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Abstract

The adversarial risk of a machine learning
model has been widely studied. Most previous
works assume that the data lies in the whole
ambient space. We propose to take a new
angle and take the manifold assumption
into consideration. Assuming data lies in a
manifold, we investigate two new types of
adversarial risk, the normal adversarial risk
due to perturbation along normal direction,
and the in-manifold adversarial risk due
to perturbation within the manifold. We
prove that the classic adversarial risk can be
bounded from both sides using the normal
and in-manifold adversarial risks. We also
show with a surprisingly pessimistic case that
the standard adversarial risk can be nonzero
even when both normal and in-manifold
risks are zero. We finalize the paper with
empirical studies supporting our theoretical
results. Our results suggest the possibility
of improving the robustness of a classifier by
only focusing on the normal adversarial risk.

1 INTRODUCTION

Machine learning (ML) algorithms have achieved
astounding success in multiple domains such as
computer vision (Krizhevsky et al., 2012; He et al.,
2016), natural language processing (Wu et al., 2016;
Vaswani et al., 2017), and robotics (Levine and Abbeel,
2014; Nagabandi et al., 2018). These models perform
well on massive datasets but are also vulnerable to small
perturbations on the input examples. Adding a slight
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and visually unrecognizable perturbation to an input
image can completely change the model’s prediction.
Many works have been published focusing on such
adversarial attacks (Szegedy et al., 2013; Carlini and
Wagner, 2017; Madry et al., 2017). To improve the
robustness of these models, various defense methods
have been proposed (Madry et al., 2017; Zhang et al.,
2019; Shafahi et al., 2019). These methods mostly focus
on minimizing the adversarial risk, i.e., the risk of a
classifier when an adversary is allowed to perturb any
data with an oracle.

Despite the progress in improving the robustness of
models, it has been observed that compared with a
standard classifier, a robust classifier often has a lower
accuracy on the original data. The accuracy of a
model can be compromised when one optimizes its
adversarial risk. This phenomenon is called the trade-
off between robustness and accuracy. Su et al. (2018)
observed this trade-off effect on a large number of
commonly used model architectures. They concluded
that there is a linear negative correlation between the
logarithm of accuracy and adversarial risk. Tsipras
et al. (2018) proved that adversarial risk is inevitable
for any classifier with a non-zero error rate. Zhang
et al. (2019) decomposed the adversarial risk into the
summation of standard error and boundary error. The
decomposition provides the opportunity to explicitly
control the trade-off. They also proposed a regularizer
to balance the trade-off by maximizing the boundary
margin.

In this paper, we investigate the adversarial risk and
the robustness-accuracy trade-off through a new angle.
We follow the classic manifold assumption, i.e., data
are living in a low dimensional manifold embedded
in the input space (Rifai et al., 2011; Cayton, 2005;
Narayanan and Mitter, 2010; Niyogi et al., 2008).

Based on this assumption, we analyze the adversarial
risk with regard to adversarial perturbations within the
manifold and normal to the manifold. By restricting
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to in-manifold and normal perturbations, we define the
in-manifold adversarial risk and normal adversarial
risk. Using these new risks, together with the standard
risk, we prove an upper bound and a lower bound for
the adversarial risk. We also show that the bound is
tight by constructing a pessimistic case. We validate
our theoretical results using synthetic experiments.

Our study sheds light on a new aspect of the robustness-
accuracy trade-off. Through the decomposition into
in-manifold and normal adversarial risks, we might find
an extra margin to exploit without confronting the
trade-off. Future work will include developing normal
adversarial training algorithms for real-world datasets.

1.1 Related Works

Robustness-accuracy Trade-off There are several
works studying the trade-off between robustness and
accuracy (Tsipras et al., 2018; Su et al., 2018; Zhang
et al., 2019; Dohmatob, 2019). The basic question is
whether the trade-off actually exists. i.e. is there a
classifier that is both accurate and robust? Empirical
and theoretical proofs showed that actual trade-off does
exist even in the infinite data limit (Tsipras et al., 2018;
Su et al., 2018; Zhang et al., 2019). Dohmatob (2019)
showed that a high accuracy model can inevitably be
fooled by the adversarial attack. Zhang et al. (2019)
gave examples showing that the Bayes optimal classifier
may not be robust.

However, some works have different views on this trade-
off or even its existence. In contrast to the idea that the
trade-off is unavoidable, these works argued that a lack
of sufficient optimization methods (Awasthi et al., 2019;
Rice et al., 2020; Shaham et al., 2018) or better network
architecture (Guo et al., 2020; Fawzi et al., 2018)
causes the drop in accuracy, instead of the increase
in robustness. Yang et al. (2020) showed the existence
of both robust and accurate classifiers and argued that
the trade-off is influenced by the training algorithm to
optimize the model. They investigated distributionally
separated dataset and claimed that the gap between
robustness and accuracy arises from the lack of a
training method that imposes local Lipschitzness on
the classifier. Remarkably, in (Gowal et al., 2020;
Raghunathan et al., 2020; Carmon et al., 2019), it was
shown that with certain augmentation of the dataset,
one may be able to obtain a model that is both accurate
and robust.

Manifold AssumptionOne important line of research
focuses on the manifold assumption on the data
distribution. This assumption suggests that observed
data is distributed on a low dimensional manifold (Rifai
et al., 2011; Cayton, 2005; Narayanan and Mitter,
2010) and there exists a mapping that embeds the low

dimension manifold in some higher dimension space.
Traditional manifold learning methods (Tenenbaum
et al., 2000; Saul and Roweis, 2003) try to recover the
embedding by assuming the mapping preserves certain
properties like distances or local angles. Following
this assumption, on the topic of robustness, Tanay
and Griffin (2016) showed the existence of adversarial
attack on the flat manifold with linear classification
boundary. It was proved later in Gilmer et al. (2018)
that in-manifold adversarial examples exist. They
stated that high dimension data is highly sensitive to l2
perturbations and pointed out the nature of adversarial
is the issue with potential decision boundary. Later,
Stutz et al. (2019) showed that with the manifold
assumption, regular robustness is correlated with in-
manifold adversarial examples, and therefore, accuracy
and robustness may not be contradictory goals. Further
discussion (Xie et al., 2020) even suggested that
adding adversarial examples in the training process can
improve the accuracy of the model. Lin et al. (2020)
used perturbation within a latent space to approximate
in-manifold perturbation. To the best of our knowledge,
no existing work discussed normal perturbation and
normal adversarial risk as we do. We are also unaware
of any theoretical results proving upper/lower bounds
for adversarial risk in the manifold setting.

We also note a classic manifold reconstruction problem,
i.e., reconstructing a d-dimensional manifold given a set
of points sampled from the manifold. A large group of
classical algorithms (Edelsbrunner and Shah, 1994; Dey
and Goswami, 2006; Niyogi et al., 2008) are provably
good, i.e., they give a guarantee of reproducing the
manifold topology with a sufficiently large number of
sample points.

2 MANIFOLD BASED RISK
DECOMPOSITION

In this section, we state our main theoretical
result 3, which decomposes the adversarial risk into
appropriately defined normal and in-manifold or
tangential risks. We first define these quantities and set
up basic notation, with the main theorem following in
Section 2.3. For the sake of simplicity, we describe our
main theorem in the setting of binary {−1, 1} labels.

2.1 Data Manifold

Let (RD, ||.||) denote the D dimensional Euclidean
space with ℓ2-norm. For x ∈ RD, Bϵ(x) be the open
ball of radius r in RD with center at x. For a set
A ⊂ RD, define Bϵ(A) = {y : ∃x ∈ A, d(x, y) < ϵ}.

Let M ⊂ RD be a d-dimensional compact smooth
manifold embedded in RD. Thus for any x ∈M there is
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Figure 1: Tangential and Normal Space

a corresponding coordinate chart (U, g) where U ∋ x is
a open set ofM and g is a homeomorphism from U to a
subset of Rd. For x ∈M, we let TxM andNxM denote
the tangent and normal spaces at x. Intuitively, the
tangent space TxM is the space of tangent directions,
or equivalence classes of curves inM passing through
x, with two curves considered equivalent if they are
tangent at x. The normal space NxM is the set of
vectors in RD that are orthogonal to any vector in TxM.
SinceM is a smooth d-manifold, TxM and NxM are
d and D − d dimensional vector spaces, respectively.
See Figure 2.1. For detailed definitions, we refer the
reader to Bredon (2013).

We assume that the data and (binary) label pairs are
drawn fromM×{−1, 1} according to some unknown
distribution p(x, y). Note thatM is unknown. A score
function f(x) is a continuous function from RD to [0, 1].
We denote by 1(A) the indicator function of the event
A that is 1 if A occurs and 0 if A does not occur, and
will use it to represent the 0-1 loss.

2.2 Robustness and Risk

Given data from M× {−1, 1} drawn according to p
and a classifier f on RD, we define three types of risks.
The first, adversarial risk, has been extensively studied
in machine learning literature:

Definition 1 (Adversarial Risk). Given ϵ > 0, define
the adversarial risk of classifier f with budget ϵ to be

Radv(f, ϵ) := E
(x,y)∼p

1(∃x′ ∈ Bϵ(x) : f(x
′)y ≤ 0)

Notice that Bϵ(x) is the open ball around x in RD (the
ambient space).

We next define risk that is concerned only with in-
manifold perturbations. Previously, Gilmer et al.
(2018) and Stutz et al. (2019) showed that there
exist in-manifold adversarial examples, and empirically
demonstrated that in-manifold perturbations are a
cause of the standard classification error. Therefore, in
the following, we define the in-manifold perturbations
and in-manifold adversarial risk.

Definition 2 (In-manifold Risk). Given ϵ > 0, the in-
manifold adversarial perturbation for classifier f with
budget ϵ is the set

Bin
ϵ (x) := {x′ ∈M : ∥x− x′∥ ≤ ϵ}

The in-manifold adversarial risk is

Rin
adv(f, ϵ) := E

(x,y)∼p
1(∃x′ ∈ Bin

ϵ (x) : f(x′)y ≤ 0)

We remark that while the above perturbation is on the
manifold, in many manifold-based defense algorithms
use generative models to estimate the homeomorphism
(the manifold chart) z = g(x) for real-world data.
Therefore, instead of in-manifold perturbation, one
can also use an equivalent η-budget perturbation in
the latent space. However, for our purposes, the in-
manifold definition will be more convenient to use.
Lastly, we define the normal risk:

Definition 3 (Normal Adversarial Risk). Given ϵ > 0,
the normal adversarial perturbation for classifier f with
budget ϵ is be the set

Bnor
ϵ (x) := {x′ : x′ − x ∈ NxM, |∥x− x′∥ ≤ ϵ}

Define the normal adversarial risk as

Rnor
adv(f, ϵ) := E

(x,y)∼p
1(∃x′ ̸= x ∈ Bnor

ϵ (x) : f(x′)y ≤ 0)

Notice that the normal adversarial risk is non-zero
if there is an adversarial perturbation x′ ̸= x in the
normal direction at x. Finally, we have the usual
standard risk : Rstd(f) := E(x,y)∼p 1(f(x)y ≤ 0).

2.3 Main Result: Decomposition of Risk

In this section, we state our main result that
decomposes the adversarial risk into its tangential and
normal components. Our theorem will require a mild
assumption on the decision boundary DB(f) of the
classifier f , i.e., the set of points x where f(x) = 0.

Assumption [A]: For all x ∈ DB(f) and all
neighborhoods U ∋ x containing x, there exist points
x0 and x1 in U such that f(x0) < 0 and f(x1) > 0.

This assumption states that a point that is difficult
to classify by f has points of both labels in any given
neighborhood around it. In particular, this means
that the decision boundary does not contain an open
set. We remark that both Assumption A and the
continuity requirement for the score function f are
implicit in previous decomposition results like Equation
1 in Zhang et al. (2019). Without Assumption A, the
“neighborhood” of the decision boundary in Zhang et al.
(2019) will not contain the decision boundary, and it is
easy to give a counterexample to Equation 1 in Zhang
et al. (2019) if f if not continuous.

Our decomposition result will decompose the
adversarial risk into the normal and tangential
directions: however, as we will show, an “extra term”
appears, which we define next:
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Definition 4 (NNR Nearby-Normal-Risk). Fix ϵ >
0. Denote by A(x, y) the event that ∀x′ ∈
Bnor

ϵ (x), f(x′)y > 0, i.e., the normal adversarial risk
of x is zero.

Denote by B(x, y) the event that

∃x′ ∈ Bin
2ϵ (x) : (∃z ∈ Bnor

ϵ (x′) : f(z)f(x′) ≤ 0),

i.e., x has a point x′ near it such that x′ has non-zero
normal adversarial risk.

Denote by C(x, y) the event ∀x′ ∈ Bin
2ϵ (x), f(x

′)y > 0,
i.e., x has no adversarial perturbation in the manifold
within distance 2ϵ.

The Nearby-Normal-Risk (denoted as NNR) of f with
budget ϵ is defined to be

E
(x,y)∼p

1(A(x, y) ∧B(x, y) ∧ C(x, y)),

where ∧ denotes “and”.

We are now in a position to state our main result.

Theorem 1. [Risk Decomposition] LetM be a smooth
compact manifold in RD, and let data be drawn from
M×{−1, 1} according to some distribution p. There
exists a ∆ > 0 depending only on M such that the
following statements hold for any ϵ < ∆. For any score
function f satisfying assumption A,

(i)

Radv(f, ϵ) ≤ Rstd(f) +Rnor
adv(f, ϵ) +Rin

adv(f, 2ϵ)

+ NNR(f, ϵ). (1)

(ii) If Rnor
adv(f, ϵ) = 0, then

Radv(f, ϵ) ≤ Rstd(f) +Rin
adv(f, 2ϵ)

Remark:

1. The first result decomposes the adversarial risk
into the standard risk, the normal adversarial risk,
the in-manifold risk, and an “extra term” — the
Nearby-Normal-Risk. The NNR comes into play
when a point x doesn’t have normal adversarial
risk, and the score function on all points nearby
agrees with y(x), yet there is a point near x that
has non-zero normal adversarial risk.

2. The second result states that if the normal
adversarial risk is zero, then the ϵ-adversarial risk
is bounded by the sum of the standard risk and
the 2ϵ in-manifold risk.

One may wonder if a decomposition of the form
Radv(f, ϵ) ≤ Rstd(f) + Rnor

adv(f, ϵ) + Rin
adv(f, 2ϵ) is

possible. We prove that this is not possible.

Theorem 2. [Tightness of Decomposition Result]

For any ϵ < 1/2, there exists a sequence {fn}∞n=1 of
continuous score functions such that

1. Rstd(f) = 0 for all n ≥ 1,

2. Rin
adv(fn, 2ϵ) = 0 for all n ≥ 1, and

3. Rnor
adv(fn, ϵ)→ 0 as n goes to infinity,

but Radv(f, ϵ) = 1 for all n > 1√
3ϵ
.

Thus all three terms except the NNR term go to zero,
but the adversarial risk (the left side of Equation 2)
goes to one.

2.4 Decomposition when y is Deterministic

Let η(x) = Pr(y = 1|x). We consider here the
simplistic setting when η(x) is either zero or one, i.e.,
y is a deterministic function of x. In this case, we can
explain our decomposition result in a simpler way.

Let Znor(f, ϵ) := {x ∈ M : f(x)y > 0 and ∃x′ ≠ x ∈
Bnor

ϵ (x), f(x′)y(x) ≤ 0}. That is, Znor(f, ϵ) is the set
of points with no standard risk, but with a non-zero
normal adversarial risk under a positive but less than ϵ
normal perturbation. Let Znor(f, ϵ) =M\ Znor(f, ϵ)
be the complement of Znor(f, ϵ). For a set A ⊂M, let
µ(A) denote the measure of A.

Corollary 1. LetM be a smooth compact manifold in
RD, and let η(x) ∈ {0, 1} for all x ∈M . There exists
a ∆ > 0 depending only onM such that the following
statements hold for any ϵ < ∆. For any score function
f satisfying assumption A,

(i)

Radv(f, ϵ) ≤ Rstd(f) +Rin
adv(f, 2ϵ) +Rnor

adv(f, ϵ)

+ µ(Znor(f, ϵ) ∩B2ϵ(Z
nor(f, ϵ)) (2)

(ii) If Rnor
adv(f, ϵ) = 0, then Radv(f, ϵ) ≤ Rstd(f) +

Rin
adv(f, 2ϵ).

Therefore in this setting, the adversarial risk can be
decomposed into the in-manifold risk and the measure
of a neighborhood of the points that have non-zero
normal adversarial risk.

2.5 Proofs of Theorems 3 and 2

The complete proof of Theorem 3 is technical and is
provided in the supplementary materials. Here we
provide a sketch of the proof first. Then we give the
complete proof of Theorem 2.



Wenjia Zhang, Yikai Zhang, Xiaolin Hu

2.5.1 Proof Sketch of Theorem 3

We first address the existence of the constant ∆ that
only depends onM in the theorem statement. Define a
tubular neighborhood ofM as a set N ⊂ RD containing
M such that any point z ∈ N has a unique projection
π(z) ontoM such that z − π(z) ∈ Nπ(z)M. Thus the
normal line segments of length ϵ at any two points
x, x′ ∈M are disjoint.

By Theorem 11.4 in Bredon (2013), we know that there
exists ∆ such that N := {y ∈ RD : dist(y,M) < ∆} is
a tubular neighborhood ofM. The ∆ guaranteed by
Theorem 11.4 is the ∆ referred to in our theorem, and
the budget ϵ is constrained to be at most ∆.

For simplicity, we first sketch the proof of the case when
y is deterministic (the setting of Corollary 1). Consider
a pair (x, y) ∼ p, such that x has an adversarial
perturbation x′ within distance ϵ. We show that one
of the four cases must occur:

• x′ = x (standard risk).

• x′ ̸= x, x′ ∈ NxM, and f(x)y > 0 (normal
adversarial risk).

• Let x′′ = π(x′) (the unique projection of x′ onto
M), then d(x′′, x) ≤ 2ϵ and either

– f(x′′)y ≤ 0, and x has an 2ϵ in-manifold
adversarial perturbation (in-manifold risk),
or

– f(x′′)f(x′) ≤ 0, which implies that x is
within 2ϵ of a point x′′ ∈ M that has non-
zero normal adversarial risk. (NNR: nearby-
normal-risk)

The second of these sets is Znor(f, ϵ) in the setting of
Corollary 3. One can see that the four cases correspond
to the four terms in Equation 2.

For the proof of Theorem 3, one has to observe that
since y is not deterministic, the set Znor(f, ϵ) is random.
One then has to average over all possible Znor(f, ϵ),
and show that the average equals NNR.

For the second part of Theorem 1 and Corollary 1,
observe that if the normal adversarial risk is zero, then
in the last case, x′′ has non-zero normal adversarial risk,
with normal adversarial perturbation x′. Unless x′′ is
on the decision boundary, by continuity of f one can
show that there exists an open set around x′′ such that
all points here have non-zero normal adversarial risk.
This contradicts the fact that the normal adversarial
risk is zero, implying that case 4 happens only on a
set of measure zero (recall that by assumption A the
decision boundary does not contain any open set). This
completes the proof sketch.

2.5.2 Proof of Theorem 2

Let M = [0, 1] and fix ϵ < 1/2 and n ≥ 1. We will
think of data as lying in the manifoldM, and R2 as
the ambient space. The true distribution is simply
η(x) = 1 for all x ∈M, hence y ≡ 1 (all labels onM
are 1).

Let ℓ1 = n−1
n(n+1) and ℓ2 = 1

n2 . Note that (n + 1)ℓ1 +

nℓ2 = 1. Consider the following partition of M =
A0∪B1∪A1∪B2∪· · ·∪Bn∪An, Where Ai (0 ≤ i ≤ n)
is of length ℓ1 and Bi (1 ≤ i ≤ n) is an interval of length
ℓ2. The interval A0, B1, A1, · · · , Bn, An appear in this
order from left to right.

For ease of presentation, we will consider {0, 1} binary
labels, and build score functions fn taking values in
[0, 1] that satisfy the conditions of the Theorem.

For an x ∈ Ai for some 0 ≤ i ≤ n, define gn(x) = 1.
For x ∈ Bi for some 1 ≤ i ≤ n, define gn(x) = ϵ/2.
Observe that ϵ/2 < 1/4.

We now define the decision boundary of fn as the set
of points in R2 on the “graph” of gn and −gn. That is,

DB(fn) = {(x, cgn(x)) : x ∈ [0, 1], c ∈ {−1, 1}} .

See Figure 2 for a picture of the upper decision
boundary. Now let fn be any continuous function
with decision boundary DB(fn) as above. That is,
fn : R2 → [0, 1] is such that fn(x, t) > 1/2 if |t| <
gn(x), fn(x, t) < 1/2 if |t| > gn(x) and fn(x, y) = 1/2
if |t| = gn(x).

In-manifold Risk Is Zero Observe that since
η(x) = 1 on [0, 1], the in-manifold risk of fn is zero,
since fn(x, 0) > 1/2, and so sign(2fn − 1) equals 1,
which is the same as the label y at x. This means that
there are no in-manifold adversarial perturbations, no
matter the budget. Thus Rin

adv(fn, ϵ) = 0 for all n ≥ 1.

Normal Adversarial Risk Goes To Zero Next
we consider the normal adversarial risk. If x ∈ Ai for
some i, then a point in the normal ball with budget ϵ is
of the form (x, t) with |t| < ϵ < 1/2, but fn(x, t) > 1/2
for such points, and thus sign(2fn − 1) = y(x). Thus
x ∈ Ai does not contribute to the normal adversarial
risk.

If x ∈ Bi for some i then fn(x, ϵ) < 1/2 while
fn(x, 0) > 1/2, and hence such x contributes to
the normal adversarial risk. Thus Rnor

adv(fn, ϵ) =∑n
i=1 µ(Bi) =

∑n
i=1 ℓ2 = 1/n, which goes to zero as n

goes to infinity.

Adversarial Risk Goes To One Now we show that
Radv(fn, ϵ) goes to one. In fact, we will show that as
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Figure 2: Lower bound illustration

long as n is sufficiently large, the adversarial risk is 1.
Consider n such that ℓ1 := n−1

n(n+1) <
√
3ϵ. Note that

such an n exists simply because ℓ1 goes to zero as n
goes to infinity, and n > 1√

3ϵ
works.

Clearly, points in Bi contribute to adversarial risk
as they have adversarial perturbations in the normal
direction. However, if we consider x ∈ Ai (which
does not have adversarial perturbations in the normal
direction or in-manifold), we show that there still
exists an adversarial perturbation in the ambient
space: that is, there exists a point x′ such that a)
the distance between (x′, ϵ/2) and (x, 0) is at most
ϵ, and b) sign(2fn(x, ϵ/2)) ̸= sign(2fn(x, 0)). Let
x′ be the closest point in B := ∪Bi to x. Then
|x′ − x| ≤ ℓ1/2 <

√
3ϵ/2. Thus the distance between

(x′, ϵ/2) and (x, 0) is at most
√
(
√
3ϵ/2)2 + (ϵ/2)2 = ϵ.

Since x′ ∈ B, fn(x
′, ϵ/2) < 1/2 whereas fn(x, 0) < 1/2,

(x′, ϵ/2) is a valid adversarial perturbation around x.

Thus for all x ∈ [0, 1], there exists an adversarial
perturbation within budget ϵ, and therefore
Radv(fn, ϵ) = 1 as long as n > 1√

3ϵ
. This completes

the proof.

3 EXPERIMENT

In this section, we verify the decomposition upper
bound in Corollary 3 on synthetic data sets. For both
i) and ii) in Corollary 3, we empirically evaluate each
term in the inequality on several classifiers and compare
the values according to the claims in Corollary 3.

In the following experiments, instead of using l2 norm to
evaluate the perturbation, we search the neighborhood
under l∞ norm, which would produce a stronger attack
than l2 norm one. The experimental results indicate
that our theoretical analysis may hold for an even
stronger attack.

3.1 Toy Data Set and Perturbed Data

We generate four different data sets where we study
both the single decision boundary case and the double

decision boundary case. The first pair of datasets
are in 2D space and the second pair is in 3D. We
aim to provide empirical evidence for the claim ii)
in the Corollary 3 using the single decision boundary
data, having observed that one can sufficiently reduce
Rnor

adv , allowing one directly compare Radv(f, ϵ) and
Rin

adv(f, 2ϵ). We aim to provide empirical evidence for
the claim i) in the Corollary 3 using double boundary,
since Rnor

adv can not be sufficiently reduced using a simple
classifier, since decision boundary is complicated.

For the 2D case, we sample training data uniformly
from a unit circle C1 : x2

1 + x2
2 = 1. For the single

decision boundary data set, we set

y = 21(x1 > 0)− 1 (Single Decision Boundary)
y = 21(x1x2 > 0)− 1 (Double Decision Boundary)

The visualization of the dataset is in Figure 3 a) and
b). In particular, we set unit circle C1 has ∆ = 1, we
set the perturbation budget to be ε ∈ [0.01, 0.3]. And
the normal direction is alone the radius of the circle.

In the 3D case, we set the manifold to beM : x3 = 0
and generate training data in region [−π, π]× [−π, π]
on x1x2-plane. We set

y = 21 [x1 > sin(x2)]− 1(Single)
y = 21 [(x1 − sin(x2))x2 > 0]− 1(Double)

Figure 3 c) and d) show these two cases. For the
single decision boundary example, due to the manifold
being flat, we have ∆ = ∞, we explore the ϵ value
in range [0.1, 0.8]. For the double decision boundary,
the distance to the decision boundary is half of the
distance in the single boundary case. Therefore, we set
the range of perturbation to be [0.1, 0.4].

3.2 Algorithm

To empirically estimate the decomposition of
adversarial risk, we need to generate adversarial data
alone different directions, i.e. the normal direction
risk Rnor

adv , the in-manifold risk Rin
adv and the general

adversarial risk Radv. For general adversarial risk, we
evaluate risks on perturbed example xadv computed by
Projected Gradient Descent algorithm in (Madry et al.,
2017).

By the definition of toy data sets, we know that the
dimension of ambient space is 1. The normal space at
point x can be represented by NxM = {x+ t · v|0 <
t < ϵ}, here v is a unit normal vector. Therefore we
could explicitly compute the normal vector v and select
normal direction adversarial data xnor.

We evaluate different components in the inequality
in Corollary 3 on three classifiers. The standard
classifier f trained by original training data set,
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Table 1: 2D Adversarial risk comparison
Single Boundary f fadv fnor

ϵ Radv RHS Radv RHS Radv RHS Rin
adv(2ϵ) Rnor

adv Rstd

0.01 0.0110 0.022 0.0110 0.022 0.0090 0.0220 0.0140 0.0050 0.0050
0.02 0.0130 0.0449 0.0130 0.0449 0.0130 0.0449 0.0290 0.0060 0.0060
0.03 0.0230 0.063 0.0250 0.0671 0.0230 0.0633 0.0400 0.0120 0.0120
0.05 0.0280 0.0794 0.0300 0.0784 0.0280 0.0794 0.0620 0.0040 0.0040
0.1 0.0709 0.1652 0.0699 0.1645 0.0709 0.1650 0.133 0.0 0.0040
0.15 0.0979 0.2831 0.1009 0.2886 0.1009 0.2866 0.1850 0.0050 0.0050
0.2 0.128 0.3951 0.126 0.3971 0.128 0.4086 0.261 0.0050 0.0040
0.25 0.1660 0.4966 0.1630 0.4931 0.1660 0.4986 0.3259 0.0040 0.0040
0.3 0.1979 0.4509 0.1979 0.5613 0.1979 0.4505 0.35 0.0 0.0

Double Boundary f fadv fnor

ϵ Radv RHS Radv RHS Radv RHS Rin
adv(2ϵ) Rnor

adv Rstd

0.01 0.0080 0.0286 0.0060 0.0296 0.0070 0.0276 0.0180 0.0030 0.0030
0.02 0.0240 0.0694 0.0230 0.2525 0.0240 0.0694 0.0490 0.0050 0.0050
0.03 0.0510 0.1333 0.0460 0.1363 0.0510 0.1383 0.0949 0.0110 0.0110
0.05 0.0620 0.1810 0.0620 0.1640 0.0629 0.1640 0.1139 0.0080 0.0080
0.1 0.1170 0.3398 0.1169 0.3071 0.12 0.2746 0.2400 0.0060 0.0060
0.15 0.1850 0.6059 0.1860 0.4895 0.1939 0.5948 0.3860 0.0040 0.0040
0.2 0.242 0.8763 0.247 0.8002 0.265 0.878 0.5409 0.0060 0.0050
0.25 0.3139 1. 0.3169 0.9971 0.3239 1. 0.6500 0.0080 0.0080
0.3 0.386 0.9615 0.379 1. 0.394 1. 0.6520 0.0070 0.0060

Table 2: 3D Adversarial risk comparison
Single Boundary f fadv fnor

ϵ Radv RHS Radv RHS Radv RHS Rin
adv(2ϵ) Rnor

adv Rstd

0.1 0.0450 0.0992 0.0410 0.092 0.0470 0.1002 0.0959 0.0050 0.0050
0.2 0.1139 0.2297 0.0999 0.229 0.1099 0.2143 0.1929 0.0100 0.0199
0.3 0.1550 0.3106 0.136 0.3216 0.1540 0.2852 0.239 0.0080 0.0265
0.4 0.2089 0.3765 0.1680 0.3889 0.2059 0.3579 0.26 0.0080 0.0193
0.5 0.247 0.4910 0.1860 0.4404 0.250 0.4104 0.252 0.0040 0.0174
0.6 0.2700 0.5910 0.2179 0.5198 0.257 0.417 0.257 0.0090 0.0153
0.7 0.2600 0.6057 0.2009 0.7571 0.2731 0.4224 0.273 0.0030 0.0139
0.8 0.2329 0.6775 0.1670 0.5630 0.2339 0.4083 0.2329 0.0020 0.0129

Double Boundary f fadv fnor

ϵ Radv RHS Radv RHS Radv RHS Rin
adv(2ϵ) Rnor

adv Rstd

0.1 0.0649 0.1654 0.0789 0.153 0.0759 0.1654 0.1540 0.0130 0.0140
0.15 0.1460 0.3065 0.1280 0.2949 0.1510 0.3026 0.272 0.0220 0.0270
0.2 0.1700 0.3858 0.1370 0.3341 0.1670 0.3541 0.3040 0.0170 0.0170
0.25 0.2049 0.4608 0.1500 0.4203 0.2099 0.4486 0.361 0.0210 0.0210
0.3 0.2159 0.4740 0.1810 0.4208 0.2119 0.4450 0.3289 0.0190 0.0190
0.35 0.275 0.5176 0.2039 0.5289 0.2750 0.4830 0.356 0.0110 0.0130
0.4 0.3000 0.6051 0.2069 0.5325 0.3040 0.6593 0.3690 0.0520 0.0080

the adversarial classifier fadv trained by Adversarial
Training algorithm in Madry et al. (2017) and the
classifier trained using adversarial samples generated
in the normal direction xnor, we denote it as fnor.
To compute the in-manifold perturbation, we design
two methods. The first one is using grid search to go

through all the perturbations in the manifold within
the ϵ budget and return the point with maximum
loss as in-manifold perturbation xin. The second
is using PGD method to find a general adversarial
point xadv in ambient space and project xadv back
to the data manifold M. Due to grid-search being
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a) 2D Single
decision boundary

b) 2D Double
decision boundary

c) 3D Single
decision boundary

d) 3D Double
decision boundary

Figure 3: In this figure, we show our four toy data set. On the left side is 2D data set on a unit circle. The single
decision boundary data is linearly separated by the y-axis. And in the double decision boundary case, the circle is
separated into 4 parts with x and y-axis. On the right side is the 3D data set. The data is distributed in a square
area on x1x2-plane. In the single decision boundary example, the data is divided by the curve x1 = sin(x2). And
in the double decision boundary situation, we add the y-axis as the extra boundary.

time-consuming, we use the second method in our
experiments below. We further compare these two
methods in supplementary materials.

Here we propose a method based on Adversarial
Training to compute fnor in Algorithm 1. One thing
worth mentioning here is, instead of using grid search
to find the actual xnor, we use an intermediate method
to generate normal data. We randomly choose a point
along the normal direction within the ϵ budget to be our
normal direction perturbed data. This might worsen
the normal adversarial risk of fnor, but our empirical
results show that Rnor

adv(f
nor) still close to 0.

Algorithm 1 Normal direction Adversarial Training

1: Input: Training data set {xi, yi}ni=1, training
iterations K, perturbation budget ϵ

2: for iterations in 1, . . . ,K do
3: for xi in {xi, yi}ni=1 do
4: Find normal space Nxi

(M) for xi.
5: Find vi ∈ Bnor

ε (xi) such that l(f(xi +
vi), yi) ̸= 0.

6: xnor
i ← vi

7: Update fnor with xnor
i .

8: end for
9: end for

Note in Corollary 3 claim i), we have a component
µ(Bϵ(Z

nor(f, ϵ)) ∩M) on the right hand side (RHS)
of the inequality. We also give a practical way of
estimating such quantity in the empirical study. By
the definition of Znor(f, ϵ), we first select point xi in
training data such that there exists point x′

i in Nxi
M

s.t f(x′
i) ̸= yi to form set Ẑ. Since we uniformly sample

points from data manifold, the volume of B2ϵ(Ẑ) ∩M
is proportional to µ(B2ϵ(Z

nor(f, ϵ)) ∩M) which is a

set derived by point wise augment Ẑ by a 2ε-ball. In

2D example, this quantity is simply the length of curve
segment on unit circle as the volume of B2ϵ(z) for any

z ∈ Ẑ. In 3D example, we use area of Ẑ point wise
augmented by a 2ϵ square. We list the RHS value for
2D and 3D datasets in Table 1 and Table 2 for all three
classifiers.

3.3 Empirical Results and Discussion

2D Unit Circle We generate 1000 training data
uniformly. The classifier is a 2-layer feed-forward
network. Each classifier is trained with Stochastic
Gradient Descent (SGD) with a learning rate of 0.1
for 1000 epochs. Also, since ∆ = 1 for the unit circle,
the upper bound of ϵ value is up to 1. Hence we run
experiments for ϵ from 0.01 to 0.3. By increasing the
ϵ budget, we also observe that the decision boundary
of fnor becomes perpendicular to the data manifold.
In Table 1, the value of Rnor

adv(f
nor) also confirm our

observation. We leave more discussion and visualization
of this phenomenon in the supplementary material.

To verify our results in Corollary 3 claim i). We
compute the adversarial risk for three classifiers. And
for the upper bound, we evaluate the component
µ(Bϵ(Z

nor(f, ϵ)) ∩ M) following the description in
Section 3.2. The right hand side value in the inequality
is given in Table 1. We could observe that the upper
bounds hold for 2D data.

Since we train fnor to minimize its empirical risk in
normal direction. By Table 1, we know Rnor

adv(f
nor)

is close to zero. Therefore it is reasonable to study
claim ii) in Corollary 3 using fnor. The summation
of in-manifold risk and standard risk of fnor certainly
upper bounds Radv(f

nor).

3D X1X2-plane We generate 1000 training data from
the data set. The classifier is a 4-layer feedforward
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network. We use SGD with a learning rate of 0.1 and
weight decay of 0.001 to train the network. The total
training epoch is 2000.

In Table 2, we list same three classifiers trained on
3D data set. We have Radv been upper bounded by
the right hand side of the inequality in Corollary 3
claim i). The claim ii) also holds in 3D cases. Due to
the limit of the space, we provide visualization of the
decision boundary and additional empirical results in
the supplemental material.

4 CONCLUSION

In this work, we study the adversarial risk of the
machine learning model from the manifold perspective.
We report theoretical results that decompose the
adversarial risk into the normal adversarial risk, the
in-manifold adversarial risk, and the standard risk
with the additional Nearby Normal Risk term. We
present a pessimistic case suggesting the additional
Nearby Normal Risk term can not be removed in
general, without additional assumptions. Observing
that the Nearby Normal Risk term can be wiped out by
enforcing zero normal adversarial risk, our theoretical
analysis suggests a potential training strategy that only
focuses on the normal adversarial risk.
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Supplementary Material:
A Manifold View of Adversarial Risk

A PROOF OF THEOREM 1

Theorem 3. [Risk Decomposition] Let M be a smooth compact manifold in RD, and let data be drawn from
M×{−1, 1} according to some distribution p. There exists a ∆ > 0 depending only onM such that the following
statements hold for any ϵ < ∆. For any score function f satisfying assumption A,

(i)

Radv(f, ϵ) ≤ Rstd(f) +Rnor
adv(f, ϵ) +Rin

adv(f, 2ϵ) +NNR(f, ϵ).

(ii) If Rnor
adv(f, ϵ) = 0, then

Radv(f, ϵ) ≤ Rstd(f) +Rin
adv(f, 2ϵ)

Proof of i): We first address the existence of the constant ∆ that only depends onM in the theorem statement.

Definition 5 (Tubular Neighborhood). A tubular neighborhood of a manifoldM is a set N ⊂ RD containingM
such that any point z ∈ N has a unique projection π(z) ontoM such that z − π(z) ∈ Nπ(z)M.

By Theorem 11.4 in Bredon (2013), we know that there exists ∆ > 0 such that N := {y ∈ RD : dist(y,M) < ∆}
is a tubular neighborhood ofM. This also implies that for any 0 < ϵ < ∆, the normal line segments of length ϵ
at any two points x, x′ ∈M are disjoint, a fact that will be used later.

The ∆ guaranteed by Theorem 11.4 is the ∆ referred to in our theorem, and the budget ϵ > 0 is constrained to
be at most ∆.

Next we consider the left hand side, the adversarial risk:

Radv(f, ϵ) := E
(x,y)∼p

1(∃x′ ∈ Bϵ(x) : f(x
′)y ≤ 0)

Denote by E(x, y) the event that ∃x′ ∈ Bϵ(x) : f(x
′)y ≤ 0.

We will write the indicator function above as the sum of indicator functions of four events. Specifically, define by
E1(x, y), E2(x, y), E3(x, y), E4(x, y) the following four events:

• E1(x, y): f(x)y ≤ 0.

• E2(x, y): f(x)y > 0 and ∃x′ ̸= x ∈ Bϵ(x) such that x′ − x ∈ NxM and f(x′)y ≤ 0.

For the next two cases, let x′ ̸= x ∈ Bϵ(x) be such that x′ − x /∈ NxM and f(x′)y ≤ 0 (if such an x′ exists). Let
x′′ = π(x′) be the unique projection of x′ ontoM. Note that x′′ ̸= x. Define:

• E3(x, y): f(x
′′)y ≤ 0.

• E4(x, y): f(x
′′)y > 0 ⇐⇒ f(x′′)f(x′) ≤ 0.

Lemma 1.

1(E(x, y)) = 1(E1(x, y)) + 1(E2(x, y)) + 1(E3(x, y)) + 1(E4(x, y))
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Proof. Assume E(x, y) occurs, i.e, ∃x′ ∈ Bϵ(x) : f(x
′)y ≤ 0. Either x′ = x satisfies the condition (which is event

E1) or some x′ ̸= x satisfies the condition.

Now we further divide into the case when f(x)y > 0 and x′ − x ∈ NxM (which is event E2), or f(x)y > 0 and
x′ − x /∈ NxM. In the latter case, note that x′′ = π(x′) cannot equal x as otherwise x′ − x would be in the
normal space at x, since the projection map is unique inside the tubular neighborhood. Thus x′′ is well-defined,
and it is easy to see that the last two cases are disjoint and cover this remaining case. Thus we have shown that
if E(x, y) occurs, then one of the four disjoint events Ei must occur, proving the lemma.

Finally we have the following lemma, which completes the proof of the theorem after combining with Lemma 1.

Lemma 2. The following relation holds between the risk and the expectation of the indicator functions in Lemma 1

1. E
(x,y)∼p

1(E1(x, y)) = Rstd(f)

2. E
(x,y)∼p

1(E2(x, y)) ≤ Rnor
adv(f, ϵ)

3. E
(x,y)∼p

1(E3(x, y)) ≤ Rin
adv(f, 2ϵ)

4. E
(x,y)∼p

1(E4(x, y)) ≤ NNR(f, ϵ)

Proof. 1) and 2) follow by definitions of standard adversarial risk and normal adversarial risk, respectively.
Consider the setting of E3(x, y): i.e., f(x)y > 0, the adversarial perturbation x′ is not in the normal direction (so
f(x′)y ≤ 0), and f(x′′)y ≤ 0. Observe that by the triangle inequality, d(x, x′′) ≤ d(x, x′) + d(x′, x′′) ≤ ϵ+ ϵ = 2ϵ,
simply because a) x′ is within the ϵ-ball of x, and b) x′′ is closer to x′ than x.

This means that there is a point x′′ ∈ Bin
2ϵ (x) such that f(x′′)y ≤ 0. The expectation over a random (x, y) ∼ p

of this event is clearly at most Rin
adv(f, 2ϵ) (the inequality need not be tight because x may have adversarial

perturbation within 2ϵ and also satisfy some other events like E1).

Lastly, by the definition of the NNR, we see that A(x, y) occurs when E1(x, y) or E2(x, y) do not. Also C(x, y)
implies that the event E3(x, y) does not occur. We are now in the situation where x′′ is within 2ϵ of x, f(x′)y ≤ 0,
and f(x′′)y > 0. But this implies that f(x′′)f(x′) ≤ 0, and since x′ ∈ Bnor

ϵ (x′′), it implies that B(x, y) occurs.
Thus all of A(x, y), B(x, y) and C(x, y) occur, which is the definition of NNR.

Proof of ii)

If Rnor
adv(f, ϵ) = 0, we claim that NNR(f, ϵ) = 0. Setting these two terms to zero in i) proves ii).

Note that although Rnor
adv(f, ϵ) = 0, it does not imply that there are no normal adversarial perturbations for any

x— it just means that the measure of such x with normal adversarial perturbation is zero.

Also note that Rnor
adv(f, ϵ) = 0 does not exclude A(x, y) or C(x, y) from occurring (in fact A occurs for almost

all x). Thus the proof will focus on the measure of points where B(x, y) can occur. We will prove the following
lemma, which will complete the proof of the theorem.

Lemma 3. Let (x, y) be such that B(x, y) occurs, i.e., there exist x′ ∈ Bϵ(x) and x′′ = π(x) such that f(x′)y ≤ 0,
f(x′′)y > 0 and d(x, x′′) ≤ 2ϵ. Then C(x, y) cannot occur, i.e., there exists a point w ∈ Bin

2ϵ (x) such that
f(w)y ≤ 0. Consequently, NNR(f, ϵ) = 0.

Proof. We first claim that if B(x, y) occurs, it must be the case that f(x′′) = 0. Assuming this, if f(x′′) = 0, then
by Assumption A we know there exists an s ∈ Bϵ(x

′′) ∩ B2ϵ(x) such that f(s)y ≤ 0, which imply that C(x, y)
cannot occur. This will complete the proof of the lemma.

To prove that f(x′′) = 0, consider what happens if f(x′′) ̸= 0. Assume first that f(x′) ̸= 0, and note that
f(x′)f(x′′) ≤ 0. By continuity of f , there exist open neighborhoods U ∋ x′′ and V ∋ x′ such that f has the same
sign on all of U and the same sign on all of V , i.e., sign(f |U) = sign(f(x′′)) and sign(f |V ) = sign(f(x′)).
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Consider the normal bundle on U defined as the set U ′ = {y ∈M∆ : π(y) ∈ U}. In other words, U ′ is the union
of the normal line segments passing through points in U (hereM∆ denotes the tubular neighborhood ofM).
Note that U ′ is an open set.

Define W ′ = U ′ ∩ V , and W = π(W ′). W ⊂ M is an open set, but for every w ∈ W , there exists a point
w′ ∈W ′ ∩Bnor

ϵ (w) such that f(w′)f(w) ≤ 0. Therefore there exists anormal adversarial perturbation for every
point in W . Since the measure of W is not zero, this contradicts the fact that Rnor

adv(f, ϵ) = 0.

The proof is completed by observing that in the remaining case when f(x′′) ̸= 0 but f(x′) = 0, there must exist
(by assumption A) a point w near x′ such that f(w) ̸= 0 and f(w)y < 0. This lands us in the previous case,
which we showed contradicts the hypothesis that Rnor

adv(f, ϵ) = 0.

Remark: In Corollary 3, µ(Znor(f, ϵ) ∩ B2ϵ(Z
nor(f, ϵ)) is the NNR under deterministic case. Therefore,

Corollary 3 follows directly from the proof of Theorem 1.

B ADDITIONAL EXPERIMENTS

In the main paper, we leave some experimental results to discuss in this supplementary materials. In the following
section, we will first compare different ways of generating in-manifold attack data. In the later section, we
compare the decision boundary of different classifiers. By visualization of the decision boundary, we aim to show
that the defense training algorithm can defend the model against adversarial examples in the normal direction
implying that the adversarial risk in the normal direction can be controlled.

Also, we need to mark out that when we have a small ϵ value. The RHS for classifier fnor might be a
little bit smaller than claim ii) in Corollary 3. This is due to the fact that our way of computing measure
µ(Znor(f, ϵ) ∩ B2ϵ(Z

nor(f, ϵ)) includes the standard risk Rstd and normal risk Rnor. So the summation of
µ(Znor(f, ϵ) ∩ B2ϵ(Z

nor(f, ϵ)) and Rin
adv forms the RHS. When we have a small ϵ value, the points with non-

zero normal adversarial risk are concentrated near the decision boundary. Since we compute the µ(Znor(f, ϵ) ∩
B2ϵ(Z

nor(f, ϵ)) based on the ratio between the length of line segment (or area of cube in 3D) and the circumference
of unit circle (or area of x1x2-plane unit square), the ratio could be close to zero. Therefore, we might have the
value of RHS smaller than the summation of Rin

adv +Rstd +Rnor
adv . Aside from this, RHS still upper bounds Radv

in all cases.

B.1 In-Manifold Attack Algorithm

To estimate the in-manifold adversarial risk, we have tested two potential algorithms for generating in-manifold
adversarial examples. We present our observations on these two methods. Our empirical study in the paper
leverage one of the two methods presented below, which generates a more powerful in-manifold adversarial
example.

One way to generate the adversarial samples is by brutal force. We use the grid search method to search
the Bin

ϵ (x) region and find the maximum loss point in that region. We treat the maximum loss point as the
in-manifold adversarial data. We call this approach the grid search method. Another approach we name as
the projected method. We set the step size of the grid search proportional to the perturbation budget ϵ. In
general, we search 100 points in 1D cases and 400 points in the 2D manifold. In the projected method, we first
use a general adversarial attack algorithm to generate adversarial data in ambient space. Then we project the
generated adversarial example back to the manifold and return the results as our in-manifold adversarial data. In
the following experiment, we use PGD as our generator of adversarial data in ambient space. Both methods will
find in-manifold data that is adversarial to the given model. The rest of the experiment settings follow Section 3
in the main paper.

In Figure 4 we plot the after-attack accuracy of these two in-manifold attack methods. The experiments follow
the same setting as the one we described in the main paper. We could observe that the grid search is slightly
stronger in the 3D single boundary case and equivalent to the projection method in the rest of the cases. In the
graph, the after-attack accuracy of the grid search method matches with the projection methods in the 2D case.
And in the 3D case, when the ϵ is larger than 0.5, then the grid search method achieves smaller after attack
accuracy. This is due to the projection method searching the adversarial example in a smaller in-manifold ball.
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a) 2D Single
decision boundary

b) 2D Double
decision boundary

c) 3D Single
decision boundary

d) 3D Double
decision boundary

Figure 4: We compare the grid search method and projection method to generate in-manifold attack data. The
first row is after attack accuracy on the 2D data set. The blue line is the accuracy of the projection approach.
Orange is for the grid search method. The ϵ range is smaller than the range we choose in the discussion of the
main paper. This is because ϵ-budget is larger than 0.05. The after-attack accuracy remains zero. The lower row
is after attack accuracy on two different 3D data sets.

In other words, it hasn’t fully explored the ϵ ball around the original data point. Therefore we could observe this
small gap between these two methods. In the paper, we rely on the grid search method for generating in-manifold
adversarial examples.

Furthermore, we compute the in-manifold risk in Table 1 and 2 using the grid search method. We plot our results
in Table 3 and Table 4. Since the attack performance of the grid search approach is stronger than the projection
approach, the upper bound holds. In Table 3 and Table 4 we could observe this result.

Comparing Table 1 and 1, we could see that Rin
adv in Table 3 and Table 4 has similar results. It implies that

the projection method does not underestimate the upper in most cases. For the 3D double boundary dataset,
the projection method has weaker results but the upper bound still holds. It implies that the upper bound in
Corollary 3 is loose in our study case. We could further prove a tighter upper bound in 3 claim ii).

B.2 Decision Boundary Discussion

In this section, we explain one of our intuitions of deriving this decomposing. In geometry, we know that if the
decision boundary of the classifier is perpendicular to the manifold, then along normal direction, it is hard to
find an adversarial example that can successfully attack the model. Therefore, the general adversarial risk is
owing to tangential or in-manifold direction perturbation. Under this setting classifiers with decision boundary
perpendicular to the manifold in ambient space would have Rnor

adv equal zero. And this gives us claim ii) in
theorem 3. In the following section, we will plot the classifier’s decision boundary in ambient space to state that
our intuition holds on the synthetic data set.

B.2.1 2D Decision Boundary

In the 2D synthetic data set, we plot multiple decision boundaries of fnor in the double decision boundary
case. As we increase the ϵ budget in the defense algorithm (Algorithm 1 in the paper), the decision boundary
becomes more perpendicular to the unit circle. And it matches the results for Rnor

adv(f
nor) in Table 1. Around

ϵ = 0.1, Rnor
adv(f

nor) achieves the minimum value. And we could observe that the shape of the decision boundary
is perpendicular and matches with the true label.
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Table 3: Computing Rin
adv(f

nor) using Grid Search methods for 2D data set

Single Boundary f fadv fnor

ϵ Radv RHS Radv RHS Radv RHS Rin
adv(2ϵ) Rnor

adv Rstd

0.01 0.0110 0.0200 0.0110 0.022 0.0090 0.0180 0.0100 0.0050 0.0050
0.02 0.0130 0.0426 0.0130 0.0425 0.0130 0.0439 0.0280 0.0060 0.0060
0.03 0.0230 0.0499 0.0250 0.0595 0.0230 0.0613 0.0380 0.0120 0.0120
0.05 0.0280 0.0871 0.0300 0.0881 0.0280 0.0843 0.0669 0.0040 0.0040
0.1 0.0709 0.1974 0.0699 0.2026 0.0709 0.1620 0.1300 0.0 0.0040
0.15 0.0979 0.2721 0.1009 0.3243 0.1009 0.3225 0.2209 0.0050 0.0050
0.2 0.128 0.4063 0.126 0.4160 0.128 0.4206 0.2730 0.0050 0.0040
0.25 0.1660 0.498 0.1630 0.5218 0.1660 0.5026 0.3299 0.0040 0.0040
0.3 0.1979 0.6117 0.1979 0.6239 0.1979 0.5005 0.4000 0.0 0.0

Double Boundary f fadv fnor

ϵ Radv RHS Radv RHS Radv RHS Rin
adv(2ϵ) Rnor

adv Rstd

0.01 0.0080 0.0404 0.0060 0.038 0.0070 0.0386 0.0290 0.0030 0.0030
0.02 0.0240 0.0467 0.0230 0.0457 0.0240 0.0594 0.0390 0.0050 0.0050
0.03 0.0510 0.1279 0.0460 0.1309 0.0510 0.1273 0.0839 0.0110 0.0110
0.05 0.0620 0.1545 0.0620 0.1738 0.0629 0.1711 0.121 0.0080 0.0080
0.1 0.1170 0.4037 0.1169 0.5155 0.12 0.3076 0.273 0.0060 0.0060
0.15 0.1850 0.5649 0.1860 0.5619 0.1939 0.5768 0.368 0.0040 0.0040
0.2 0.242 0.8709 0.247 0.82 0.265 0.88 0.5429 0.0060 0.0050
0.25 0.3139 1. 0.3169 1. 0.3239 1. 0.696 0.0080 0.0080
0.3 0.386 1. 0.379 1. 0.394 1. 0.833 0.0070 0.0060

Table 4: Computing Rin
adv(f

nor) using Grid Search methods for 3D data set

Single Boundary f fadv fnor

ϵ Radv RHS Radv RHS Radv RHS Rin
adv(2ϵ) Rnor

adv Rstd

0.1 0.0450 0.0974 0.0410 0.098 0.0470 0.0932 0.0889 0.0050 0.0050
0.2 0.1139 0.2062 0.0999 0.2201 0.1099 0.2093 0.1879 0.0100 0.0199
0.3 0.1550 0.3957 0.136 0.3557 0.1540 0.3482 0.3020 0.0080 0.0265
0.4 0.2089 0.5124 0.1680 0.5008 0.2059 0.4729 0.375 0.0080 0.0193
0.5 0.247 0.6057 0.1860 0.5405 0.250 0.6354 0.477 0.0040 0.0174
0.6 0.2700 0.8444 0.2179 0.6828 0.257 0.7169 0.5569 0.0090 0.0153
0.7 0.2600 1. 0.2009 0.8673 0.2731 0.8004 0.651 0.0030 0.0139
0.8 0.2329 1. 0.1670 1. 0.2339 0.8774 0.702 0.0020 0.0129

Double Boundary f fadv fnor

ϵ Radv RHS Radv RHS Radv RHS Rin
adv(2ϵ) Rnor

adv Rstd

0.1 0.0649 0.1688 0.0789 0.1517 0.0759 0.1624 0.1510 0.0130 0.0140
0.15 0.1460 0.2581 0.1280 0.228 0.1510 0.2405 0.2099 0.0220 0.0270
0.2 0.1700 0.3476 0.1370 0.3174 0.1670 0.3441 0.2940 0.0170 0.0170
0.25 0.2049 0.4700 0.1500 0.4300 0.2099 0.4576 0.37 0.0210 0.0210
0.3 0.2159 0.5745 0.1810 0.5240 0.2119 0.5331 0.4170 0.0190 0.0190
0.35 0.275 0.5756 0.2039 0.5469 0.2750 0.555 0.4280 0.0110 0.0130
0.4 0.3000 0.76 0.2069 0.7255 0.3040 0.8133 0.523 0.0520 0.0080

B.2.2 3D Decision Boundary

In 3D cases, we plot the projection of points in ambient space back to the data manifold x1x2-plane. If the
decision boundary is fully perpendicular to the x1x2-plane, the projection would have a clear separation and
matches with the x2 = sin(x1) boundary in the manifold. If not, we will have a region close to x2 = sin(x1) with
mixing red and blue points or the projection does not match with the in-manifold separation.
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a) ϵ = 0.02 b) ϵ = 0.03 c) ϵ = 0.15

Figure 4: In the graph, we first sample 3000 points in whole space and use fnor to classifier these sampled points.
We use red dots and blue dots to mark two different classes. And the decision boundary of the classifier is easy
to see in this setting. From left to right, we increase the ϵ budget from 0.02 to 0.15 and use the corresponding
normal adversarial data to train the fnor. The decision boundary of fnor is correlated with the size of ϵ.

We show the results in Figure 5. In the single decision boundary case, only fnor has (nearly) perpendicular
decision boundary. For f , we can observe that the red points step into the region of the blue points and so does
the blue points. And the adversarial training classifier fadv has an even worse result, its decision boundary does
not fully match with the x2 = sin(x1) curve inside the manifold, which implies that the classifier does not have
good standard accuracy, which implies the trade-off between robustness and accuracy for the general robust
classifier. And the same results and conclusions hold for the double boundary case.
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a) Decision Boundary of fadv b) Decision Boundary of f c) Decision Boundary of fnor

a) Decision Boundary of fadv b) Decision Boundary of f c) Decision Boundary of fnor

Figure 5: In this graph we show the projection of data classified with f , fadv and fnor. We sample 5000 points
in the tubular space of x1x2-plane. And use f , fadv and fnor to classify these points and mark with red and blue
dots. If the point is in the ambient space, we project them back to the x1x2-plane. The first row are f , fadv and
fnor trained with 3D single boundary synthetic data set. The second row is classifiers trained with the double
boundary synthetic data set.
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