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Abstract

We study the problem of Online Convex Op-
timization (OCO) with memory, which allows
loss functions to depend on past decisions
and thus captures temporal effects of learn-
ing problems. In this paper, we introduce
dynamic policy regret as the performance
measure to design algorithms robust to non-
stationary environments, which competes al-
gorithms’ decisions with a sequence of chang-
ing comparators. We propose a novel algo-
rithm for OCO with memory that provably
enjoys an optimal dynamic policy regret. The
key technical challenge is how to control the
switching cost, the cumulative movements of
player’s decisions, which is neatly addressed
by a novel decomposition of dynamic policy
regret and a careful design of meta-learner
and base-learner that explicitly regularizes
the switching cost. The results are further
applied to tackle non-stationarity in online
non-stochastic control [Agarwal et al., 2019],
i.e., controlling a linear dynamical system
with adversarial disturbance and convex cost
functions. We derive a novel gradient-based
controller with dynamic policy regret guar-
antees, which is the first controller provably
competitive to a sequence of changing poli-
cies for online non-stochastic control.

1 Introduction

Online Convex Optimization (OCO) [Shalev-Shwartz,
2012, Hazan, 2016] is a versatile model of learning in
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adversarial environments, which can be regarded as a
sequential game between a player and an adversary
(environments). At each round, the player makes a
prediction from a convex set wt ∈ W ⊆ Rd, the adver-
sary simultaneously selects a convex loss ft : W 7→ R,
and the player incurs a loss ft(wt). The goal of the
player is to minimize the cumulative loss. The frame-
work is found useful in a variety of disciplines including
learning theory, game theory, optimization, and time
series analysis, etc [Cesa-Bianchi and Lugosi, 2006].

The standard OCO framework considers only memo-
ryless adversary, in the sense that the resulting loss
is only determined by the player’s current predic-
tion without involving past ones. In real-world ap-
plications, particularly those related to online deci-
sion making, it is often the case that past predic-
tions/decisions would also contribute to the current
loss, which makes the standard OCO framework not
viable. To remedy this issue, Online Convex Opti-
mization with Memory (OCO with Memory) was pro-
posed as a simplified and elegant model to capture the
temporal effects of learning problems [Merhav et al.,
2002, Anava et al., 2015]. Specifically, at each round,
the player makes a prediction wt ∈ W, the adversary
chooses a loss function ft : Wm+1 7→ R, and the player
will then suffer a loss ft(wt−m, . . . ,wt). Notably, now
the loss function depends on both current and past
predictions. The parameter m is the memory length,
and evidently the OCO with memory model reduces to
the standard memoryless OCO when memory length
m = 0. The performance measure for OCO with mem-
ory is the policy regret [Dekel et al., 2012], defined as

RegT =

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

ft(v, . . . ,v), (1)

where throughout the paper we adopt the notation ai:j
to denote the vector sequence ai, . . . ,aj . We start the
index from 1 for convenience. Recent studies apply
online learners with provable low policy regret to a va-
riety of related problems [Chen et al., 2018, Agarwal
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et al., 2019, Daniely and Mansour, 2019, Chen et al.,
2020]. However, the policy regret (1) only measures
the performance versus a fixed comparator and is thus
not suitable for learning in non-stationary environ-
ments [Sugiyama and Kawanabe, 2012, Gama et al.,
2014, Zhao et al., 2020a, 2021b]. For instance, in
the recommendation system, the users’ interest may
change when looking through the product pages; in
the traffic flow scheduling, the traffic network pat-
tern changes throughout the day. Therefore, it is
necessary to design online decision-making algorithms
with robustness to non-stationary environments. To
this purpose, we introduce the dynamic policy regret
to guide the algorithmic design, measuring the com-
petitive performance against an arbitrary sequence of
time-varying comparators v1, . . . ,vT ∈ W, defined as

D-RegT (v1:T ) =

T∑
t=1

ft(wt−m:t)−
T∑
t=1

ft(vt−m:t). (2)

The upper bound of D-RegT (v1:T ) should be a func-
tion of the comparator sequence v1:T , while the algo-
rithm is agnostic to the choice of comparators. The
proposed measure is very general—it subsumes static
policy regret (1) as a special case when comparators
become the best predictor in hindsight, i.e., v1:T =
v∗ ∈ argminv∈W

∑T
t=1 ft(v, . . . ,v). Therefore, dy-

namic policy regret is a more stringent measure than
standard policy regret and algorithms that optimize it
are more robust to non-stationary environments.

The fundamental challenge of dynamic policy regret
optimization is how to simultaneously compete with
all comparator sequences with vastly different level of
non-stationarity. Our approach builds upon recent ad-
vance of non-stationary online learning [Daniely et al.,
2015, Zhang et al., 2018a, Zhao et al., 2020b] to hedge
the uncertainty via meta-base aggregation, along with
several new ingredients specifically designed for the
OCO with memory setting. In particular, it is essential
to control the switching cost for OCO with memory,
the cumulative movement of player’s predictions. The
amount is relatively easy to control in static policy
regret [Anava et al., 2015], yet becomes much harder
in dynamic policy regret and could even scale linearly
due to the meta-base structure. Intuitively, for dy-
namic online algorithms, it is necessary to keep some
probability of aggressive movement to catch up with
potential changes of the non-stationary environments,
which results in tensions between dynamic regret and
switching cost. We elegantly address the difficulty
by proposing a novel meta-base decomposition of dy-
namic policy regret and a switching-cost-regularized
surrogate loss, which avoids directly handling switch-
ing cost altogether but regularizes the switching cost to
meta-learner and base-learner instead. Our proposed

algorithm provably enjoys an optimal O(
√
T (1 + PT ))

dynamic policy regret, where PT =
∑T
t=2∥vt−1 −vt∥2

denotes the unknown path-length of comparators.

The results of OCO with memory yield an impor-
tant application in online decision-making problems.
Specifically, we investigate the problem of online non-
stochastic control [Agarwal et al., 2019], i.e., control-
ling a linear dynamical system with adversarial (non-
stochastic) disturbance and adversarial convex cost
functions. Online non-stochastic control has attracted
much recent research attention due to its relaxed as-
sumptions on disturbances and flexibility of cost func-
tions. Existing studies mainly focus on optimizing
static policy regret, whereas the optimal controller
of each round would naturally change over iterations
since the disturbances and cost functions both change
adversarially. Therefore, it is necessary to investi-
gate dynamic policy regret, which competes controller’s
performance with time-varying benchmark controllers.
By adopting the “disturbance-action” policy parame-
terization [Agarwal et al., 2019], online non-stochastic
control is reduced to OCO with memory, and thus its
dynamic policy regret can be optimized by a similar
meta-base structure as developed before. Our designed
controller attains an Õ(

√
T (1 + PT )) dynamic policy

regret, where PT measures the fluctuation of compared
controllers. To the best of our knowledge, this is the
first controller competitive to a sequence of changing
“disturbance-action” policies. We anticipate that our
techniques for OCO with memory will have broader
applications in online decision-making problems.

We summarize the main contributions as follows.

• We introduce dynamic policy regret as the perfor-
mance measure to guide the algorithmic design
of OCO with memory and online non-stochastic
control to enhance the robustness of online algo-
rithms to non-stationary environments.

• We propose a novel algorithm for OCO with mem-
ory, which enjoys an optimal O(

√
T (1 + PT )) dy-

namic policy regret. To achieve this, several key
algorithmic ingredients are designed to handle un-
known environments and control switching cost.

• The results are further applied to the problem of
online non-stochastic control, yielding an online
controller with Õ(

√
T (1 + PT )) dynamic policy

regret, which is the first online controller compet-
itive with a sequence of time-varying policies.

In the following, we first review related works in Sec-
tion 2 and then introduce some preliminaries in Sec-
tion 3. Next, we present the main results for OCO
with memory and online non-stochastic control in Sec-
tion 4 and Section 5. We finally conclude the paper in
Section 6. All the proofs are included in appendices.
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2 Related Work

In this section, we briefly discuss related works on
OCO with memory, online non-stochastic control, and
dynamic regret minimization for online learning.

OCO with Memory. OCO with memory is initiated
by Merhav et al. [2002], who prove an O(T 2/3) policy
regret by a blocking technique. Later, Anava et al.
[2015] propose a simple gradient-based algorithm that
provably achieves O(

√
T ) and O(log T ) policy regret

for convex and strongly convex functions, respectively.
Recent study discloses that the policy regret of OCO
with memory over exp-concave functions is at least
Ω(T 1/3) [Simchowit, 2020, Theorem 2.3]. One of the
key concepts of OCO with memory is switching cost,
the cumulative movement of decisions, which is also
concerned in smoothed online learning [Chen et al.,
2018, Goel et al., 2019, Goel and Wierman, 2019].

Online Non-stochastic Control. Online non-
stochastic control is proposed by Agarwal et al. [2019],
where the regret is chosen as the performance mea-
sure and the disturbance is allowed to be adversari-
ally chosen. When online cost functions are convex
and Lipschitz, Agarwal et al. [2019] obtain an O(

√
T )

policy regret for known linear dynamical system by
introducing the DAC parameterization and reducing
the problem to OCO with memory. Hazan et al. [2020]
show an O(T 2/3) policy regret for unknown system
via system identification. In addition, Foster and Sim-
chowitz [2020] propose the online learning with ad-
vantages technique and obtain logarithmic regret for
known system with quadratic cost and adversarial dis-
turbance, whose results are strengthened by Simchowit
[2020] to accommodate arbitrary changing costs. All
mentioned results are developed for fully observed sys-
tem, and Simchowitz et al. [2020] present a clear pic-
ture for non-stochastic control with partially observed
systems. We are still witnessing a variety of recent ad-
vances, for example, non-stochastic control with ban-
dit feedback [Gradu et al., 2020a, Cassel and Ko-
ren, 2020], adaptive regret minimization [Gradu et al.,
2020b, Zhang et al., 2021], etc. We will present more
discussions on the relationship between these works for
adaptive regret minimization and our work (for dy-
namic regret minimization) at the end of this section.
There are other related works studying non-stationary
online control from the lens of competitive ratio [Shi
et al., 2020, Goel and Hassibi, 2021] and robust con-
trol [Goel and Hassibi, 2020].

Dynamic Regret. Zinkevich [2003] pioneers the
dynamic regret of OCO problems and shows that OGD
can attain an O(

√
T (1 + PT )) dynamic regret. Zhang

et al. [2018b] show that the minimax lower bound is
Ω(
√
T (1 + PT )) and close the gap by proposing an al-

gorithm with O(
√
T (1 + PT )) bound. Recent works

achieve problem-dependent guarantee by exploiting
smoothness [Zhao et al., 2020b] and improved rate by
exploiting exp-concavity [Baby and Wang, 2021]. Dy-
namic regret of bandit convex optimization is studies
in [Zhao et al., 2021a]. We note that the dynamic re-
gret measure studied in this paper is also called the
universal dynamic regret, in the sense that the regret
guarantee holds universally against any comparator se-
quence in the domain. Another special variant called
the worst-case dynamic regret is frequently studied in
the literature [Besbes et al., 2015, Jadbabaie et al.,
2015, Mokhtari et al., 2016, Zhang et al., 2017, Baby
and Wang, 2019, Zhang et al., 2020, Zhao and Zhang,
2021], which specifies comparators as the optimizers
of online functions. The worst-case dynamic regret is
less general than the universal one, and we refer the
reader to [Zhang et al., 2018a] for more discussions.

More Discussions. Online non-stochastic control
in non-stationary environments is also recently stud-
ied via the measure of adaptive regret [Hazan and
Seshadhri, 2009] — the regret compared to the best
policy on any interval in time horizon. Gradu et al.
[2020b] propose the first controller with an Õ(

√
T )

expected adaptive regret on any interval in the to-
tal horizon. The result is strengthened in a recent
work (concurrent to our paper) [Zhang et al., 2021],
which presents a strongly adaptive controller with an
Õ(
√
|I|) deterministic adaptive regret on any inter-

val I ⊆ [T ]. The two papers and our work all study
non-stationary online control, however, the concerned
measures and used techniques are completely differ-
ent. (1) Measures: dynamic regret studies the global
behavior to ensure a competitive performance with
time-varying compared polices, whereas adaptive re-
gret focuses on the local behavior with respect to a
fixed strategy. To the best of our knowledge, dynamic
regret and adaptive regret reflect different perspectives
of environments and their relationship is still unclear
even for the standard OCO setting [Zhang, 2020, Sec-
tion 5. Open Problems]. (2) Techniques: optimiz-
ing either dynamic regret or adaptive regret requires
the meta-base structure to deal with uncertainty of
the non-stationary environments. However, the spe-
cific techniques, especially the way to control switch-
ing cost, exhibit significant difference. Gradu et al.
[2020b] follow the Follow-the-Leading History frame-
work [Hazan and Seshadhri, 2009] with a shrinking
technique [Geulen et al., 2010] to keep previous ex-
perts unchanged with a certain probability to reduce
the switching cost, so their result holds in expectation
only. The improved result of O(

√
|I|) deterministic

bound [Zhang et al., 2021] is achieved by a very differ-
ent framework drawn inspirations from parameter-free
online learning [Cutkosky, 2020]. By contrast, the key
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ingredients of our approach are the novel meta-base
decomposition and the switching-cost-regularized loss,
which avoid explicitly handling the switching cost of
final decisions but directly control the switching cost of
meta-algorithm and individual base-algorithm. These
mechanisms finally lead to a deterministic dynamic
policy regret guarantee for our proposed controller.

3 Preliminaries

This section introduces preliminaries for online convex
optimization (OCO) with memory.

Problem Setup. OCO with memory is a variant of
standard OCO framework to capture the long-term ef-
fects of past decisions, whose protocol is shown below.

1: for t = m+ 1, . . . , T do
2: the player chooses a decision wt ∈ W;
3: the adversary reveals the loss ft : Wm+1 7→ R

that applies to last m+ 1 decisions;
4: the player suffers a loss of ft(wt−m, . . . ,wt);
5: end for

In above,m is the memory length, and ft : Wm+1 7→ R
is convex in memory, which means its unary func-
tion f̃t(w) = ft(w, . . . ,w) is convex in w. Clearly,
OCO with memory recovers the standard memoryless
OCO when m = 0. The standard measure is policy
regret [Dekel et al., 2012] as defined in (1). We intro-
duce a strengthened measure called dynamic policy re-
gret to compete with changing comparators as defined
in (2). The dynamic policy regret upper bound usually

involves path-length PT =
∑T
t=2∥vt−1 − vt∥2, which

measures the variation of comparators and thus cap-
tures the environmental non-stationarity. Through-
out the paper, O(·)-notation is used to express regret

upper bound as a function of T and PT , and Õ(·)-
notation omits logarithmic factors in T .

Assumptions. Next, we introduce several standard
assumptions used in the analysis [Anava et al., 2015].
For simplicity we focus on the ℓ2-norm and the exten-
sion to general primal-dual norms is straightforward.

Assumption 1 (coordinate-wise Lipschitzness). The
online function ft : Wm+1 7→ R is L-coordinate-
wise Lipschitz, i.e., |ft(x0, . . . ,xm)−ft(y0, . . . ,ym)| ≤
L
∑m
i=0∥xi − yi∥2.

Assumption 2 (bounded gradient). The gradient
norm of the unary loss is at most G, i.e., for all w ∈ W
and t ∈ [T ], ∥∇f̃t(w)∥2 ≤ G.

Assumption 3 (bounded domain). The domain W
is convex, closed, and satisfies ∥w − w′∥2 ≤ D for
∀w,w′ ∈ W. For convenience, we also assume 0 ∈ W.

Static Regret of OCO with Memory. This part
briefly reviews the result of static policy regret. Anava

et al. [2015] propose a simple approach based on the
gradient descent based on the observation that when
online functions are coordinate-wise Lipschitz, the pol-
icy regret can be upper bounded by the switching cost
and the vanilla regret over the unary loss, formally,

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

f̃t(v)

≤ λ

T∑
t=2

∥wt −wt−1∥2 +
T∑
t=1

f̃t(wt)− min
v∈W

T∑
t=1

f̃t(v),

where λ = m2L. The first term is the switching cost
measuring the cumulative movement of decisions w1:T

and the remaining term is the standard regret of mem-
oryless OCO. Consequently, it is natural to perform
Online Gradient Descent (OGD) [Zinkevich, 2003] over

the unary loss f̃t, i.e., wt+1 = ΠW [wt − η∇f̃t(wt)],
where η > 0 is the step size and ΠW [·] denotes the
projection onto the nearest point in W. It is well-
known that with an appropriate step size OGD enjoys
an O(

√
T ) regret in memoryless OCO. Further, Anava

et al. [2015] show that the produced decisions move
sufficiently slowly. Indeed, switching cost satisfies∑T
t=2∥wt−wt−1∥2 ≤ O(ηT ), which will not affect the

final regret order by choosing η = O(1/
√
T ). Com-

bining both facts yields an O(
√
T ) static policy re-

gret [Anava et al., 2015, Theorem 3.1].

4 OCO with Memory

This section presents dynamic policy regret of OCO
with memory. We begin with the gentle case when
the path-length is known, and then handle the general
case when it is unknown and present the overall result.

4.1 A Gentle Start: known path-length

Similar to the static regret analysis mentioned in the
last section, we first upper-bound the dynamic policy
regret (2) in the following way:

D-RegT (v1:T ) ≤
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt)

+ λ

T∑
t=2

∥wt −wt−1∥2 + λ

T∑
t=2

∥vt − vt−1∥2. (3)

There are three terms in the upper bound: dynamic
regret of unary functions, switching cost of final deci-
sions, and switching cost of comparators. Therefore,
it is natural to deploy OGD over unary functions, and
we can prove the following dynamic policy regret guar-
antee. The proof can be found in Appendix B.1.
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Theorem 1. Under Assumptions 1–3, running OGD
over unary functions f̃1, . . . , f̃T ensures

D-RegT (v1:T ) ≤ O
(
ηT +

1 + PT
η

+ PT

)
(4)

for any comparator sequence v1, . . . ,vT ∈ W, where
PT =

∑T
t=2∥vt − vt−1∥2 is the path-length measuring

fluctuation of the comparator sequence.

Suppose the value of path-length PT were known a pri-
ori, Theorem 1 indicates an optimal O(

√
T (1 + PT ))

dynamic policy regret by setting step size as η =
O(
√
(1 + PT )/T ), matching the Ω(

√
T (1 + PT )) lower

bound of memoryless OCO [Zhang et al., 2018a]. How-
ever, this step size tuning is not realistic because we
cannot attain the prior information of path-length
PT =

∑T
t=2∥vt−1 − vt∥2. Indeed, since the dynamic

policy regret measure holds for any comparator se-
quence v1, . . . ,vT that can be arbitrarily selected in
the feasible domain W, the path-length PT essentially
captures the environmental non-stationarity and is un-
known to the player. In Section 4.2, we will further elu-
cidate the challenge of designing parameter-free online
algorithms to achieve optimal bound, especially due
to the switching cost arising in the OCO with memory
setting. In Section 4.3, we will present our solution by
introducing several novel algorithmic ingredients.

4.2 Challenge: unknown path-length and
switching cost of OCO with memory

As mentioned in the last paragraph, the fundamental
difficulty of attaining optimal dynamic policy regret
lies in the infeasible step size tuning that depends on
the unknown comparator sequence v1, . . . ,vT . We em-
phasize that such an unpleasant dependence cannot
be removed by the well-known doubling trick [Cesa-
Bianchi et al., 1997], because we cannot monitor the
empirical value of path-length, Pt =

∑t
s=2∥vs −

vs−1∥2, as comparators v1, . . . ,vT can be arbitrarily
chosen in the feasible domain W and are entirely un-
known to the learner. Similar challenge also emerges
in recent studies of memoryless non-stationary online
learning [Zhang et al., 2018a, Zhao et al., 2020b], in-
spired by which we employ the meta-base framework
to design a two-layer approach for optimizing the dy-
namic policy regret. Below, we will first briefly review
the framework and then elucidate the challenge of its
application in OCO with memory, mainly due to the
tension between dynamic regret and switching cost,
which necessitates additional new ideas.

Meta-base framework. The framework admits a
two-layer structure and is essentially an online en-
semble method. We first need to design an appro-
priate pool of candidate step sizes H = {η1, . . . , ηN}

to ensure the existence of a step size ηi∗ that ap-
proximates optimal step size η∗ well. Then, multi-
ple base-learners B1, . . . ,BN are maintained, and each
performs base-algorithm (for example, OGD) with
a step size ηi ∈ H and generates the decision se-
quence w1,i,w2,i, . . . ,wT,i. Finally, a meta-learner,
supposed to be able to track the best base-learner,
is used to combine all intermediate results of base
learners to produce final outputw1,w2, . . . ,wT , where
wt =

∑N
i=1 pt,iwt,i. The final output of meta-base al-

gorithm can well approximate the decision sequence of
the best base-learner (the one with near-optimal step
size ηi∗) and thus ensure a good dynamic regret bound.

Indeed, by employing OGD over unary functions
f̃1, . . . , f̃T and designing a proper step size pool H,
it is not hard to prove a dynamic regret bound over
unary functions, that is,

∑T
t=1 f̃t(wt)−

∑T
t=1 f̃t(vt) ≤

O(
√
T (1 + PT )). Then, by (3) we have

D-RegT (v1:T )

≤ O(
√
T (1 + PT )) +O(PT ) +

T∑
t=2

∥wt −wt−1∥2.

So we are in the position to control switching cost.
Below, we demonstrate that a vanilla deployment of
the meta-base method may move too fast to achieve a
sublinear switching cost and will ruin the overall pol-
icy regret bound, which necessitates additional novel
algorithmic ingredients to better balance the dynamic
regret and switching cost.

Switching cost. The switching cost is the pivot
of the analysis for OCO with memory. Anava et al.
[2015] demonstrate that many popular OCO algo-
rithms for static regret minimization naturally pro-
duce slow-moving decisions, however, it becomes more
difficult in dynamic regret. Intuitively, for dynamic
online algorithms, it is necessary to keep some proba-
bility of aggressive movement in order to catch up with
the potential changes of non-stationary environments,
which results in tensions between dynamic regret and
switching cost. Formally, denote bywt =

∑N
i=1 pt,iwt,i

the final decision returned by the two-layer approach,
then the switching cost can be bounded by

T∑
t=2

∥wt −wt−1∥2 ≤ D

T∑
t=2

∥pt − pt−1∥1

+

T∑
t=2

N∑
i=1

pt,i∥wt,i −wt−1,i∥2. (5)

A formal proof is presented in Appendix B.2.
In the upper bound, the first term

∑T
t=2∥pt −

pt−1∥1 is the switching cost of meta-learner, which
is at most O(

√
T ). However, the second term
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∑T
t=2

∑N
i=1 pt,i∥wt,i − wt−1,i∥2, the weighted sum of

switching cost of all base-learners, becomes the ma-
jor barrier, which could be very large and even grow
linearly over iterations. Specifically, for each base-
learner Bi (OGD with step size ηi), its switching cost
is at most O(ηiT ); additionally, to ensure a coverage
of the optimal step size, the pool of candidate step
sizes is usually set as H = {ηi = O(2i · T− 1

2 ), i ∈ [N ]}
such that η1 = O(T− 1

2 ) and ηN = O(1). Therefore,
the base-learner with larger step sizes would incur un-
acceptable switching cost, for instance, the switching
cost of base-learner BN could grow linearly, of order
O(T ). As a result, the term

∑T
t=2

∑N
i=1 pt,i∥wt,i −

wt−1,i∥2 could be enlarged by base-learners whose step
sizes are too large and therefore is difficult to control.

4.3 Algorithmically Enforcing Low Switching
Cost: a new meta-base decomposition

To resolve the challenge of switching cost in dynamic
online methods, we propose the following new meta-
base regret decomposition to avoid directly controlling
switching cost of final predictions or controlling switch-
ing cost of every base-learner:

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ

T∑
t=2

∥wt −wt−1∥2

≤
T∑
t=1

⟨∇f̃t(wt),wt − vt⟩+ λD

T∑
t=2

∥pt − pt−1∥1

+ λ

T∑
t=2

N∑
i=1

pt,i∥wt,i −wt−1,i∥2

=

T∑
t=1

(
⟨pt, ℓt⟩ − ℓt,i

)
+ λD

T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-regret

(6)

+

T∑
t=1

(
gt(wt,i)− gt(vt)

)
+ λ

T∑
t=2

∥wt,i −wt−1,i∥2︸ ︷︷ ︸
base-regret

.

The first inequality follows from the convexity of unary
functions and switching cost decomposition (5), and
for convenience we introduce the notation of linearized
loss gt(w) = ⟨∇f̃t(wt),w⟩. The second equation is
crucial, in which the key ingredient is the introduced
switching-cost-regularized surrogate loss ℓt ∈ RN for
the meta-algorithm, defined as

ℓt,i = gt(wt,i) + λ∥wt,i −wt−1,i∥2. (7)

Intuitively, the base-learner’s switching cost is now
taken into account when evaluating the base perfor-
mance — the meta-learner will impose more penalty
on base-learners with larger switching cost. Tech-
nically, the key improvement upon previous analysis

in (5) lies in the switching cost term of the base-
learner: we now only need to bound switching cost
of a single base-learner

∑T
t=2∥wt,i−wt−1,i∥2, which is

to be contrasted to the switching cost of all the base-
learners

∑T
t=2

∑N
i=1 pt,i∥wt,i −wt−1,i∥2.

Furthermore, noting that the new meta-base decompo-
sition (6) holds simultaneously for any index i ∈ [N ],
we can therefore choose the compared index as i∗ (the
one with near-optimal step size) and the switching
cost of this base-learner Bi∗ is at most O(ηi∗T ) =
O(
√
T (1 + PT )). In other words, we successfully es-

cape from those base-learners with unacceptably large
step sizes, whose switching cost is too large to tolerate.

Consequently, we can tackle switching cost in the
meta-base methods with the help of the switching-
cost-regularized technique. The rest is more or less
standard. Specifically, the meta-base regret decom-
position indicates the following requirements on the
base-algorithm and meta-algorithm:

• base-algorithm needs to achieve low dynamic re-
gret over unary functions and tolerate its own
switching cost

∑T
t=2∥wt,i −wt−1,i∥2;

• meta-algorithm needs to optimize the switching-
cost-regularized loss to impose more penalty on
base-learners with larger switching cost, and tol-
erate the switching cost

∑T
t=2∥pt − pt−1∥1.

We present settings of step size pool, base-algorithm,
and meta-algorithm to realize above requirements.

Step size pool. We initiate N =
⌈
1
2 log2(1 + T )

⌉
+

1 = O(log T ) base-learners, with step size pool set as

H =

{
ηi

∣∣∣ ηi = 2i−1 ·

√
D2

(λG+G2)T
, i ∈ [N ]

}
. (8)

Base-algorithm. The base-algorithm is chosen as
OGD running over the linearized loss {gt}t=1:T . The
switching cost of each base-learner can be safely con-
trolled, as indicated by Theorem 1. More specifically,
there are N base-learners denoted by B1, . . . ,BN and
the base-learner Bi (with step size ηi ∈ H) performs

wt+1,i = ΠW [wt,i−ηi∇gt(wt,i)] = ΠW [wt,i−ηi∇f̃t(wt)].

The second equation is from gt(w) = ⟨∇f̃t(wt),w⟩
and the update exhibits the computational advantage
due to linearization: although multiple base-learners
are performed, they share the same gradient and thus
the algorithm only calculates one gradient per itera-
tion, rather than N gradients as was anticipated.

Meta-algorithm. The meta-algorithm is set as the
well-known Hedge algorithm [Freund and Schapire,
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Algorithm 1 Scream

Input: step size poolH = {η1, . . . , ηN}, learning rate
of meta-algorithm ε

1: Initialization: w1:m ∈ W, wm,i ∈ W, ∀i ∈ [N ];
pm ∈ ∆N with pm,i ∝ 1/(i2 + i), ∀i ∈ [N ]

2: for t = m+ 1 to T do
3: Receive wt,i from base-learner Bi for i ∈ [N ]

4: Submit the decision wt =
∑N
i=1 pt,iwt,i

5: Suffer a loss of ft(wt−m, . . . ,wt)
6: Observe the online function ft : Wm+1 7→ R

that applies to last m+ 1 decisions
7: Construct linearized loss gt(w) = ⟨∇f̃t(wt),w⟩
8: Construct switching-cost-regularized loss ℓt ∈

RN with ℓt,i = gt(wt,i) + λ∥wt,i −wt−1,i∥2
9: Update the weight pt+1 ∈ ∆N according to

pt+1,i ∝ pt,i exp(−εℓt,i)
10: Base-learner Bi updates the local decision by

wt+1,i = ΠW [wt,i − ηi∇f̃t(wt)], ∀i ∈ [N ]
11: end for

1997] running over the switching-cost-regularized loss.
The weight pt+1 ∈ ∆N is updated by pt+1,i ∝
pt,i exp(−εℓt,i), where ℓt ∈ RN is the switching-
cost-regularized surrogate loss defined in (7) and
ε > 0 is the learning rate. Then, the meta-regret∑T
t=1

(
⟨pt, ℓt⟩ − ℓt,i

)
+ λD

∑T
t=2∥pt − pt−1∥1, essen-

tially the static regret with switching cost, can be
well controlled with ε = O(

√
1/T ). For technical rea-

sons, we adopt a non-uniform initialization by setting
p1 ∈ ∆N with p1,i ∝ 1/(i2 + i). The dependence of
learning rate on T can be removed by either a time-
varying tuning or doubling trick.

We finally remark that base-algorithm (OGD) and
meta-algorithm (Hedge) can be understood in a uni-
fied view from the aspect of Online Mirror Descent
(OMD) [Shalev-Shwartz, 2012, Srebro et al., 2011].
OMD is a powerful online method accommodating
general geometries and both OGD and Hedge are its
special instances. We can generalize the dynamic pol-
icy regret of Theorem 1 from OGD to OMD, and this
can be used to extend all the results in this paper from
ℓ2-norm to general primal-dual norms. More descrip-
tions are supplied in Appendix B.3.

Overall Algorithm. Combining all above ingre-
dients, we propose the Switching-Cost-Regularized
Ensemble Algorithm for OCO with Memory (Scream)
algorithm, which is based on online mirror descent
and admits a two-layer meta-base structure. Algo-
rithm 1 presents overall procedures: each base-learner
performs OGD with its step size as shown in Line 10;
the meta-learner combines local decisions and updates
the weight according to the switching-cost-regularized
loss as described in Lines 4–9. Our algorithm enjoys an

optimal dynamic policy regret, striking a good balance
between regret and switching cost.

Theorem 2. Under Assumptions 1–3, by setting the
learning rate optimally of meta-algorithm as ε =√

2/((2λ+G)(λ+G)D2T ) and the step size pool H
as (8), our proposed Scream algorithm ensures that
for any comparator sequence v1, . . . ,vT ∈ W, we have

D-RegT (v1:T ) ≤ O
(√

λT (1 + PT ) + λ
√
T + λPT

)
.

So dynamic policy regret is O(λ
√
T (1 + PT )), where

λ = m2L and PT =
∑T
t=2∥vt−1 − vt∥2.

Remark 1. Since the dynamic policy regret holds
for any comparator sequence, by simply setting com-
parators as the fixed best decision in hindsight (now
PT = 0), our dynamic policy regret implies the O(

√
T )

static policy regret [Anava et al., 2015]. Second, the
attained dynamic policy regret is minimax optimal in
terms of T and PT , as an Ω(

√
T (1 + PT )) lower bound

has been established for the dynamic regret of mem-
oryless OCO [Zhang et al., 2018a], which is a special
case of OCO with memory when setting m = 0.

Remark 2. The dynamic policy regret in Theorem 2
exhibits a quadratic dependence on the memory length
m, while the best static policy regret for OCO with
memory only exhibits a linear dependence [Anava
et al., 2015] (see discussions in Appendix B.5 for de-
tails). Recall the upper bound decomposition of dy-
namic policy regret in (3), though we cannot reduce
the memory dependence in front of switching of com-
parators, it remains unclear whether it is possible to
achieve a linear memory dependence for dynamic re-
gret of unary functions and switching cost of final de-
cisions. We leave this as future work.

5 Online Non-stochastic Control

In this section, we apply the results of OCO with mem-
ory to an important online decision-making problem,
online non-stochastic control [Agarwal et al., 2019],
which draws much attention from researchers in on-
line learning and control theory communities [Agar-
wal et al., 2019, Simchowitz et al., 2020, Hazan et al.,
2020, Simchowit, 2020, Gradu et al., 2020a, Cassel and
Koren, 2020, Gradu et al., 2020b, Zhang et al., 2021].

5.1 Problem Statement

Problem Setting. We study the online control of
the linear dynamical system (LDS) governed by

xt+1 = Axt +But + wt, (9)

where at iteration t, the controller provides the control
ut upon the observed dynamical state xt and suffers a
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cost ct(xt, ut) with convex function ct : Rdx×Rdu 7→ R.
Following the notational convention of previous works,
throughout the section we will use unbold fonts to de-
note vectors (including control signal, state, distur-
bance, etc.). We focus on online non-stochastic con-
trol [Agarwal et al., 2019], that is, the disturbance can
be generated arbitrarily and no statistical assumption
is imposed on its distribution; additionally, cost func-
tions can be chosen adversarially. The adversarial na-
ture of the disturbance and online cost functions hin-
ders an a priori computation of the optimal policy as
in settings of classical control theory [Kalman, 1960]
and therefore requires techniques from modern online
learning to tackle adversarial environments.

Policy Regret. The standard measure for online non-
stochastic control is the policy regret [Agarwal et al.,
2019], defined as the difference between cumulative
loss of the designed controller A and that of the com-
pared controller π ∈ Π, namely,

RegT =

T∑
t=1

ct(xt, ut)−min
π∈Π

T∑
t=1

ct(x
π
t , u

π
t ). (10)

The comparator could be chosen with complete fore-
knowledge of the disturbance and loss functions. A
variety of control algorithms have been proposed to op-
timize the measure under different settings. However,
we argue that competing with a fixed controller may be
not appropriate, especially because the unknown dis-
turbance and cost functions can change arbitrarily in
the non-stochastic control setting so that the optimal
controller of each round would also change accordingly.
Therefore, it is necessary to facilitate the online con-
troller with capability of competing with time-varying
controllers to adapt to those changes. To this end, we
generalize the standard measure (10) to the dynamic
policy regret to benchmark the algorithm with a se-
quence of time-varying controllers π1, . . . , πT ∈ Π,

D-RegT (π1:T ) =

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t ), (11)

The measure clearly subsumes standard policy re-
gret (10) when choosing compared controllers as a

fixed one, i.e., π∗ ∈ argminπ∈Π

∑T
t=1 ct(x

π
t , u

π
t ). In

this work, the benchmark set Π is chosen as the class of
disturbance-action controllers (cf. Definition 1), which
encompasses many controllers of interest.

5.2 Reduction to OCO with Memory

Following the pioneering work [Agarwal et al., 2019],
we will work on the policy class called Disturbance-
Action Controller (DAC) class, which parametrizes
the executed action as a linear function of past dis-
turbances. By doing so, we can reduce online non-
stochastic control to OCO with memory so that the

results of Section 4 can be leveraged to design robust
controllers with provable dynamic policy regret.

Definition 1 (Disturbance-Action Controller, DAC).
A disturbance-action controller π(K,M) with a mem-
ory length H is specified by a fixed matrix K and pa-
rameters M = (M [1], . . . ,M [H]). At each iteration t,
the controller π(K,M) chooses the action as a linear
map of past disturbances with an offset linear con-
troller, formally, ut = −Kxt +

∑H
i=1M

[i]wt−i.

For convenience, we define wi = 0 for i < 0. The DAC
policy can be implemented because the disturbance
can be perfectly recovered by wt = xt+1−Axt−But as
system dynamics A and B are supposed to be known.

The following proposition due to Agarwal et al. [2019]
presents an important property of DAC policies.

Proposition 3. Suppose the initial state is x0 = 0 and
one chooses the DAC controller π(K,Mt) at iteration
t, the reaching state and the corresponding DAC con-
trol are xKt (M0:t−1) =

∑H+t−1
i=0 ΨK,t−1

t−1,i (M0:t−1)wt−1−i

and uKt (M0:t) = −KxKt (M0:t−1) +
∑H
i=1M

[i]
t wt−i,

where ÃK = A−BK and ΨK,ht,i (Mt−h:t) = ÃiK1i≤h +∑h
j=0 Ã

j
KBM

[i−j]
t−j 11≤i−j≤H .

Evidently, both state xt and control signal ut are lin-
ear functions of DAC parameters M0, . . . ,Mt, so the
cost ct(x

K
t (M0:t−1), u

K
t (M0:t)) is a function of histori-

cal parametersM0:t. Thereby, the remaining challenge
is to handle this memory issue due to the state transi-
tion of online control, which can be addressed by OCO
with memory studied in Section 4. Note that there is
one big caveat in applying the technique — the cur-
rent memory length is not fixed but growing with time,
which is not feasible in the OCO with memory setting.
To this end, Agarwal et al. [2019] further propose a
truncated method that truncates the state with a fixed
memory length H and defines the truncated loss.

Definition 2 (Truncated Loss). For the cost func-
tion ct : Rdx × Rdu 7→ R and DAC policies
{π(K,Mt)}t=1,...,T , given memory length H, the in-
duced truncated loss ft : MH+2 7→ R is defined as

ft(Mt−1−H:t) = ct(y
K
t (Mt−1−H:t−1), v

K
t (Mt−1−H:t)),

where the truncated state and truncated DAC con-
trol are yKt+1 =

∑2H
i=0 Ψ

K,H
t,i (Mt−H:t)wt−i and vKt+1 =

−KyKt+1(Mt−H:t) +
∑H
i=1M

[i]
t+1wt+1−i.

It can be proved that the error introduced by the trun-
cation (the gap between ft and ct) can be precisely
controlled. Therefore, it remains to feed the truncated
loss ft to the OCO with memory framework with a
memory length of H+2. We finish the reduction from
online non-stochastic control to OCO with memory.
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Algorithm 2 Scream.Control

Input: step size poolH = {η1, . . . , ηN}; learning rate
of meta-algorithm ε; memory lengthH; linear con-
troller K; feasible set M

1: Initialization: u1, . . . , uH , any feasible output con-
trol signals for the first H rounds;

2: Initialization: base decisions of the H-th round
MH,1,MH,2, . . .MH,N ∈ M; non-uniform weight
pH+1 ∈ ∆N with pH+1,i ∝ 1/(i2 + i), ∀i ∈ [N ]

3: for t = H + 1 to T do
4: Receive Mt,i from base-learner Bi for i ∈ [N ]

5: Obtain the parameter Mt =
∑N
i=1 pt,iMt,i

6: Output ut = −Kxt +
∑H
i=1M

[i]
t wt−i

7: Suffer a loss of ct(xt, ut) and Observe the cost
function ct : Rdx × Rdu 7→ R

8: Construct truncated loss ft : MH+2 7→ R by
Definition 2 and gt(M) = ⟨∇f̃t(Mt),M⟩

9: Compute the switching-cost-regularized loss
ℓt ∈ RN with ℓt,i = λ∥Mt,i−Mt−1,i∥F+gt(Mt,i)

10: Update the weight pt+1 ∈ ∆N according to
pt+1,i ∝ pt,i exp(−εℓt,i)

11: Base-learner Bi updates the local parameter by
Mt+1,i = ΠM[Mt,i − ηi∇f̃t(Mt)]

12: Observe the new state xt+1 and calculate the
disturbance wt = xt+1 −Axt −But

13: end for

5.3 Dynamic Policy Regret of Online
Non-stochastic Control

The above reduction enables us to leverage results of
OCO with memory (Section 4) to design online con-
trollers competitive with time-varying compared poli-
cies. We propose the Scream.Control algorithm,
consisting of the following two components:

(1) DAC parameterization for reduction: using DAC
control ut = π(K,Mt) to parametrize the space
and define the unary loss of the truncated loss,
i.e., f̃t : M 7→ R with f̃t(M) = ft(M, . . . ,M),
defined in Definition 2.

(2) meta-base structure for OCO with memory: per-
forming Scream algorithm of Section 4 over unary
loss f̃t, and using meta-algorithm to combine
intermediate parameters Mt,1, . . . ,Mt,N from all
base-learners to produce the final parameter Mt.

Algorithm 2 describes our proposed algorithm for opti-
mizing dynamic policy regret of online non-stochastic
control. We further provide its theoretical guarantee.
We begin with several standard assumptions used in
the literature [Agarwal et al., 2019, Hazan et al., 2020,
Gradu et al., 2020a] and next present the main result.

Assumption 4. The system matrices are bounded,
i.e., ∥A∥op ≤ κA and ∥B∥op ≤ κB . Besides, the dis-

turbance ∥wt∥ ≤W holds for any t ∈ [T ].

Assumption 5. The cost function ct(x, u) is convex.
Further, when ∥x∥, ∥u∥ ≤ D, it holds that |ct(x, u)| ≤
βD2 and ∥∇xct(x, u)∥, ∥∇uct(x, u)∥ ≤ GcD.

Assumption 6. DAC controller π(K,M) satisfies:

(1) K is (κ, γ)-strongly stable, whose precise defini-
tion is in Definition 3 of Appendix A.2;

(2) M ∈ M such that M = {M = (M [1], . . . ,M [H]) |
∥M [i]∥op ≤ κBκ

3(1− γ)i}.
Theorem 4. Under Assumptions 4–6, we set learning
rate optimally and the step size pool H as

H =

{
ηi

∣∣∣ ηi = 2i−1·

√
D2
f

(λGf +G2
f )T

, i ∈ [N ]

}
, (12)

where N =
⌈
1
2 log2(1 + T )

⌉
+1 = O(log T ) is the num-

ber of base-learners, and λ = (H+2)2Lf . The param-
eters Lf , Gf , Df are defined in Lemma 20 and only
depend on natural parameters of the linear dynamical
system and truncated memory length H. By choosing
H = Θ(log T ), our Scream.Control algorithm enjoys

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t ) ≤ Õ

(√
T (1 + PT )

)
,

where the comparators can be any feasible policies in
Π = {π(K,M) | M ∈ M} with πt = π(K,M∗

t ) for

t ∈ [T ]. The path-length PT =
∑T
t=2∥M∗

t−1 −M∗
t ∥F

measures the cumulative variation of comparators.

6 Conclusion

This paper investigates the dynamic policy regret of
online convex optimization with memory and online
non-stochastic control. For OCO with memory, we
propose the Scream algorithm and prove an optimal
O(
√
T (1 + PT )) dynamic policy regret, where PT is

the path-length of comparators that reflects the en-
vironmental non-stationarity. Our approach admits
the meta-base aggregation to handle uncertain envi-
ronments and introduces a novel meta-base decompo-
sition via switching-cost regularized loss to algorith-
mically address the tension between dynamic regret
and switching cost. The approach is further used to
design robust controllers for online non-stochastic con-
trol, where the underlying disturbance and cost func-
tions could be chosen adversarially. We adopt the
DAC parameterization and design the Scream.Control
algorithm that provably achieves an Õ(

√
T (1 + PT ))

dynamic policy regret, where PT is the path-length
of compared controllers. Minimizing dynamic policy
regret facilitates our controller with more robustness,
since it can compete with any sequence of time-varying
controllers instead of a fixed one.
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A Preliminaries

In this section, we present the preliminaries, including the dynamic regret results of memoryless online convex
optimization, additional notions, and some technical lemmas.

A.1 Dynamic Regret of Memoryless OCO

In this part we present the dynamic regret analysis of the online gradient descent (OGD) algorithm for memoryless
online convex optimization [Zinkevich, 2003, Zhang et al., 2018a, Zhao et al., 2020b].

We first specify the problem settings and notations of memoryless online convex optimization. Specifically, the
player iteratively selects a decision w ∈ W from a convex set W ⊆ Rd and then suffers a loss of ft(wt), in
which the loss function ft : W 7→ R is assumed to be convex and chosen adversarially by the environments. The
performance measure we are concerned with is the dynamic regret, defined as

D-RegT (v1, . . . ,vT ) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(vt),

where v1, . . . ,vT ∈ W is the comparator sequence arbitrarily chosen in the domain by the environments. The
critical advantage of the above measure is that it supports to compete with a sequence of time-varying compara-
tors, instead of a fixed one as specified in the standard (static) regret.

In the development of dynamic regret of memoryless OCO, one of the most crucial building blocks is the well-
known Online Gradient Descent (OGD) algorithm [Zinkevich, 2003], which starts from any w1 ∈ W and performs
the following update,

wt+1 = ΠW [wt − η∇ft(wt)]. (13)

Here, η > 0 is the step size and ΠW [·] denotes the Euclidean projection onto the nearest point in the feasible
domain W. The standard textbooks of online convex optimization [Shalev-Shwartz, 2012, Hazan, 2016] show
that OGD can achieves an optimal O(

√
T ) static regret for convex functions, providing with appropriate step

size settings. Furthermore, such a simple algorithm actually also enjoys the following dynamic regret guaran-
tee [Zinkevich, 2003, Theorem 2], and we supply the proof for self-containedness.

Theorem 5. Let W ∈ Rd be a bounded convex and compact set in Euclidean space, and we denote by D an
upper bound of the diameter of the domain, i.e., ∥w−w′∥2 ≤ D holds for any w,w′ ∈ W. Suppose the gradient
norm of ft over W is bounded by G, i.e., ∥∇ft(w)∥2 ≤ G holds for any w ∈ W and t ∈ [T ]. Then, OGD (13)
enjoys the following dynamic regret,

D-RegT (v1, . . . ,vT ) ≤
η

2
G2T +

1

2η
(D2 + 2DPT ),

which holds for any comparator sequence v1, . . . ,vT ∈ W, and PT =
∑T
t=2∥vt−1 − vt∥2 is the path-length that

measures the cumulative movements of the comparator sequence.

Proof Since the online functions are convex, we have

D-RegT (v1, . . . ,vT ) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(vt) ≤
T∑
t=1

⟨∇ft(wt),wt − vt⟩.

Thus, it suffices to bound the sum of ⟨∇ft(wt),wt−vt⟩ over iterations. Note that from the update rule in (41),

∥wt+1 − vt∥22 = ∥ΠX [wt − η∇ft(wt)]− vt∥22
≤ ∥wt − η∇ft(wt)− vt∥22
= η2∥∇ft(wt)∥22 − 2η⟨∇ft(wt),wt − vt⟩+ ∥wt − vt∥22

The inequality holds due to Pythagorean theorem [Hazan, 2016, Theorem 2.1]. After rearranging, we obtain

⟨∇ft(wt),wt − vt⟩ ≤
η

2
∥∇ft(wt)∥22 +

1

2η

(
∥wt − vt∥22 − ∥wt+1 − vt∥22

)
.
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Summing the above inequality from t = 1 to T yields,

D-RegT (v1, . . . ,vT ) ≤
η

2

T∑
t=1

∥∇ft(wt)∥22 +
1

2η

T∑
t=1

(
∥wt − vt∥22 − ∥wt+1 − vt∥22

)
.

We further provide an upper bound for the second term on the right-hand side. Indeed,

T∑
t=1

(
∥wt − vt∥22 − ∥wt+1 − vt∥22

)
≤

T∑
t=1

∥wt − vt∥22 −
T∑
t=2

∥wt − vt−1∥22

≤ ∥w1 − v1∥22 +
T∑
t=2

(
∥wt − vt∥22 − ∥wt − vt−1∥22

)
= ∥w1 − v1∥22 +

T∑
t=2

⟨vt−1 − vt, 2wt − vt−1 − vt⟩

≤ D2 + 2D
T∑
t=2

∥vt−1 − vt∥2.

Combining all above inequalities, we have

D-RegT (v1, . . . ,vT ) ≤
η

2

T∑
t=1

∥∇ft(wt)∥22 +
1

2η

(
D2 + 2D

T∑
t=2

∥vt−1 − vt∥2

)

≤ η

2
G2T +

1

2η
(D2 + 2DPT ).

Hence, we complete the proof.

A.2 Additional Notions

We introduce the formal definition of strongly stable linear controllers [Cohen et al., 2018, Agarwal et al.,
2019]. Indeed, the stable condition can guarantee the convergence, but nothing can be ensured about the rate
of convergence. While working on the class of strongly stable controllers, we can establish the non-asymptotic
convergence rate.

Definition 3. A linear controller K is (κ, γ)-strongly stable if there exist matrices L,H satisfying A − BK =
HLH−1, such that the following two conditions are satisfied:

(1) The spectral norm of L satisfies ∥L∥ ≤ 1− γ.

(2) The controller and transforming matrices are bounded, i.e., ∥K∥ ≤ κ and ∥H∥, ∥H−1∥ ≤ κ.

A.3 Technical Lemmas

The following lemma plays an important role in analyzing algorithms based on the mirror descent.

Lemma 6 (Lemma 3.2 of Chen and Teboulle [1993]). Let X be a convex set in a Banach space B. Let f : X 7→ R
be a closed proper convex function on X . Given a convex regularizer ψ : X 7→ R, we denote its induced Bregman
divergence by Dψ(·, ·). Then, any update of the form

xk = argmin
x∈X

{f(x) +Dψ(x,xk−1)}

satisfies the following inequality for any u ∈ X ,

f(xk)− f(u) ≤ Dψ(u,xk−1)−Dψ(u,xk)−Dψ(xk,xk−1).
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Lemma 7. If the regularizer ψ : X 7→ R is λ-strongly convex with respect to a norm ∥ · ∥, then we have the
following lower bound for the induced Bregman divergence: Dψ(x,y) ≥ λ

2 ∥x− y∥2.

Proof By the definition of strong convexity, we know that for any x,y ∈ X , ψ(x) ≥ ψ(y) +∇ψ(y)⊤(x− y) +
λ
2 ∥x − y∥2. Reformulating the inequality and combining the definition of Bregman divergence, we know that

Dψ(x,y) ≜ ψ(x)− ψ(y) +∇ψ(y)⊤(x− y) ≥ λ
2 ∥x− y∥2, which ends the proof.

B Omitted Details for Section 4 (OCO with Memory)

In this section, we present omitted details for Section 4 OCO with memory, including proofs of Theorem 1
(in Appendix B.1) and Theorem 2 (in Appendix B.4). Moreover, we provide the proof of the switching cost
decomposition (5) in Appendix B.2 and supply more details for the online mirror descent in Appendix B.3. We
finally discuss the memory dependence in Appendix B.5.

B.1 Proof of Theorem 1

Proof The coordinate-Lipschitz continuity of ft (Assumption 1) implies that

|ft(wt−m, . . . ,wt)− f̃t(wt)| ≤ L ·
m∑
i=1

∥wt −wt−i∥2 ≤ mL

m∑
i=1

∥wt−i+1 −wt−i∥2.

Therefore, we have
T∑
t=m

ft(wt−m, . . . ,wt)−
T∑
t=m

f̃t(wt) ≤ m2L

T∑
t=m

∥wt −wt−1∥2, (14)

and the dynamic policy regret can be thus upper bounded by

D-RegT (v1, . . . ,vT ) =

T∑
t=1

ft(wt−m, . . . ,wt)−
T∑
t=1

ft(vt−m, . . . ,vt)

(14)

≤
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt)︸ ︷︷ ︸
dynamic regret over unary loss

+ λ

T∑
t=1

∥wt −wt−1∥2︸ ︷︷ ︸
switching cost of decisions

+ λ

T∑
t=1

∥vt − vt−1∥2︸ ︷︷ ︸
switching cost of comparators

,
(15)

where we define λ := m2L for notational convenience. Note that the first term is the dynamic regret over the
unary loss, which is optimized by OGD over the unary loss. Since the sequence of unary loss {f̃t}Tt=1 is convex
and memoryless, from the standard dynamic regret analysis [Zinkevich, 2003, Zhang et al., 2018a], as shown in
Theorem 5, we know that

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) ≤
η

2
G2T +

1

2η
(D2 + 2DPT ), (16)

where PT =
∑T
t=2∥vt − vt−1∥2 is the path-length measuring the fluctuation of the comparator sequence

v1,v2, . . . ,vT . Next, the last term of (15) is the switching cost of the comparators, which is exactly the
path-length λPT .

So we only need to further examine the switching cost of the decisions, i.e.,
∑T
t=2∥wt−1 − wt∥2, as well as

the dynamic regret over the unary loss, i.e.,
∑T
t=1 f̃t(wt) −

∑T
t=1 f̃t(vt). By the non-expansive property of the

projection operator, we can derive an upper bound for the switching cost:

T∑
t=1

∥wt −wt−1∥2 =

T∑
t=1

∥ΠW [wt−1 − ηgt−1]−wt−1∥2 ≤ η

T∑
t=1

∥gt−1∥2 ≤ ηGT. (17)
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Combining above two inequalities (17) and (16) yields

T∑
t=1

ft(wt−m, . . . ,wt)−
T∑
t=1

ft(vt−m, . . . ,vt) ≤
η

2
(G2 + 2λG)T +

1

2η
(D2 + 2DPT ) + λPT ,

with λ = m2L. We thus compete the proof.

B.2 Proof of Switching Cost Decomposition

The following lemma restates the switching cost decomposition presented in (5) of the main paper.

Lemma 8. The switching cost of meta-base outputs can be upper bounded in the following way:

T∑
t=2

∥wt −wt−1∥2 ≤ D

T∑
t=2

∥pt − pt−1∥1 +
T∑
t=2

N∑
i=1

pt,i∥wt,i −wt−1,i∥2.

Proof By the meta-base structure, the final decision of each round is wt =
∑N
i=1 pt,iwt,i. Therefore, we can

expand the switching cost of the final prediction sequence as

∥wt −wt−1∥2 =

∥∥∥∥∥
N∑
i=1

pt,iwt,i −
N∑
i=1

pt−1,iwt−1,i

∥∥∥∥∥
2

≤

∥∥∥∥∥
N∑
i=1

pt,iwt,i −
N∑
i=1

pt,iwt−1,i

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

pt,iwt−1,i −
N∑
i=1

pt−1,iwt−1,i

∥∥∥∥∥
2

≤
N∑
i=1

pt,i∥wt,i −wt−1,i∥2 +D

N∑
i=1

|pt,i − pt−1,i|

=

N∑
i=1

pt,i∥wt,i −wt−1,i∥2 +D∥pt − pt−1∥1, (18)

where the first inequality holds due to the triangle inequality and the second inequality is true owing to the
boundedness of the feasible domain (Assumption 3). Hence, we complete the proof.

B.3 Additional Results for Online Mirror Descent

In this section, we present additional results and descriptions for Online Mirror Descent (OMD), which enables
a unified view for algorithmic design of both meta-algorithm and base-algorithm.

Consider the standard online convex optimization setting, and the sequence of online convex functions are
{ht}t=1,...,T with ht : W 7→ R. Online mirror descent starts from any w1 ∈ W, and at iteration t, the algorithm
performs the following update:

wt+1 = argmin
w∈W

η⟨∇ht(wt),w⟩+Dψ(w,wt), (19)

where η > 0 is the step size. The regularizer ψ : W 7→ R is a differentiable convex function defined on W and
is assumed (without loss of generality) to be 1-strongly convex w.r.t. some norm ∥ · ∥ over W. The induced
Bregman divergence Dψ is defined by Dψ(x,y) = ψ(x)− ψ(y)− ⟨∇ψ(y),x− y⟩.

The following generic result gives an upper bound of dynamic regret with switching cost of OMD, which can
be regarded as a generalization of Theorem 1 from gradient descent (for Euclidean norm) to mirror descent (for
general primal-dual norm).
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Theorem 9. Online Mirror Descent (19) satisfies that

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) + λ

T∑
t=2

∥wt −wt−1∥ ≤ 1

η

(
R2 + γPT

)
+ η(λG+G2)T, (20)

provided that Dψ(x, z)−Dψ(y, z) ≤ γ∥x−y∥ holds for any x,y, z ∈ W. In above, R2 = supx,y∈W Dψ(x,y), and
G = supw∈W,t∈[T ]∥∇ht(w)∥∗. Note that the above result holds for any comparator sequence v1, . . . ,vT ∈ W.

Remark 3. The dynamic regret of Theorem 9 holds against any comparator sequence in the domain, in partic-
ular, we can set comparators as the best fixed decision in hindsight and thus obtain static regret with switching
cost,

∑T
t=1 ht(wt) −

∑T
t=1 ht(w

∗) + λ
∑T
t=2∥wt −wt−1∥ ≤ R2/η + η(λG + G2)T , that holds for any w∗ ∈ W.

A technical caveat is that when deriving the static regret, the Bregman divergence is not required to satisfy the
Lipschitz condition.

Theorem 9 exhibits a general analysis for the dynamic regret and switching cost of OMD algorithm. By flexibly
choosing the regularizer ψ and comparator sequence v1, . . . ,vT , we can obtain the following two implications,
which correspond to base-regret (dynamic regret with switching cost of OGD) and meta-regret (static regret
with switching cost of Hedge) respectively.

Before presenting the proof of Theorem 9, we first analyze the switching cost of the online mirror descent, as
demonstrated in the following stability lemma.

Lemma 10. For Online Mirror Descent (19), the instantaneous switching cost is at most

∥wt −wt+1∥ ≤ η∥∇ht(wt)∥∗. (21)

Proof From the update procedure of OMD (19) and Lemma 6, we know that

⟨wt+1 −wt, η∇ht(wt)⟩ ≤ Dψ(wt,wt)−Dψ(wt,wt+1)−Dψ(wt+1,wt),

which implies
Dψ(wt,wt+1) +Dψ(wt+1,wt) ≤ ⟨wt −wt+1, η∇ht(wt)⟩.

Since the regularizer ψ is chosen as a 1-strongly convex function with respect to the norm ∥ · ∥, by Lemma 7 we
have

Dψ(wt,wt+1) +Dψ(wt+1,wt) ≥ ∥wt −wt+1∥2.

Combining above two inequalities and further applying the Hölder’s inequality, we obtain that

∥wt −wt+1∥2 ≤ ⟨wt −wt+1, η∇ht(wt)⟩ ≤ ∥wt −wt+1∥∥η∇ht(wt)∥∗.

Therefore, we conclude that ∥wt −wt+1∥ ≤ η∥∇ht(wt)∥∗ and finish the proof.

Based on the above stability lemma, we can now prove Theorem 9 regarding dynamic regret with switching cost
for OMD.

Proof [of Theorem 9] Notice that the dynamic regret can be decomposed in the following way:

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) ≤
T∑
t=1

⟨∇ht(wt),wt − vt⟩

=

T∑
t=1

⟨∇ht(wt),wt −wt+1⟩︸ ︷︷ ︸
term (a)

+

T∑
t=1

⟨∇ht(wt),wt+1 − vt⟩︸ ︷︷ ︸
term (b)

.

From Lemma 10 and Hölder’s inequality, we have

term (a) ≤
T∑
t=1

∥∇ht(wt)∥∗∥wt −wt+1∥ ≤ η

T∑
t=1

∥∇ht(wt)∥2∗. (22)
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Next, we investigate the term (b):

term (b) ≤ 1

η

T∑
t=1

(Dψ(vt,wt)−Dψ(vt,wt+1)−Dψ(wt+1,wt))

≤ 1

η

T∑
t=2

(Dψ(vt,wt)−Dψ(vt−1,wt)) +Dψ(v1,w1)

≤ γ

η

T∑
t=2

∥vt − vt−1∥+
1

η
R2, (23)

where the first inequality holds due to Lemma 6, and the second inequality makes uses of the non-negativity of
the Bregman divergence. The last inequality holds due to the assumption of Lipschitz property that Dψ(x, z)−
Dψ(y, z) ≤ γ∥x− y∥ holds for any x,y, z ∈ W.

Furthermore, the switching cost can be bounded by Lemma 10,

T∑
t=2

∥wt −wt−1∥ ≤ η
T∑
t=2

∥∇ht−1(wt−1)∥∗. (24)

Combining (22), (23), and (24), we can attain that

λ

T∑
t=2

∥wt −wt−1∥+
T∑
t=1

ht(wt)−
T∑
t=1

ht(vt)

≤ 1

η
(R2 + γPT ) + η

T∑
t=1

(λ∥∇ht(wt)∥∗ + ∥∇ht−1(wt−1)∥2∗)

≤ 1

η
(R2 + γPT ) + η(λG+G2)T,

which finishes the proof.

As we mentioned earlier, Theorem 1 can be regarded as a corollary of Theorem 9, by specifying the Euclidean
norm and ψ(w) = 1

2∥w∥22. We give a formal statement in the following corollary.

Corollary 11. Setting the ℓ2 regularizer ψ(w) = 1
2∥w∥22 and step size η > 0 for OMD, suppose ∥∇f̃t(w)∥2 ≤ G

and ∥w −w′∥2 ≤ D hold for all w ∈ W and t ∈ [T ], then we have

λ

T∑
t=2

∥wt −wt−1∥2 +
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) ≤ (G2 + λG)ηT +
1

2η
(D2 + 2DPT ), (25)

which holds for any comparator sequence v1, . . . ,vT ∈ W, and PT =
∑T
t=2∥vt−1 − vt∥2 is the path-length that

measures the cumulative movements of the comparator sequence.

Further, we present a corollary regarding the static regret with switching cost for the meta-algorithm, which is
essentially a specialization of OMD algorithm by setting the negative-entropy regularizer.

Corollary 12. Setting the negative-entropy regularizer ψ(p) =
∑N
i=1 pi log pi and learning rate ε > 0 for OMD,

suppose ∥ℓt∥∞ ≤ G holds for any t ∈ [T ] and the algorithm starts from the initial weight p1 ∈ ∆N , then we have

λ

T∑
t=2

∥pt − pt−1∥1 +
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤
ln(1/p1,i)

ε
+ ε(λG+G2)T. (26)

Proof From the proof of Theorem 9, we can easily obtain that

λ

T∑
t=2

∥pt − pt−1∥1 +
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤
Dψ(ei,p1)

ε
+ ε(λG+G2)T.
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When choosing the negative-entropy regularizer, the induced Bregman divergence becomes Kullback-Leibler
divergence, i.e., Dψ(q,p) = KL(q,p) =

∑N
i=1 qi ln(qi/pi). Therefore, Dψ(ei,p1) = ln(1/p1,i), which implies the

desired result.

B.4 Proof of Theorem 2

Proof As indicated in (15), the dynamic policy regret can be upper bounded by three terms, including dynamic
regret over the unary regret, switching cost of decisions, and switching cost of comparators. The third term is
essentially the path-length of the comparators, and we focus on the first two terms.

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ

T∑
t=2

∥wt −wt−1∥2

(5)

≤
T∑
t=1

⟨∇f̃t(wt),wt − vt⟩+ λD

T∑
t=2

∥pt − pt−1∥1 + λ

T∑
t=2

N∑
i=1

pt,i∥wt,i −wt−1,i∥2

=

T∑
t=1

N∑
i=1

pt,i

(
⟨∇f̃t(wt),wt,i⟩+ λ∥wt,i −wt−1,i∥2

)
−

T∑
t=1

(
⟨∇f̃t(wt),wt,i⟩+ λ∥wt,i −wt−1,i∥2

)
+ λD

T∑
t=2

∥pt − pt−1∥1 +
T∑
t=1

(
⟨∇f̃t(wt),wt,i⟩ − ⟨∇f̃t(wt),vt⟩

)
+ λ

T∑
t=2

∥wt,i −wt−1,i∥2

=

T∑
t=1

(
⟨pt, ℓt⟩ − ℓt,i

)
+ λD

T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-regret

+

T∑
t=1

(
gt(wt,i)− gt(vt)

)
+ λ

T∑
t=2

∥wt,i −wt−1,i∥2︸ ︷︷ ︸
base-regret

.

where the last step uses the convexity of f̃t and the definition of linearized loss gt(w) = ⟨∇f̃t(wt),w⟩. We will
formally prove that our proposed algorithm optimizes the right-hand side of above inequality.

Bounding meta-regret. Denote by ei the i-th standard basis of RN -space and by λ′ = λD for simplicity.
Since the meta-algorithm actually performs Hedge over the switching-cost-regularized loss ℓt ∈ RN , Corollary 12
implies that for any i ∈ [N ],

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i + λ′
T∑
t=2

∥pt − pt−1∥1 ≤ ε(λ′Gmeta +G2
meta)T +

Dψ(ei,p1)

ε

= ε(2λ+G)(λ+G)D2T +
ln(1/p1,i)

ε

≤ ε(2λ+G)(λ+G)D2T +
2 ln(i+ 1)

ε
.

It can be verified that Gmeta = maxt∈[T ]∥ℓt∥∞ ≤ (λ + G)D. Moreover, the last step holds because we adopt

a non-uniform weight initialization with the initial weight p1 ∈ ∆N set as p1,i =
1

i(i+1) ·
N+1
N for any i ∈ [N ].

By choosing the learning rate as ε = ε∗ =
√

2
(2λ+G)(λ+G)D2T , we can obtain the following upper bound for the

meta-regret,

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i + λ′
T∑
t=2

∥pt − pt−1∥1 ≤ D
√
2(2λ+G)(λ+G)T (1 + ln(i+ 1)). (27)

Note that the dependence of learning rate tuning on T can be removed by either a time-varying tuning or
doubling trick.

Bounding base-regret. As specified by our algorithm, there are multiple base-learners, each performing OGD
over the linearized loss with a particular step size ηi ∈ H for base-learner Bi:

wt+1,i = ΠW [wt,i − ηi∇gt(wt,i)] = ΠW [wt,i − ηi∇f̃t(wt)].
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As a result, Theorem 9 implies that the base-regret satisfies

T∑
t=1

gt(wt,i)−
T∑
t=1

gt(vt) + λ

T∑
t=2

∥wt,i −wt−1,i∥2 ≤ (G2 + λG)ηiT +
1

2ηi
(D2 + 2DPT ), (28)

which holds for any comparator sequence v1, . . . ,vT ∈ W as well as any base-learner i ∈ [N ].

Bounding overall dynamic regret. Due to the boundedness of the path-length, we know that the optimal
step size η∗ provably lies in the range of [η1, ηN ]. Furthermore, by the construction of the pool of candidate step
sizes, we can confirm that there exists an index i∗ ∈ [N ] ensuring ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . Therefore, we have

i∗ ≤
⌈1
2
log2

(
1 +

2PT
D

)⌉
+ 1. (29)

Notice that the meta-base decomposition at the beginning of the proof holds for any index of base-learners
i ∈ [N ]. Thus, in particular, we can choose the index i∗ and achieve the following result by using the upper
bounds of meta-regret (27) and base-regret (28).

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ

T∑
t=2

∥wt −wt−1∥2

≤
T∑
t=1

(
⟨pt, ℓt⟩ − ℓt,i∗

)
+ λD

T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-regret

+

T∑
t=1

(
gt(wt,i∗)− gt(vt)

)
+ λ

T∑
t=2

∥wt,i∗ −wt−1,i∥2︸ ︷︷ ︸
base-regret

≤ D
√
2(2λ+G)(λ+G)T (1 + ln(i∗ + 1)) + (G2 + λG)ηi∗T +

1

2ηi∗
(D2 + 2DPT )

≤ D
√

2(2λ+G)(λ+G)T (1 + ln(i∗ + 1)) + (G2 + λG)η∗T +
1

η∗
(D2 + 2DPT )

≤ 2D(λ+G)
√
T
(
1 + ln

(⌈
log2(1 + 2PT /D)

⌉
+ 2
))

︸ ︷︷ ︸
≤O(

√
T (1+log logPT ))

+2
√
2
√

(G2 + λG)(D2 + 2DPT )T︸ ︷︷ ︸
≤O(

√
T (1+PT ))

≤ O(
√
T (1 + PT )).

Combining the upper bound of the dynamic policy regret exhibited in (3), we can achieve that

D-RegT (v1:T ) ≤ λ

T∑
t=2

∥wt −wt−1∥2 + λ

T∑
t=2

∥vt − vt−1∥2 +
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt)

≤ O(
√
T (1 + PT )) +O(PT )

≤ O(
√
T (1 + PT ) + P 2

T ) (
√
a+

√
b ≤

√
2(a+ b))

= O(
√
T + (T + PT )PT )

≤ O(
√
T (1 + PT )),

where the last step holds as PT =
∑T
t=2∥vt − vt−1∥2 ≤ DT due to the boundedness of the domain. We hence

complete the proof of Theorem 2.

B.5 Discussion on Memory Dependence

In this part, we examine a subtle issue: the memory dependence of our static policy regret bound (an implication
of the dynamic policy regret bound in Theorem 2) and that of existing work [Anava et al., 2015].

First, we state our attained static policy regret for OCO with memory via performing OGD over the unary loss
with an optimal step size tuning (which is feasible as there is no dependence on the path-length PT ).
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Theorem 13. Under Assumptions 1–3, running OGD over the unary loss achieves
∑T
t=1 ft(wt−m:t) −

minv∈W
∑T
t=1 f̃t(v) ≤ (G2 + m2LG)ηT + 2D2

η . Setting the step size optimally as η = η∗ =
√

2D2

(G2+m2LG)T ,

we attain an O(m
√
T ) static policy regret.

Anava et al. [2015] present an O(m
3
4

√
T ) static policy regret for OCO with memory, which seems better than

ours at the first glance. However, we point it out that this is due to the different assumptions imposing over the
Lipschitz continuity. Their assumption is presented as follows.

Assumption 7 (Lipschitzness of Anava et al. [2015]). The function ft : Wm+1 7→ R is L̄-Lipschitz, i.e.,
|ft(x0, . . . ,xm)− ft(y0, . . . ,ym)| ≤ L̄∥(x0, . . . ,xm)− (y0, . . . ,ym)∥2 = L̄

√∑m
i=0∥xi − yi∥22.

We compare this definition of Lipschitzness with the version used in our paper, namely, the coordinate-wise
Lipschitzness defined in Assumption 1. Indeed, their definition imposes a stronger requirement on the function
than ours. Clearly, when the online function ft satisfies L̄-Lipschitz assumption as specified in Assumption 7,
it is also L̄-coordinate-wise Lipschitz due to the simple fact that

√∑m
i=0∥xi − yi∥22 ≤

∑m
i=0∥xi − yi∥2. On the

other hand, when the online function ft is L-coordinate-wise Lipschitz as required by Assumption 1, we thus
conclude that it is Lipschitz in the sense of Assumption 7 with the Lipschitz coefficient L̄ =

√
mL, due to the

following inequality (by Cauchy-Schwarz inequality) L
∑m
i=0∥xi − yi∥2 ≤ L

√
m
√∑m

i=0∥xi − yi∥2.

In the following, we restate the static regret bound of Anava et al. [2015] under Assumption 7. We adapt their
results to our notations to ease the understanding.

Theorem 14 (Theorem 3.1 of Anava et al. [2015]). Under Assumptions 2, 3, and the assumption that the online
functions are L̄-Lipschitz (Assumption 7), running OGD over the unary loss achieves

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

f̃t(v) ≤ 2ηG2T +
2D2

η
+ 2L̄m

3
2 ηGT. (30)

Setting the step size optimally yields an O(L̄1/2m3/4
√
T ) static policy regret.

Therefore, when the online functions are only L-coordinate-wise Lipschitz as considered in this paper, apply-
ing above theorem immediately obtains an O(L̄1/2m3/4

√
T ) = O((

√
mL)1/2m3/4

√
T ) = O(L1/2m

√
T ), which

exhibits a linear dependence on the memory length.

Finally, we discuss the memory dependence issue in the dynamic policy regret. In Theorem 2, we show an
O(m

√
T (1 + PT ) + m2

√
T + m2PT ) dynamic policy regret. Therefore, the overall memory dependence is

quadratic. In particular, the result implies an O(m2
√
T ) static policy regret when comparing with a fixed

comparator (now PT = 0). Notably, this is worse than the O(m
√
T ) bound obtained specifically by the (one-

layer) method for static regret minimization [Anava et al., 2015], due to the two-layer structure of our approach.
Recall the upper bound decomposition of dynamic policy regret:

D-RegT (v1:T ) ≤
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) +m2L

T∑
t=2

∥wt −wt−1∥2 +m2L

T∑
t=2

∥vt − vt−1∥2. (31)

The last term m2L
∑T
t=2∥vt − vt−1∥2 = O(m2PT ) is irrelevant to the algorithm, thus we cannot optimize the

memory dependence further. However, for the remaining terms (dynamic regret over unary loss and switching
cost of decisions), it remains unclear whether it is possible to further reduce and achieve a linear memory
dependence. On the other hand, it would be also interesting to see whether it is necessary to go through the
expansion (31) for achieving dynamic policy regret.

C Omitted Details for Section 5 (Online Non-stochastic Control)

In this section, we present omitted details for Section 5 online non-stochastic control, including the proofs of
Proposition 3 and Theorem 4.

C.1 Proof of Proposition 3

We will prove the following statement that gives the state recurrence for any h ≤ t, which is essentially a
strengthened result of Proposition 3.
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Proposition 15. Suppose one chooses the DAC controller π(Mt,K) at iteration t, the reaching state is

xt+1 = Ãh+1
K xt−h +

H+h∑
i=0

ΨK,ht,i (Mt−h:t)wt−i, (32)

where ÃK = A−BK, and ΨK,ht,i (Mt−h:t) is the transfer matrix defined as

ΨK,ht,i (Mt−h:t) = ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j]
t−j 11≤i−j≤H . (33)

The evolving equation holds for any h ∈ {0, . . . , t}.

Proof First, by substituting the DAC policy into the dynamics equation, we have

xt+1 = Axt +But + wt = (A−BK)xt +

H∑
i=1

BM
[i]
t wt−i + wt

= Ãh+1
K xt−h +

h∑
j=0

ÃjK

(
H∑
i=1

BM
[i]
t−jwt−j−i + wt−j

)

= Ãh+1
K xt−h +

h∑
j=0

H∑
i=1

ÃjKBM
[i]
t−jwt−j−i +

h∑
j=0

ÃjKwt−j .

Exchanging the summation index yields,

h∑
j=0

H∑
i=1

ÃjKBM
[i]
t−jwt−j−i =

H∑
i=1

i+h∑
k=i

Ãk−iK BM
[i]
t−k+iwt−k (34)

=

H+h∑
k=1

k∑
i=k−h

Ãk−iK BM
[i]
t−k+iwt−k11≤i≤H (35)

=

H+h∑
k=1

h∑
l=0

Ãh−lK BM
[l+k−h]
t+l−h wt−k11≤l+(k−h)≤H (36)

=

H+h∑
k=1

h∑
m=0

ÃmKBM
[k−m]
t−m wt−k11≤k−m≤H (37)

=

H+h∑
i=1

h∑
j=0

ÃjKBM
[i−j]
t−j wt−i11≤i−j≤H , (38)

where (34) holds by defining a third variable k = j+ i, and (35) is obtained by exchanging the summation index
i and k and the new range of i is from inequality i ≤ k ≤ i + h. Moreover, (36) is obtained by another change
of variable l = i − k + h, (37) is obtained by replacing l by h − m, and (38) is true by setting i = k, j = m.
Therefore, we can obtain that

xt+1 = Ãh+1
K xt−h +

h∑
j=0

H∑
i=1

ÃjKBM
[i]
t−jwt−j−i +

h∑
j=0

ÃjKwt−j

= Ãh+1
K xt−h +

H+h∑
i=0

h∑
j=0

ÃjKBM
[i−j]
t−j wt−i11≤i−j≤H +

h∑
i=0

ÃiKwt−i

= Ãh+1
K xt−h +

H+h∑
i=0

ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j]
t−j 11≤i−j≤H

wt−i

and hence complete the proof.
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C.2 Proof of Theorem 4

To prove the dynamic policy regret of online non-stochastic control (Theorem 4), we will first present theoretical
analysis of the reduction to OCO with memory in Appendix C.2.1, then give the dynamic regret analysis over
the M-space in Appendix C.2.2, and finally present the overall proof of Theorem 4 in Appendix C.2.3.

C.2.1 Approximation Error

In Section 5.2 of the main paper, we have presented how to reduce from online non-stochastic control to OCO
with memory, by employing the DAC parameterization and introducing the truncated loss functions. In this
part, we introduce the following theorem that discloses that the truncation loss ft approximates the original cost
function ct well.

Theorem 16 (Theorem 5.3 of Agarwal et al. [2019]). Suppose the disturbance are bounded by W . For any (κ, γ)-

strongly stable linear controller K, and any τ > 0 such that the sequence of M1, . . . ,MT satisfies ∥M [i]
t ∥op ≤

τ(1− γ)i, the approximation error between original loss and truncated loss is at most∣∣∣∣∣
T∑
t=1

ct(x
K
t (M0:t−1), u

K
t (M0:t))−

T∑
t=1

ft(Mt−1−H:t)

∣∣∣∣∣ ≤ 2TGcD
2κ3(1− γ)H+1, (39)

where

D :=
Wκ3(1 +HκBτ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
. (40)

Proof By Lipschitzness and definition of the truncated loss, we get that

ct(x
K
t (M0:t−1), u

K
t (M0:t))− ft(Mt−H−1:t)

= ct(x
K
t (M0:t−1), u

K
t (M0:t))− ct(y

K
t (Mt−H−1:t−1), v

K
t (Mt−H−1:t))

≤ GcD
(
∥xKt (M0:t−1)− yKt (Mt−H−1:t−1)∥+ ∥uKt (M0:t)− vKt (Mt−H−1:t)∥

)
≤ GcD(κ2(1− γ)H+1D + κ3(1− γ)H+1D)

≤ 2GcD
2κ3(1− γ)H+1,

where the last two inequalities use the Lipschitzness and the boundedness presented in Lemma 19. We complete
the proof by summing over the iterations from t = 1, . . . , T .

C.2.2 Dynamic Regret Analysis over M-space

In previous sections, we have analyzed the dynamic regret of OGD over the Rd-space. However, after reducing
online non-stochastic control to OCO with memory, we need to apply their results to the M-space and thus
require to generalize the arguments of previous sections from Euclidean norm for Rd-space to Frobenius norm
for M-space. For completeness, we present the proof here.

At the first place, we analyze the dynamic regret of the online gradient descent (OGD) algorithm over the
Rd-space. OGD begins with any M1 ∈ M and performs the following update procedure,

Mt+1 = ΠM[Mt − η∇M f̃t(Mt)] (41)

where η > 0 is the step size and ΠM[·] denotes the projection onto the nearest point in the feasible set M. We
have the following dynamic regret regarding its dynamic regret.

Theorem 17. Suppose the function f̃ : M 7→ R is convex; the gradient norm ∥∇M f̃t(M)∥F ≤ Gf holds for any
M ∈ M and t ∈ [T ]; and the Euclidean diameter of M is at most Df , i.e., supM,M ′∈M∥M−M ′∥F ≤ Df . Then,
OGD with a step size η > 0 as shown in (41) satisfies that

λ

T∑
t=2

∥Mt−1 −Mt∥F +

T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤

η

2
(G2

f + 2λGf )T +
1

2η
(D2

f + 2DfPT ), (42)
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which holds for any comparator sequence M1, . . . ,MT ∈ M. Besides, the path-length PT =
∑T
t=2∥M∗

t−1 −M∗
t ∥F

measures the non-stationarity of the comparator sequence.

Proof Denote the gradient by Gt = ∇M f̃t(Mt). The convexity of online surrogate loss functions implies that

T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤

T∑
t=1

⟨Gt,Mt −M∗
t ⟩.

Thus, it suffices to bound the sum of ⟨Gt,Mt−M∗
t ⟩. From the OGD update rule and the non-expensive property,

we have

∥Mt+1 −M∗
t ∥2F = ∥ΠM[Mt − ηGt]−M∗

t ∥
2
F ≤ ∥Mt − ηGt −M∗

t ∥2F
= η2∥Gt∥2F − 2η⟨Gt,Mt −M∗

t ⟩+ ∥Mt −M∗
t ∥2F

After rearranging, we obtain

⟨Gt,Mt −M∗
t ⟩ ≤

η

2
∥Gt∥2F +

1

2η

(
∥Mt −M∗

t ∥2F − ∥Mt+1 −M∗
t ∥2F

)
.

Next, we turn to analyze the second term on the right-hand side. Indeed,

T∑
t=1

(
∥Mt −M∗

t ∥2F − ∥Mt+1 −M∗
t ∥2F

)
≤

T∑
t=1

∥Mt −M∗
t ∥2F −

T∑
t=2

∥Mt −M∗
t−1∥2F

≤ ∥M1 −M∗
1 ∥2F +

T∑
t=2

(
∥Mt −M∗

t ∥2F − ∥Mt −M∗
t−1∥2F

)
= ∥M1 −M∗

1 ∥2F +

T∑
t=2

⟨M∗
t−1 −M∗

t , 2Mt −M∗
t−1 −M∗

t ⟩

≤ D2
f + 2Df

T∑
t=2

∥M∗
t−1 −M∗

t ∥F.

Hence, combining all above inequalities, we have

T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤

η

2

T∑
t=1

∥Gt∥2F +
1

2η

(
D2
f + 2Df

T∑
t=2

∥M∗
t−1 −M∗

t ∥F

)

≤ η

2
G2
fT +

1

2η
(D2

f + 2DfPT ).

On the other hand, the switching cost can be bounded by

T∑
t=2

∥Mt −Mt−1∥F = ∥ΠM[Mt−1 − ηGt−1]−Mt−1∥2F

≤ ∥Mt−1 − ηGt−1 −Mt−1∥F ≤ ηGfT,

which together with the previous dynamic regret bound yields the desired result.

C.2.3 Proof of Theorem 4

Proof We begin with the following dynamic policy regret decomposition,

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t )
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=

T∑
t=1

ct(x
K
t (M0:t−1), u

K
t (M0:t))−

T∑
t=1

ct(x
K
t (M∗

0:t−1), u
K
t (M∗

0:t))

=

T∑
t=1

ct(x
K
t (M0:t−1), u

K
t (M0:t))−

T∑
t=1

ft(Mt−1−H:t)︸ ︷︷ ︸
:=AT

+

T∑
t=1

ft(Mt−1−H:t)−
T∑
t=1

ft(M
∗
t−1−H:t)︸ ︷︷ ︸

:=BT

+

T∑
t=1

ft(M
∗
t−1−H:t)−

T∑
t=1

ct(x
K
t (M∗

0:t−1), u
K
t (M∗

0:t))︸ ︷︷ ︸
:=CT

. (43)

Notice that both AT and CT essentially represent the approximation error introduced by the truncated loss, so
we can apply Theorem 16 and obtain that

AT + CT ≤ 4TGcD
2κ3(1− γ)H+1. (44)

We now focus on the quantity BT , which is the dynamic policy regret over the truncated loss functions
{ft}t=1,...,T . Indeed,

BT =

T∑
t=1

ft(Mt−1−H:t)−
T∑
t=1

ft(M
∗
t−1−H:t)

≤
T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) + λ

T∑
t=2

∥Mt−1 −Mt∥F + λ

T∑
t=2

∥M∗
t−1 −M∗

t ∥F

≤
T∑
t=1

⟨∇M f̃t(Mt),Mt −M∗
t ⟩+ λ

T∑
t=2

∥Mt−1 −Mt∥F + λ

T∑
t=2

∥M∗
t−1 −M∗

t ∥F

=

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

∥Mt−1 −Mt∥F + λ

T∑
t=2

∥M∗
t−1 −M∗

t ∥F, (45)

where λ = (H + 2)2Lf and gt(M) = ⟨∇M f̃t(Mt),M⟩ is the surrogate linearized loss. As a consequence, we are
reduced to proving an dynamic regret over the sequence of functions {gt}t=1,...,T with switching cost, namely, the
first three terms on the right-hand side. We thus make use of the techniques developed in Appendix B.4 (dynamic
policy regret minimization for OCO with memory) to decompose the terms into meta-regret and base-regret:

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

∥Mt−1 −Mt∥F

=

(
λ

T∑
t=2

∥Mt−1 −Mt∥F +

T∑
t=1

gt(Mt)

)
−

(
λ

T∑
t=2

∥Mt−1,i −Mt,i∥F +

T∑
t=1

gt(Mt,i)

)
︸ ︷︷ ︸

meta-regret

+

(
λ

T∑
t=2

∥Mt−1,i −Mt,i∥F +

T∑
t=1

gt(Mt,i)−
T∑
t=1

gt(M
∗
t )

)
︸ ︷︷ ︸

base-regret

.

We remark that the regret decomposition holds for any base-learner index i ∈ [N ]. We now provide the upper
bounds for the meta-regret and base-regret, respectively. First, Theorem 17 ensures the base-regret satisfies that

base-regret ≤ ηi
2
(G2

f + 2λGf )T +
1

2ηi
(D2

f + 2DfPT ),

where PT =
∑T
t=2∥M∗

t−1 −M∗
t ∥F is the path-length of the comparator sequence. On the other hand, similar to

Lemma 8 of Section B.2, we can show that the meta-regret satisfies that

meta-regret ≤ λ′
T∑
t=2

∥pt−1 − pt∥1 +
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i,
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where the surrogate loss vector ℓt ∈ ∆N of the meta-algorithm is defined as

ℓt,i = λ∥Mt−1,i −Mt,i∥F + gt(Mt,i), for i ∈ [N ].

Then, we can make use the static regret with switching cost of online mirror descent for the prediction with
expert advice setting (c.f. Corollary 12 in Appendix B.3) and obtain that

meta-regret ≤ ε(2λ+Gf )(λf +Gf )D
2
fT +

ln(1/p1,i)

ε

= Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
,

where the equation can be obtained by an appropriate setting of the learning rate ε.

Since the above decomposition and the upper bounds of meta-regret and base-regret all hold for any base-learner
index i ∈ [N ], we will choose the best index denoted by i∗ to make the regret bound tightest possible. Specifically,
from the construction of the step size pool, we can ensure that there exists a step size ηi∗ such that the optimal
step size provably satisfies ηi∗ ≤ η∗ ≤ 2ηi∗ . As a result, we have

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

∥Mt−1 −Mt∥F

≤ ηi∗

2
(G2

f + 2λGf )T +
1

2ηi∗
(D2

f + 2DfPT ) +Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
≤ η∗

2
(G2

f + 2λGf )T +
1

η∗
(D2

f + 2DfPT ) +Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
≤ 3

2

√
(G2

f + 2λGf )(D2
f + 2DfPT )T +Df

√
2(2λ+Gf )(λ+Gf )T (1 + ln(⌈log2(1 + 2PT /D)⌉+ 2)) .

Combining this result with the regret decomposition (43) and the upper bounds (44), (45), we have

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t )

≤ 4TGcD
2κ3(1− γ)H+1 +

3

2

√
(G2

f + 2λGf )(D2
f + 2DfPT )T

+Df

√
2(2λ+Gf )(λ+Gf )T (1 + ln(⌈log2(1 + 2PT /D)⌉+ 2)) + λPT .

The specific values of D,Lf , Gf , Df can be found in Lemma 20. By setting H = O(log T ), we can ensure the

final dynamic policy regret is at most Õ(
√
T (1 + PT )) and hence complete the proof.

C.3 Supporting Lemmas

In this part, we provide several supporting lemmas used frequently in the analysis of online non-stochastic control.
Most of them are due to the pioneering work of Agarwal et al. [2019], and we adapt them to our notations and
provide the proofs to achieve self-containedness. Specifically,

• Lemma 18 establishes the norm relations between the ℓ1, op norm and Frobenius norm used in the M-space.

• Lemma 19 checks the boundedness of several variables of interest.

• Lemma 20 shows several properties of the truncated functions {ft} and the feasible set M.

• Lemma 21 provides an upper bound for the norm of transfer matrix.

• Lemma 22 connects the DAC class and the strongly linear controller class.
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Lemma 18 (Norm Relations). For any M = (M [1], . . . ,M [H]) ∈ M ⊆ (Rdu×dx)H , its ℓ1, op norm and Frobenius
norm are defined by

∥M∥ℓ1,op :=

H∑
i=1

∥M [i]∥op, and ∥M∥F :=

√√√√ H∑
i=1

∥M [i]∥2F.

We then have the following inequalities on their relations:

∥M∥ℓ1,op ≤
√
H∥M∥F, and ∥M∥F ≤

√
d∥M∥ℓ1,op, (46)

where d = min{du, dx}.

Proof [of Lemma 18] Recall the matrix norm relations, we know that for any matrix X ∈ Rm×n,

∥X∥op ≤ ∥X∥F ≤
√
d∥X∥op.

Therefore, by definition and Cauchy-Schwarz inequality, we obtain

∥M∥ℓ1,op =

H∑
i=1

∥M [i]∥op ≤
H∑
i=1

∥M [i]∥F ≤
√
H∥M∥F.

On the other hand, we have

∥M∥F =

√√√√ H∑
i=1

∥M [i]∥2F ≤
H∑
i=1

∥M [i]∥F ≤
H∑
i=1

√
d∥M [i]∥op =

√
d∥M∥ℓ1,op.

We thus complete the proof.

Lemma 19. Suppose K and K⋆ are two (κ, γ)-strongly stable linear controllers (cf. Definition 3). Define

D :=
W (κ3 +HκBκ

3τ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
. (47)

Suppose there exists a τ > 0 such that for every i ∈ {0, . . . ,H−1} and every t ∈ [T ], ∥M [i]
t ∥F ≤ τ(1−γ)i. Then,

we have

• ∥xKt (M0:t−1)∥ ≤ D, ∥yKt (Mt−H−1:t−1)∥ ≤ D, and ∥xK⋆

t ∥ ≤ D.

• ∥uKt (M0:t)∥ ≤ D, and ∥vKt (Mt−H−1:t)∥ ≤ D.

• ∥xKt (M0:t−1)− yKt (Mt−1−H:t−1)∥ ≤ κ2(1− γ)H+1D.

• ∥uKt (M0:t)− vKt (Mt−1−H:t)∥ ≤ κ3(1− γ)H+1D.

In above, the definitions of state xKt (M0:t−1) and corresponding DAC control uKt (M0:t) can be found in Proposi-
tion 3, and the definitions of truncated state xKt (M0:t−1) and corresponding DAC control vKt (M0:t) can be found
in Definition 2. The definitions of state xK

⋆

t can be found (and will be used) in Lemma 22.

Proof [of Lemma 19] We first study the state.

∥xKt (M0:t−1)∥ =

∥∥∥∥∥ÃH+1
K xKt−H−1(M0:t−H−2) +

2H∑
i=0

ΨK,Ht−1,i(Mt−H−1:t−1)wt−1−i

∥∥∥∥∥
≤ κ2(1− γ)H+1∥xKt−H−1(M0:t−H−2)∥+W

2H∑
i=0

∥ΨK,Ht−1,i(Mt−H−1:t−1)∥

≤ κ2(1− γ)H+1∥xKt−H−1(M0:t−H−2)∥+W

2H∑
i=0

(
κ2(1− γ)i +HκBκ

2τ(1− γ)i−1
)
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≤ κ2(1− γ)H+1∥xKt−H(M0:t−H−1)∥+W (κ2 +HκBκ
2τ)/γ

≤ W (κ2 +HκBκ
2τ)

γ(1− κ2(1− γ)H+1)
≤ D, (48)

where inequality (48) is a summation of geometric series and the ratio of this series is κ2(1− γ)H+1. Similarly,

∥yKt (Mt−1−H:t−1)∥ =

∥∥∥∥∥
2H∑
i=0

ΨK,Ht−1,i(Mt−1−H:t−1)wt−1−i

∥∥∥∥∥
≤W

2H∑
i=0

∥ΨK,Ht−1,i(Mt−1−H:t−1)∥

≤W

2H∑
i=0

(
κ2(1− γ)i +HκBκ

2τ(1− γ)i−1
)

≤W

(
κ2 +HκBκ

2τ

γ

)
≤ D.

Besides,

∥xK
⋆

t ∥ =

∥∥∥∥∥
t−1∑
i=0

ÃiK⋆wt−1−i

∥∥∥∥∥ ≤W

t−1∑
i=0

κ2(1− γ)i ≤ Wκ2

γ
≤ D.

So the difference can be evaluated as follows:

∥xKt (M0:t−1)− yKt (Mt−H−1:t−1)∥ = ∥ÃH+1
K xKt−H−1(M0:t−H−1)∥ ≤ κ2(1− γ)H+1D.

We now consider the action (or control signal).

∥uKt (M0:t)∥ =

∥∥∥∥∥−KxKt (M0:t−1) +

H∑
i=1

M
[i]
t wt−i

∥∥∥∥∥
≤ κ∥xKt (M0:t−1)∥+

H∑
i=1

Wτ(1− γ)i−1

≤ W (κ3 +HκBκ
3τ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
≤ D.

Similarly,

∥vKt (Mt−H−1:t)∥ ≤ κ∥yKt (Mt−H−1:t−1)∥+
H∑
i=1

Wτ(1− γ)i−1 ≤ D.

The difference of the actions is

∥uKt (M0:t−1)− vKt (Mt−H−1:t−1)∥ = ∥−K(xKt (M0:t−1)− yKt (Mt−H−1:t−1))∥ ≤ κ3(1− γ)H+1D.

To reduce the online non-stochastic control to OCO with memory, in Definition 2 we define the truncated loss
ft : MH+2 7→ R as

ft(Mt−1−H:t) = ct(y
K
t (Mt−1−H:t−1), v

K
t (Mt−1−H:t)),

where yKt+1(Mt−H:t) =
∑2H
i=0 Ψ

K,H
t,i (Mt−H:t)wt−i and v

K
t+1(Mt−H:t+1) = −Kyt+1(Mt−H:t) +

∑H
i=1M

[i]
t+1wt+1−i.

In the following lemma, we show several properties of the truncated functions {ft} and the feasible set M such
that we can further apply the results of OCO with memory.
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Lemma 20. The truncated loss ft : MH+2 7→ R and the feasible set M satisfy the following properties. For
notational convenience, we first let D be defined the same as (40), and we restate it below

D :=
Wκ3(1 +HκBτ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
.

(i) The function is Lf -coordinate-wise Lipschitz with respect to the Euclidean (i.e., Frobenius) norm, namely,

|ft(Mt−H−1, . . . ,Mt−k, . . . ,Mt)| − |ft(Mt−H−1, . . . , M̃t−k, . . . ,Mt)| ≤ Lf∥Mt−k − M̃t−k∥F.

Besides,
Lf ≤ 3

√
HGcDWκBκ

3.

(ii) The gradient norm of surrogate loss f̃t : M 7→ R is bounded by Gf , namely, ∥∇M f̃t(M)∥F ≤ Gf holds for
any M ∈ M and any t ∈ [T ]. Besides,

Gf ≤ 3Hd2GcWκBκ
3γ−1.

(iii) The diameter of the feasible set is at most Df , namely, ∥M − M ′∥F ≤ Df holds for any M,M ′ ∈ M.
Besides,

Df ≤ 2
√
dκBκ

3γ−1.

Proof [of Lemma 20] We first prove the claim (i), i.e., the Lf -coordinate-wise Lipschitz continuity. For simplicity,
we will make use of the following definitions in the following arguments.

Mt−H−1:t := {Mt−H−1 . . .Mt−k . . .Mt}
Mt−H−1:t−1 := {Mt−H−1 . . .Mt−k . . .Mt−1}

M̃t−H−1:t := {Mt−H−1 . . . M̃t−k . . .Mt}

M̃t−H−1:t−1 := {Mt−H−1 . . . M̃t−k . . .Mt−1}

By representing ft using ct, we have

ft(Mt−H−1:t)− ft(M̃t−H−1:t)

= ct
(
yKt (Mt−H−1:t−1), v

K
t (Mt−H−1:t)

)
− ct

(
yKt (M̃t−H−1:t−1), v

K
t (M̃t−H−1:t)

)
≤ GcD∥yKt − ỹKt ∥+GcD∥vKt − ṽKt ∥,

(49)

where for convenience we use the notations yKt := yKt (M̃t−H−1:t−1), ỹ
K
t := yKt (M̃t−H−1:t−1) and vKt :=

vKt (Mt−H−1:t, ṽ
K
t := ṽKt (Mt−H−1:t. Besides, the last inequality holds because the norm of ∥yKt ∥, ∥ỹKt ∥, ∥vKt ∥,

∥ṽKt ∥ are all bounded by D, as shown in Lemma 19.

Then we try to bound ∥yKt − ỹKt ∥ and ∥vKt − ṽKt ∥.

∥yKt − ỹKt ∥ =

∥∥∥∥∥
2H∑
i=0

(
ΨK,Ht−1,i(Mt−H−1:t−1)−ΨK,Ht−1,i(M̃t−H−1:t−1)

)
wt−1−i

∥∥∥∥∥
=

∥∥∥∥∥ÃkKB
2H∑
i=0

(
M

[i−k]
t−k − M̃

[i−k]
t−k

)
1i−k∈[H]wt−1−i

∥∥∥∥∥
≤ κBκ

2(1− γ)kW

H∑
i=1

∥M [i]
t−k − M̃

[i]
t−k∥

≤ κBκ
2W∥Mt−k − M̃t−k∥,

(50)

and we have

∥vKt − ṽKt ∥ =

∥∥∥∥∥−K(yKt − ỹKt ) + 1k=0

H∑
i=1

(
M

[i]
t−k − M̃

[i]
t−k

)∥∥∥∥∥
≤ (κBκ

3W + 1)∥Mt−k − M̃t−k∥

≤ 2κBκ
3W∥Mt−k − M̃t−k∥.

(51)
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Combining (49), (50), and (51), we obtain

ft(Mt−H−1:t)− ft(M̃t−H−1:t) ≤ GcD∥yKt − ỹKt ∥+GcD∥vKt − ṽKt ∥

≤ GcDκBκ
2W∥Mt−k − M̃t−k∥+GcD2κBκ

3W∥Mt−k − M̃t−k∥

≤ 3GcDκBκ
3W∥Mt−k − M̃t−k∥.

So we have Lf ≤ 3GcDWκBκ
3.

Next, we prove the claim (ii), i.e., the boundedness of the gradient norm. Indeed, we will try to bound∇
M

[r]
p,q
f̃t(M)

for every p ∈ [du], q ∈ [dx] and r ∈ {0, . . . ,H − 1},

∣∣∣∇M
[r]
p,q
f̃t(M)

∣∣∣ ≤ Gc

∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

+Gc

∥∥∥∥∥∂vKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

. (52)

So we will bound the two terms of the right-hand side respectively.∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

≤

∥∥∥∥∥∥
2H∑
i=0

H∑
j=0

[
∂ÃjKBM

[i−j]

∂M
[r]
p,q

]
wt−1−i1i−j∈[H]

∥∥∥∥∥∥
F

≤
r+H+1∑
i=r+1

∥∥∥∥∥∂Ãi−r−1
K BM [r]

∂M
[r]
p,q

wt−1−i

∥∥∥∥∥
F

≤WκBκ
2

∥∥∥∥∥ ∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

r+H+1∑
i=r+1

(1− γ)i−r−1

≤ WκBκ
2

γ

∥∥∥∥∥ ∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

≤ WκBκ
2

γ

(53)

∥∥∥∥∥∂vKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

≤ κ

∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

+

H∑
i=1

∥∥∥∥∥ ∂M [i]

∂M
[r]
p,q

wt−i

∥∥∥∥∥
F

≤ WκBκ
3

γ
+W

∥∥∥∥∥ ∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

≤W

(
κBκ

3

γ
+ 1

)
(54)

Combining (52), (53), and (54), we obtain∣∣∣∇M
[r]
p,q
f̃t(M)

∣∣∣ ≤ Gc
WκBκ

2

γ
+GcW

(
κBκ

3

γ
+ 1

)
≤ 3GcWκBκ

3γ−1.

Thus, ∥∇M f̃t(M)∥F at most 3Hd2GcWκBκ
3γ−1.

Finally, we prove the claim (iii), i.e., the upper bound of diameter of the feasible set.

Actually, the construction of feasible set M ensures that ∀i, 0 ≤ i ≤ H − 1, ∥M∥[i]op ≤ κBκ
3(1− γ)i. Therefore,

we have

max
M1,M2∈M

∥M1 −M2∥F
(46)

≤
√
d max
M1,M2∈M

∥M1 −M2∥ℓ1,op

≤
√
d max
M1,M2∈M

(∥M1∥ℓ1,op + ∥M2∥ℓ1,op)
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=
√
d max
M1,M2∈M

(
H−1∑
i=0

∥M [i]
1 ∥op + ∥M [i]

2 ∥op

)

≤
√
d max
M1,M2∈M

(
2

H−1∑
i=0

κBκ
3(1− γ)i

)

= 2
√
dκBκ

3
H−1∑
i=0

(1− γ)i

≤ 2
√
dκBκ

3γ−1.

Hence, we finish the proof of all three claims in the statement.

The following lemma provides an upper bound for the norm of transfer matrix.

Lemma 21. Suppose K is (κ, γ)-strongly stable as defined in Definition 3. Suppose there exists a τ > 0 such

that for every i ∈ {0, . . . ,H − 1} and every t ∈ [T ], ∥M [i]
t ∥F ≤ τ(1− γ)i. Then, we have

∥ΨK,ht,i ∥ ≤ κ2(1− γ)i1i≤h +HκBκ
2τ(1− γ)i−1. (55)

Proof [of Lemma 21] We first expand ΨK,ht,i by its definition (cf. Proposition 3 for its formal definition):

∥ΨK,ht,i ∥ =

∥∥∥∥∥∥ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j]
t−j 11≤i−j≤H

∥∥∥∥∥∥
≤ ∥ÃiK∥1i≤h +

H∑
j=1

∥ÃjKBM
[i−j]
t−j ∥ (56)

≤ κ2(1− γ)i +

H∑
j=1

κ2(1− γ)jκBτ(1− γ)i−j−1

≤ κ2(1− γ)i + κ2κBτ

H∑
j=1

(1− γ)i−1

= κ2(1− γ)i +Hκ2κBτ(1− γ)i−1,

where inequality (56) has to be emphasized here that no matter what the index i is, once i is fixed, to satisfy
the condition 1 ≤ i− j ≤ H, there is at most H different values which j can take. And that is why we can take
j in range [H] as an upper bound.

In the following lemma, we show that minimizing the static policy regret over the DAC class is sufficient to
deliver a policy regret competing with the strongly linear controller class [Agarwal et al., 2019, Lemma 5.2].

Lemma 22. With K,K⋆ chosen as the (κ, γ)-strongly stable linear controllers as defined in Definition 3 and

under Assumption 5, there exists a DAC policy π(M∆,K) with M∆ = (M
[1]
∆ , . . . ,M

[H]
∆ ) defined by

M
[i]
∆ = (K −K⋆)(A−BK⋆)i (57)

such that
T∑
t=1

ct(x
K
t (M∆), u

K
t (M∆))−

T∑
t=1

ct(x
K⋆

t , uK
⋆

t ) ≤ T · 4GcDWHκ2Bκ
6(1− γ)H−1γ−1, (58)

where xK
⋆

t is the state attained by executing a linear controller K⋆ which chooses the action uK
⋆

t = −K⋆xK
⋆

t .

Proof [of Lemma 22] The coordinate-wise Lipschitzness of the cost functions implies that

ct
(
xKt (M∆), u

K
t (M∆)

)
− ct

(
xK

⋆

t , uK
⋆

t

)
≤ GcD

∥∥∥xKt (M∆)− xK
⋆

t

∥∥∥+GcD
∥∥∥uKt (M∆)− uK

⋆

t

∥∥∥ .
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By the linear dynamical equation (9), we have

xK
⋆

t+1 =

t∑
i=0

(A−BK⋆)iwt−i =

t∑
i=0

ÃiK⋆wt−i (59)

By the property of the DAC policy (Proposition 3), we have

xKt+1(M∆) = Ãh+1
K xKt−h(M∆) +

H+h∑
i=0

ΨK,ht,i (M∆)wt−i.

Setting h = t and combining the assumption that the starting state x0 = 0, we achieve the following equation,

xKt+1(M∆) =

H∑
i=0

ΨK,tt,i (M∆)wt−i +

t∑
i=H+1

ΨK,tt,i (M∆)wt−i.

Now we turn to calculate the transfer matrix ΨK,ht,i (M∆) explicitly. Actually, for any i ∈ {0, . . . ,H}, h ≥ H, i.e.,
0 ≤ i ≤ H ≤ h, by definition we have

ΨK,ht,i (M∆) = ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j]
∆ 1i−j∈[H]

= ÃiK +

i∑
k=1

Ãi−kK BM
[k]
∆ (60)

= ÃiK +

i∑
k=1

Ãi−kK B(K −K⋆)Ãk−1
K⋆ (61)

= ÃiK +

i∑
k=1

Ãi−kK (ÃK⋆ − ÃK)Ãk−1
K⋆

= ÃiK +

i∑
k=1

Ãi−kK ÃkK⋆ − Ãi−k+1
K Ãk−1

K⋆

= ÃiK + ÃiK⋆ − ÃiK

= ÃiK⋆ ,

where (60) holds by introducing a new index k = i− j and (61) can be obtained by plugging the construction of

M
[i]
∆ (57). So we achieve the conclusion that

xKt+1(M∆) =

H∑
i=0

ÃiK⋆wt−i +

t∑
i=H+1

ΨK,tt,i (M∆)wt−i. (62)

Combining (59) and (62) yields

∥∥∥xK⋆

t+1 − xKt+1(M∆)
∥∥∥ =

∥∥∥∥∥
t∑

i=H+1

(
ΨK,tt,i (M∆)− ÃiK⋆

)
wt−i

∥∥∥∥∥
≤W

(
t∑

i=H+1

∥ΨK,tt,i (M∆)∥+
t∑

i=H+1

∥ÃiK⋆∥

)

≤W

(
t∑

i=H+1

(
2κ2(1− γ)i +Hκ2Bκ

5(1− γ)i−1
))

≤W
(
2κ2(1− γ)H+1γ−1 +Hκ2Bκ

5(1− γ)Hγ−1
)
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≤ κ2W (1− γ)Hγ−1
(
2(1− γ) +Hκ2Bκ

3
)

≤ Hκ2Bκ
5W (1− γ)Hγ−1(2(1− γ) + 1)

≤ 2WHκ2Bκ
5(1− γ)Hγ−1,

where the second inequality makes use of Lemma 19. Next, we investigate the difference between the control
signals,

∥uK
⋆

t+1 − uKt+1(M∆)∥ =

∥∥∥∥∥−K⋆xK
⋆

t+1 −

(
−KxKt+1(M∆) +

H∑
i=1

M
[i]
∆ wt+1−i

)∥∥∥∥∥
=

∥∥∥∥∥−K⋆xK
⋆

t+1 +KxKt+1(M∆)−
H∑
i=1

(K −K⋆)Ãi−1
K⋆ wt+1−i

∥∥∥∥∥
=

∥∥∥∥∥−K⋆

(
xK

⋆

t+1 −
H−1∑
i=0

ÃiK⋆wt−i

)
+K

(
xKt+1(M∆)−

H−1∑
i=0

ÃiK⋆wt−i

)∥∥∥∥∥
=

∥∥∥∥∥−K⋆
t∑

i=H

ÃiK⋆wt−i +K

t∑
i=H

ΨK,ht,i (M∆)wt−i

∥∥∥∥∥
≤ 2WHκ2Bκ

6(1− γ)H−1γ−1.

Using above inequalities and Lipschitz assumption as well as the boundedness result (Lemma 19), we complete
the proof.
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