t

〉)(
z

(k∗)
t − 1

)
,
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t − x̃(k∗)

t+1

∥∥∥ =
∥∥∥(1− z(k∗)

t

)
x

(k∗+1)
t + w

(k∗)
t −

(
1− z(k∗)

t+1

)
x

(k∗+1)
t+1 − w(k∗)

t+1

∥∥∥
≤
∥∥∥(1− z(k∗)

t

)(
x

(k∗+1)
t − x(k∗+1)

t+1

)∥∥∥+
∥∥∥(z(k∗)

t − z(k∗)
t+1

)
x

(k∗+1)
t+1

∥∥∥+
∥∥∥w(k∗)

t − w(k∗)
t+1

∥∥∥
≤
∥∥∥x(k∗+1)

t − x(k∗+1)
t+1

∥∥∥+R
∣∣∣z(k∗)
t − z(k∗)

t+1

∣∣∣+
∥∥∥w(k∗)

t − w(k∗)
t+1

∥∥∥
≤
∥∥∥x̃(k∗+1)

t − x̃(k∗+1)
t+1

∥∥∥+R
∣∣∣z(k∗)
t − z(k∗)

t+1

∣∣∣+
∥∥∥w(k∗)

t − w(k∗)
t+1

∥∥∥ (7)

≤ R
K∗∑
k=k∗

∣∣∣z(k)
t − z(k)

t+1

∣∣∣+

K∗∑
k=k∗

∥∥∥w(k)
t − w(k)

t+1

∥∥∥ .
The second line is due to triangle inequality. The third line is due to z

(k∗)
t ∈ [0, 1] and ‖x(k∗+1)

t+1 ‖≤ R. The fourth
line is due to the contraction of Euclidean projection, and the last line follows from a recursion. Combining the
above,

s∑
t=q

〈
g

(k∗)
t , x̃

(k∗)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(k∗)
t − x̃(k∗)

t+1

∥∥∥
≤

s∑
t=q

〈
g

(k∗)
t , w

(k∗)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥w(k∗)
t − w(k∗)

t+1

∥∥∥+

s∑
t=q

(
−
〈
g

(k∗)
t , x

(k∗+1)
t

〉)(
z

(k∗)
t − 1

)

+
λR

2

s−1∑
t=q

∣∣∣z(k∗)
t − z(k∗)

t+1

∣∣∣+
λR

2

K∗∑
k=k∗+1

s−1∑
t=q

∣∣∣z(k)
t − z(k)

t+1

∣∣∣+
λ

2

K∗∑
k=k∗+1

s−1∑
t=q

∥∥∥w(k)
t − w(k)

t+1

∥∥∥ .
Note that from Lemma C.1, ‖g(k∗)

t ‖≤ ‖g(k∗−1)
t ‖≤ . . . ≤ ‖gt‖≤ G̃. Moreover, ε0 ≤ G̃R/(T+1) leads to 2k

∗
ε0 ≤ G̃R.

Therefore, we can use the performance guarantees of the subroutine for the sums on the RHS. Applying Part 1 of
Theorem 6 and Theorem 7,

s∑
t=q

〈
g

(k∗)
t , w

(k∗)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥w(k∗)
t − w(k∗)

t+1

∥∥∥ ≤ 2k
∗
ε0 + Õ

Rmax{λ, G̃}+R

√√√√max{λ, G̃}
s∑
t=q

‖gt‖

 ,

s∑
t=q

(
−
〈
g

(k∗)
t , x

(k∗+1)
t

〉)(
z

(k∗)
t − 1

)
+
λR

2

s−1∑
t=q

∣∣∣z(k∗)
t − z(k∗)

t+1

∣∣∣ ≤ 2k
∗
ε0+Õ

Rmax{λ, G̃}+R

√√√√max{λ, G̃}
s∑
t=q

‖gt‖

 .

Also note that GC intervals longer than Ik∗,i∗ cannot be initialized in the duration of Ik∗,i∗ . Therefore applying
Part 2 of Theorem 6 and Theorem 7, for all k ∈ [k∗ + 1 : K∗],

s−1∑
t=q

∥∥∥w(k)
t − w(k)

t+1

∥∥∥ ≤ 50R

1 +

√√√√∑s−1
t=q

∥∥∥g(k)
t

∥∥∥
max{λ, G̃}

 ≤ 50R

1 +

√∑s
t=q ‖gt‖

max{λ, G̃}

 .

s−1∑
t=q

∣∣∣z(k)
t − z(k)

t+1

∣∣∣ ≤ 48

1 +

√√√√∑s−1
t=q

∥∥∥g(k)
t

∥∥∥
max{λ, G̃}

 ≤ 48

1 +

√∑s
t=q ‖gt‖

max{λ, G̃}

 .

Notice that K∗ = O(log T ) and λ ≤ G̃ from our definition. Combining everything so far, we have

s∑
t=q

〈
g

(k∗)
t , x̃

(k∗)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(k∗)
t − x̃(k∗)

t+1

∥∥∥ ≤ 2k
∗+1ε0 + Õ

λR+R

√√√√λ

s∑
t=q

‖gt‖

 .

Intuitively, suppose we are allowed to predict the improper prediction x̃
(k∗)
t on Ik∗,i∗ that may not comply with

the constraint V, and suppose g
(k∗)
t = gt. Then, the above result shows that on Ik∗,i∗ we have the desirable

Õ(
√
|Ik∗,i∗ |) regret bound. The rest of the proof aims to show that adding predictions from shorter subroutines

does not ruin the performance on Ik∗,i∗ .
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Step 3 Analyzing the effect of adding shorter subroutines.

The goal of this step is to quantify the difference between

s∑
t=q

〈
g

(k∗)
t , x̃

(k∗)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(k∗)
t − x̃(k∗)

t+1

∥∥∥ ,
and

s∑
t=q

〈
g

(0)
t , x̃

(0)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(0)
t − x̃(0)

t+1

∥∥∥ .
For all k ∈ [0 : k∗ − 1], applying the definition of x̃(k) and Part 2 of Lemma C.1,〈

g
(k)
t , x̃

(k)
t − x

〉
=
〈
g

(k)
t , x

(k+1)
t − x

〉
+
〈
g

(k)
t , w

(k)
t − 0

〉
+
(
−
〈
g

(k)
t , x

(k+1)
t

〉)(
z

(k)
t − 0

)
≤
〈
g

(k+1)
t , x̃

(k+1)
t − x

〉
+
〈
g

(k)
t , w

(k)
t − 0

〉
+
(
−
〈
g

(k)
t , x

(k+1)
t

〉)(
z

(k)
t − 0

)
.

Similar to Equation (7),∥∥∥x̃(k)
t − x̃(k)

t+1

∥∥∥ ≤ ∥∥∥x̃(k+1)
t − x̃(k+1)

t+1

∥∥∥+R
∣∣∣z(k)
t − z(k)

t+1

∣∣∣+
∥∥∥w(k)

t − w(k)
t+1

∥∥∥ .
Therefore,

s∑
t=q

〈
g

(k)
t , x̃

(k)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(k)
t − x̃(k)

t+1

∥∥∥ ≤ s∑
t=q

〈
g

(k+1)
t , x̃

(k+1)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(k+1)
t − x̃(k+1)

t+1

∥∥∥
+

s∑
t=q

〈
g

(k)
t , w

(k)
t − 0

〉
+
λ

2

s−1∑
t=q

∥∥∥w(k)
t − w(k)

t+1

∥∥∥
+

s∑
t=q

(
−
〈
g

(k)
t , x

(k+1)
t

〉)(
z

(k)
t − 0

)
+
λR

2

s−1∑
t=q

∣∣∣z(k)
t − z(k)

t+1

∣∣∣ .
We next bound the last four sums on the RHS using Theorem 6 and Theorem 7. Let [a, b] be any GC interval of
length 2k contained in [q : s]. Note that by our definition, the subroutines AkB and Ak1d are initialized at 0. That

is, w
(k)
a = w

(k)
b+1 = 0 ∈ Rd, z(k)

a = z
(k)
b+1 = 0 ∈ R. From Theorem 7,

b∑
t=a

〈
g

(k)
t , w

(k)
t − 0

〉
+
λ

2

b∑
t=a

∥∥∥w(k)
t − w(k)

t+1

∥∥∥ =
b∑
t=a

〈
g

(k)
t , w

(k)
t − 0

〉
+
λ

2

b−1∑
t=a

∥∥∥w(k)
t − w(k)

t+1

∥∥∥+
λ

2

∥∥∥w(k)
b

∥∥∥
≤

b∑
t=a

〈
g

(k)
t , w

(k)
t − 0

〉
+ λ

b−1∑
t=a

∥∥∥w(k)
t − w(k)

t+1

∥∥∥ ≤ 2kε0.

Summed over all GC intervals of length 2k contained in [q : s],

s∑
t=q

〈
g

(k)
t , w

(k)
t − 0

〉
+
λ

2

s−1∑
t=q

∥∥∥w(k)
t − w(k)

t+1

∥∥∥ ≤ s∑
t=q

〈
g

(k)
t , w

(k)
t − 0

〉
+
λ

2

s∑
t=q

∥∥∥w(k)
t − w(k)

t+1

∥∥∥
≤ 2k

∗−k · 2kε0 = 2k
∗
ε0.

Similarly,
s∑
t=q

(
−
〈
g

(k)
t , x

(k+1)
t

〉)(
z

(k)
t − 0

)
+
λR

2

s−1∑
t=q

∣∣∣z(k)
t − z(k)

t+1

∣∣∣ ≤ 2k
∗
ε0.

Therefore,

s∑
t=q

〈
g

(k)
t , x̃

(k)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(k)
t − x̃(k)

t+1

∥∥∥ ≤ s∑
t=q

〈
g

(k+1)
t , x̃

(k+1)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(k+1)
t − x̃(k+1)

t+1

∥∥∥+ 2k
∗+1ε0.



Zhiyu Zhang, Ashok Cutkosky, Ioannis Ch. Paschalidis

Completing the recursion, we have

s∑
t=q

〈
g

(0)
t , x̃

(0)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(0)
t − x̃(0)

t+1

∥∥∥ ≤ s∑
t=q

〈
g

(k∗)
t , x̃

(k∗)
t − x

〉
+
λ

2

s−1∑
t=q

∥∥∥x̃(k∗)
t − x̃(k∗)

t+1

∥∥∥+ k∗ · 2k∗+1ε0

≤ (k∗ + 1) · 2k∗+1ε0 + Õ

λR+R

√√√√λ

s∑
t=q

‖gt‖


≤ Õ

λR+R

√√√√λ

s∑
t=q

‖gt‖

 ,

where the last line follows from (k∗ + 1) · 2k∗+1ε0 ≤ 2G̃Rdlog2(T + 1)e. Plugging this into the result from Step 1,

s∑
t=q

[
lt(xt−H:t)− l̃t(x)

]
≤ O(RLH3) + Õ

λR+R

√√√√λ

s∑
t=q

‖gt‖

 .

This bound holds for all GC intervals contained in [1 : T ]. The final step is to extend this property to general
intervals, following the classical idea from (Daniely et al., 2015).

Step 4 Extension to general intervals.

From Lemma 5 of (Daniely et al., 2015), we have the following result: any interval I ⊂ [1 : T ] can be partitioned
into two finite sequences of disjoint and consecutive GC intervals, denoted as (I−k, . . . , I0) and (I1, . . . , Ip).
Moreover, for all i ≥ 1, |I−i| /|I−i+1| ≤ 1/2; for all i ≥ 2, |Ii| /|Ii−1| ≤ 1/2.

The strongly adaptive regret of our meta-algorithm (Equation 2) over I can be bounded by the sum of regret
over (I−k, . . . , I0) and (I1, . . . , Ip). For an index i, denote the regret over Ii as Regreti. Then,

∑
t∈I

lt(xt−H:t)−min
x∈V

∑
t∈I

l̃t(x) ≤
k∑
i=0

Regret−i +

p∑
i=1

Regreti,

where k ≤ log2 |I| and p ≤ 1 + log2 |I|. Consider the first sum on the RHS,

k∑
i=0

Regret−i ≤ (k + 1)O(RLH3) +

k∑
i=0

Õ

λR+R

√
λ
∑
t∈I−i

‖gt‖


≤ O(RLH3 log |I|) + Õ

λR+R

√
λ
∑
t∈I
‖gt‖

 .

The second sum can be bounded similarly. Combining everything completes the proof.

D DETAILS ON ADVERSARIAL TRACKING CONTROL

This section presents our results on adversarial tracking. We first prove its reduction to strongly adaptive OCOM.
Then, we consider a special case that induces a non-comparative tracking error bound.

D.1 Details on the reduction

We present a few lemmas before proving Theorem 3. First we bound the norm of state and action. Similar to
Section 4 we expand the dependence of state on past actions; that is, let xt(u1:t−1) be the state induced by the
action sequence u1:t−1. Note that u1:t−1 is a dummy variable, not necessarily a comparator or the action sequence
generated by Algorithm 5.
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Lemma D.1. For all t ≥ 1, with any u1:t−1,

‖xt(u1:t−1)‖, ‖yt(ut−H:t−1)‖ ≤ γ−1(κU +W ),

‖xt(u1:t−1)− yt(ut−H:t−1)‖ ≤ γ−1(κU +W )(1− γ)H .

Proof of Lemma D.1. From the evolution of states we have

‖xt(u1:t−1)‖ =

∥∥∥∥∥∥
t−1∑
i=0

 t−1∏
j=i+1

Aj

 (Biui + wi)

∥∥∥∥∥∥ ≤
∥∥∥∥∥(κU +W )

t−1∑
i=0

(1− γ)t−i−1

∥∥∥∥∥ ≤ γ−1(κU +W ).

Similarly,

‖yt(ut−H:t−1)‖ =

∥∥∥∥∥∥
t−1∑

i=t−H

 t−1∏
j=i+1

Aj

 (Biui + wi)

∥∥∥∥∥∥ ≤ γ−1(κU +W ).

If t ≤ H, then xt(u1:t−1) = yt(ut−H:t−1). Otherwise,

‖xt(u1:t−1)− yt(ut−H:t−1)‖ =

∥∥∥∥∥∥
t−H−1∑
i=0

 t−1∏
j=i+1

Aj

 (Biui + wi)

∥∥∥∥∥∥
≤ (κU +W )(1− γ)H

t−H−1∑
i=0

(1− γ)i

≤ γ−1(κU +W )(1− γ)H .

Next, we characterize the approximation error between ft and l∗t . This directly follows from the previous lemma
and the Lipschitzness of l∗t .

Lemma D.2. For all t ≥ 1, with any u1:t,

‖l∗t (xt(u1:t−1), ut)− ft(ut−H:t)‖ ≤ γ−1L∗(κU +W )(1− γ)H .

Finally, we characterize the Lipschitzness of the ideal loss function ft.

Lemma D.3. For all t ≥ 1 and h ∈ [0 : H], with any ũt−h and ut−H:t,

|ft(ut−H:t)− ft(ut−H:t−h−1, ũt−h, ut−h+1:t)| ≤ κL∗ ‖ut−h − ũt−h‖ .

Proof of Lemma D.3. If h 6= 0, we consider the difference in the ideal state.

‖yt(ut−H:t−1)− yt(ut−H:t−h−1, ũt−h, ut−h+1:t−1)‖

=

∥∥∥∥∥∥
 t−1∏
j=t−h+1

Aj

Bt−h (ut−h − ũt−h)

∥∥∥∥∥∥ ≤ κ(1− γ)h−1 ‖ut−h − ũt−h‖ .

Applying the Lipschitzness of l∗t ,

|ft(ut−H:t)− ft(ut−H:t−h−1, ũt−h, ut−h+1:t)| ≤ κL∗(1− γ)h−1 ‖ut−h − ũt−h‖ .

If h = 0, then directly from the Lipschitzness of l∗t ,

|ft(ut−H:t)− ft(ut−H:t−h−1, ũt−h, ut−h+1:t)| ≤ L∗ ‖ut−h − ũt−h‖ .

Combining the above completes the proof.
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Lemma D.4. For all t, let f̃t(u) = ft(u, . . . , u). Then, for all u, ũ ∈ Bdu(0, U),∣∣∣f̃t(u)− f̃t(ũ)
∣∣∣ ≤ 2κγ−1L∗ ‖u− ũ‖ .

Proof of Lemma D.4. For conciseness, let ỹt(u) = yt(u, . . . , u). Then,

‖ỹt(u)− ỹt(ũ)‖ =

∥∥∥∥∥∥
t−1∑

i=t−H

 t−1∏
j=i+1

Aj

Bi (u− ũ)

∥∥∥∥∥∥ ≤ κ ‖u− ũ‖
t−1∑

i=t−H
(1− γ)t−i−1 ≤ κγ−1 ‖u− ũ‖ .

The result follows from the Lipschitzness of l∗t .

Now we are ready to prove Theorem 3.

Theorem 3. Given any strongly adaptive OCOM algorithm satisfying Equation (2), for all I = [a : b] ⊂ [H+1 : T ],
Algorithm 5 guarantees

b∑
t=a

l∗t
(
xt(u

A
1:t−1), uAt

)
− min
uC
1:T∈CI

b∑
t=a

l∗t
(
xt(u

C
1:t−1), uCt

)
= Õ

(√
|I|
)
,

where Õ(·) subsumes problem constants and poly(log T ).

Proof of Theorem 3. For all uC1:T ∈ CI ,

b∑
t=a

l∗t
(
xt(u

A
1:t−1), uAt

)
−

b∑
t=a

l∗t
(
xt(u

C
1:t−1), uCt

)
=

b∑
t=a

[
l∗t
(
xt(u

A
1:t−1), uAt

)
− ft(uAt−H:t)

]
+

b∑
t=a

[
ft(u

A
t−H:t)− ft(uCt−H:t)

]
+

b∑
t=a

[
ft(u

C
t−H:t)− l∗t

(
xt(u

C
1:t−1), uCt

)]
≤ 2γ−1L∗(κU +W )(1− γ)H |I|+

b∑
t=a

[
ft(u

A
t−H:t)− ft(uCb , . . . , uCb )

]
,

where the last inequality is due to Lemma D.2. From our choice of H, we have (1 − γ)H |I| ≤ 1. Therefore,
the first term on the RHS is a constant that can be neglected in our result. The second term on the RHS is
upper-bounded by the strongly adaptive regret on ft.

D.2 Non-comparative tracking error bound

In the following we consider the example from Section 4. The comparative regret guarantee from Theorem 3
translates to a non-comparative tracking error bound.

Corollary 4. Consider running Algorithm 5 on an adversarial tracking problem that satisfies Example 1 on a
time interval I. For all t ∈ I = [a : b],

1

t− a+ 1

t∑
i=a

∥∥xi(uA1:i−1)− x∗I
∥∥ ≤ γ−1W + Õ

(
(t− a+ 1)−1/2

)
.

Proof of Corollary 4. We start by characterizing the power of the comparator class (Definition 4.1). From
Example 1, there exists some u∗ such that x∗I = BIu

∗. Consider the comparator sequence uC1:T ∈ CI such that
uCt = u∗ for all t ∈ [1 : T ]. From the system equation, for all t ∈ [a : b],

xt+1(uC1:t) = Atxt(u
C
1:t−1) +Btu

∗ + wt

= At
[
xt(u

C
1:t−1)− (I −At)−1Btu

∗]+ (I −At)−1Btu
∗ + wt

= At
[
xt(u

C
1:t−1)− x∗I

]
+ x∗I + wt.
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Rearranging the terms and applying norms on both sides,∥∥xt+1(uC1:t)− x∗I
∥∥ ≤ (1− γ)

∥∥xt(uC1:t−1)− x∗I
∥∥+W.

From Lemma D.1,∥∥xa(uC1:a−1)− x∗I
∥∥ ≤ ∥∥xa(uC1:a−1)

∥∥+ ‖x∗I‖ ≤ γ−1(κU +W ) + κU
∥∥(I −At)−1

∥∥ ≤ γ−1(2κU +W ).

Following a recursion, for all t ∈ [a : b],

∥∥xt(uC1:t−1)− x∗I
∥∥ ≤ γ−1(2κU +W )(1− γ)t−a +W

t−a∑
i=0

(1− γ)i

≤ γ−1W + γ−1(2κU +W )(1− γ)t−a.

1

t− a+ 1

t∑
i=a

∥∥xi(uC1:i−1)− x∗I
∥∥ ≤ γ−1W + γ−1(2κU +W ) · 1

t− a+ 1

t−a∑
i=0

(1− γ)i

≤ γ−1W + γ−2(2κU +W )(t− a+ 1)−1. (8)

Next, consider the regret of Algorithm 5. Applying Theorem 3 on all time intervals [a : t] with t ∈ [a : b], we have

t∑
i=a

∥∥xi(uA1:i−1)− x∗I
∥∥− t∑

i=a

∥∥xi(uC1:i−1)− x∗I
∥∥ = Õ

(√
t− a+ 1

)
,

where Õ(·) subsumes polynomial factors on problem constants and poly-logarithmic factors on T . Normalizing on
both sides,

1

t− a+ 1

(
t∑
i=a

∥∥xi(uA1:i−1)− x∗I
∥∥− t∑

i=a

∥∥xi(uC1:i−1)− x∗I
∥∥) = Õ

(
(t− a+ 1)−1/2

)
. (9)

Combining (8) and (9) completes the proof.

E EXPERIMENTS

In this section we test the proposed approach on three separate levels: (i) One-dimensional movement-aware OLO
(Algorithm 1); (ii) Strongly adaptive OCOM (Algorithm 7); (iii) Adversarial tracking control (Algorithm 5).

E.1 One-dimensional movement-aware OLO

First, we test our one-dimensional movement-aware OLO algorithm (Algorithm 1). The domain is the interval
[0, R] ⊂ R, and the loss functions are defined as lt(x) = |x− x∗|, where x∗ is a fixed “target”. Throughout this
experiment, we set hyperparameters γ = 0, ε = 1 and G = 1 since the loss functions are 1-Lipschitz.

In Figure 3a we vary (i) the target x∗; and (ii) the size of the domain R.

1. Consider the green line and the orange line (which is completely covered by the former). In this case,
increasing the size of the domain leaves the performance of the algorithm unchanged. This is different from
standard Online Gradient Descent (OGD) where the correct learning rate depends on the size of the domain.

2. Consider the blue line and the green line. Starting from the origin, the predictions of the algorithm approach
the target with exponentially increasing speed, without knowing the target in advance. This is also different
from OGD, where the speed of approaching the target is constant (with constant learning rate) or decreasing
(with time-varying learning rate).

In general, Algorithm 1 exhibits the advantage of parameter-free online learning algorithms: the algorithm works
well without depending on the optimal comparator norm (‖x∗‖) or its (possibly very loose) upper bound R, hence
requiring less tuning than OGD.

In Figure 3b we vary λ, the weight of movement costs. Practically, it yields another “degree of freedom” (beside
ε) for tuning the algorithm’s transient response. Larger λ means larger weight on movement costs: the algorithm
moves slower initially, but has less fluctuation around the target.
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(a) Varying x∗ and R.
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(b) Varying λ.

Figure 3: Experiments on Algorithm 1.

E.2 Strongly adaptive OCOM

Next, we test our strongly adaptive OCOM algorithm (Algorithm 7). For easier visualization, we set the domain
as V = [−5, 5] ⊂ R. Let the memory constant H = 5. With a time-varying target x∗t , we define the loss functions
as

lt(xt−H , . . . , xt) =

H∑
h=0

‖xt−h − x∗t ‖ .

Note that the Lipschitz constants can be chosen as L = 1 and G̃ = H + 1.

Our theoretical result requires ε0 = O(T−1). Although asymptotically this is correct, in practice such a small ε0

makes the algorithm too conservative at the beginning. In other words, it can take a long time for the algorithm
to warm up. Therefore, we set ε0 = 1 in our experiments.
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(a) x∗t is a step signal.
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(b) x∗t is a square wave.

Figure 4: Experiments on Algorithm 7.

We plot the result of the experiments in Figure 4. On the left, the target is a step signal, x∗t = 1. On the right,
the target x∗t is a square wave with period 4000. Several observations can be made:

1. In the warm-up phase of the algorithm (the first 2000 rounds), similar to the previous subsection, Algorithm 7
approaches the fixed target with increasing speed (if the “dips” are ignored).
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2. Once the predictions reach the vicinity of the fixed target, they do not monotonically converge to the target
as in standard online learning algorithms. Instead, the predictions fluctuate around the target, in a pattern
determined by GC intervals. The rationale of this behavior is that, Algorithm 7 does not know or assume
the target is fixed; to quickly adapt to possible sudden changes of the target, the algorithm regularly forgets
the past and re-explores.

3. There is a practical issue not captured in our analysis. Every time a GC interval of a new length becomes
active (t = 2n for some n ∈ N), all the subroutines are reinitialized. Consequently, Algorithm 7 completely
forgets all the received information and restarts from the origin (since the first output of the subroutine is
always at the origin). This can cause large “dips” in the prediction sequence (e.g, t ≈ 8000 and t ≈ 16000 in
Figure 4a). Such a behavior is undesirable if smooth predictions are preferred, but when the target regularly
moves around the origin (Figure 4b) this can be acceptable.

E.3 A shifted version of our OCOM algorithm

To make the prediction sequence smoother, we also test a modified version of our strongly adaptive OCOM
algorithm. The idea is simple: we incorporate a shifting procedure in the subroutines. Whenever a Subroutine-ball
is reinitialized, its first prediction is set as the last prediction of the previous subroutine (before re-initialization).
In this way, the meta-algorithm experiences less fluctuation due to the activation and deactivation of GC intervals.

Algorithm 8 A shifted version of Algorithm 2.

Require: Hyperparameters (λ, ε,G) with λ ≥ 0 and ε,G > 0; g1, g2, . . . ∈ Rd with ‖gt‖≤ G, ∀t; a shift vector
v ∈ Rd.

1: Define Ar as Algorithm 1 on the domain [0, R+ ‖v‖], with hyperparameters (λ, λ, ε,G).
2: Define AB as Online Gradient Descent (OGD) on Bd(0, 1) with learning rate ηt = 1/(G

√
t), initialized at 0.

3: for t = 1, 2, . . . do
4: Obtain yt ∈ R from Ar and zt ∈ Rd from AB . Predict xt = v + ytzt ∈ Rd, observe gt ∈ Rd.
5: Return 〈gt, zt〉 and gt as the t-th loss subgradient to Ar and AB , respectively.
6: end for

Concretely, we first present a shifted version of Algorithm 2 (high dimensional movement-aware OLO) as
Algorithm 8. Given a shift vector v ∈ Rd, Algorithm 8 starts from predicting v, and all the predictions are within
a larger norm ball Bd(v,R+ ‖v‖) centered at v. Using Algorithm 8 as the base algorithm of Subroutine-ball, we
obtain a shifted version of the latter. When using this shifted Subroutine-ball in the meta-algorithm (Algorithm 7),

1. All the Subroutine-ball on GC intervals with indices (k, 1) are initialized with shift vector v = 0. For example,
at the beginning of the 2nd round, the meta-algorithm initializes A1

B with shift vector v = 0.

2. At the beginning of the 2ki-th round (with i > 1), when reinitializing AkB, the shift vector v is set as the
last prediction of the previous AkB. For example, on the GC interval [2 : 3] the meta-algorithm employs
a Subroutine-ball A1

B. At the beginning of the 4th round, the meta-algorithm queries A1
B and assigns its

prediction to a vector v. Then, A1
B is reinitialized with shift vector v.

Empirical results for this shifted OCOM algorithm are presented in Figure 5. Specifically, the targets x∗t in
Figure 5a and 5b are the same as in Figure 4a and 4b. In Figure 5c, x∗t is a sinusoidal wave with period 4000. In
Figure 5d, x∗t is the concatenation of a sinusoidal wave and a square wave:

x∗t =


sin(πt/2000), if t < T/2,

1, if T/2 ≤ t < 3T/4,

−1, otherwise.

In general, the shifted version of Algorithm 7 tracks the target quite well, even when the target exhibits large,
sudden changes. (The “tracking” here refers to the concept in online learning, not linear control.) Especially, the
prediction sequence exhibits less fluctuation due to the reset of GC intervals.

E.4 Adversarial tracking

Finally, we test our adversarial tracking controller (Algorithm 5). We consider two cases: (i) dx = 1; (ii) dx = 2.



Zhiyu Zhang, Ashok Cutkosky, Ioannis Ch. Paschalidis

0 5000 10000 15000 20000
t

0.0

0.2

0.4

0.6

0.8

1.0 Predictions xt
Target x∗t

(a) x∗t is a step signal.
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(b) x∗t is a square wave.
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(c) x∗t is a sinusoidal wave.
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(d) x∗t is a composite signal.

Figure 5: Experiments on the shifted OCOM algorithm.

One-dimensional control Starting from one-dimensional control, let dx = du = 1, U = 5. The dynamics are
time-varying: for all t, At = 0.55 + 0.05 · sin(πt/10000); Bt = 0.95 + 0.05 · sin(πt/5000). Therefore, κ = 1 and
γ = 0.4. Further, we define the disturbances as wt = 0.05 · sin(πt/4000), ∀t ∈ N.

The loss functions are l∗t (x, u) = ‖x− x∗t ‖, where x∗t is the adversarial reference trajectory. It is globally 1-Lipschitz,
therefore L∗ = 1.

We use the shifted version of Algorithm 7 as the base algorithm of our controller. Similar to the previous
subsection, we set the hyperparameter as ε0 = 0.5. Following the procedure in Algorithm 5, we set the problem
constants in OCOM as: V ← B1(0, 5), R ← 5, L ← 1 and G̃ ← 5. There is one exception: the memory H
defined in Algorithm 5 is conservative. In our experiment, we treat H as a hyperparameter; specifically for the
one-dimensional control experiment, we set H = 8. Intuitively, the choice of H trades off the responsiveness of
the controller and its steady-state error.

Empirical results for our controller are presented in Figure 6. Compared to the tracking results in online learning
(Figure 5), we shoot for lower bandwidth since the dynamics introduce additional fluctuations. Figure 6a considers
a fixed target x∗t = 1. In Figure 6b, x∗t is a square wave with period 12000. In Figure 6c, x∗t is a sinusoidal wave
with period 10000. Finally, we consider a composite target in Figure 6d:
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(a) x∗t is a step signal.
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(b) x∗t is a square wave.

0 5000 10000 15000 20000
t

−1.0

−0.5

0.0

0.5

1.0 States xt
Target x∗t

(c) x∗t is a sinusoidal wave.

0 5000 10000 15000 20000
t

−1.0

−0.5

0.0

0.5

1.0 States xt
Target x∗t

(d) x∗t is a composite signal.

Figure 6: Testing the controller (Algorithm 5) in R.

x∗t =


sin(πt/5000), if t < T/2,

1, if T/2 ≤ t < 3T/4,

−1, otherwise.

Two-dimensional control We also test the controller in a two-dimensional state space. Here, dx = du = 2,

At =

[
0.55 0.3

0 0.55

]
+ I2 · 0.05 cos(πt/10000),

Bt = I2 · [0.95 + 0.05 cos(πt/5000)] ,

where I2 is the two-dimensional identity matrix. Same as before, U = 5, κ = 1 and γ = 0.4.

The loss functions are still l∗t (x, u) = ‖x− x∗t ‖, therefore L∗ = 1. For all t ∈ N, the disturbances are

wt = 0.05 sin(πt/4000) · [1,−1]>.

Same as before, H = 8, and we choose ε0 = 0.2. The task is to track a circular reference trajectory (in an
adversarial manner):

x∗t =

{
[t/4000, 0]>, if t ≤ 4000,

[cos(π(t− 4000)/8000), sin(π(t− 4000)/8000)]>, if 4000 < t ≤ 20000.
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Figure 7: Testing the controller (Algorithm 5) in R2.

The result is shown in Figure 7. Both experiments show that the proposed controller tracks the adversarial
reference trajectory quite well.
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