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Abstract

Models trained with offline data often suffer
from continual distribution shifts and expen-
sive labeling in changing environments. This
calls for a new online learning paradigm where
the learner can continually adapt to chang-
ing environments with limited labels. In this
paper, we propose a new online setting – On-
line Active Continual Adaptation, where the
learner aims to continually adapt to chang-
ing distributions using both unlabeled sam-
ples and active queries of limited labels. To
this end, we propose Online Self-Adaptive
Mirror Descent (OSAMD), which adopts an
online teacher-student structure to enable on-
line self-training from unlabeled data, and a
margin-based criterion that decides whether
to query the labels to track changing distri-
butions. Theoretically, we show that, in the
separable case, OSAMD has an O(T 2/3) dy-
namic regret bound under mild assumptions,
which is aligned with the Ω(T 2/3) lower bound
of online learning algorithms with full labels.
In the general case, we show a regret bound
of O(T 2/3 + α∗T ), where α∗ denotes the sepa-
rability of domains and is usually small. Our
theoretical results show that OSAMD can
fast adapt to changing environments with ac-
tive queries. Empirically, we demonstrate
that OSAMD achieves favorable regrets un-
der changing environments with limited labels
on both simulated and real-world data, which
corroborates our theoretical findings.
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1 Introduction

Machine learning models, trained with data collected
from closed environments, often suffer from continual
distribution shift and expensive labeling in open en-
vironments. For example, a self-driving recognition
system trained with data collected in the daytime
may continually degrade when going towards night-
fall (Bobu et al., 2018; Wu et al., 2019). The problem
can be avoided by collecting and annotating sufficient
training data to cover all the possible distributions at
the test time. However, such data annotation is pro-
hibitively expensive in many applications (Zhang et al.,
2020a). In particular, for many scenarios, the distribu-
tion shifts constantly appear over time (Kumar et al.,
2020), making it impossible to collect and annotate
sufficient training data for a certain domain. This calls
for a new online system that can continually adapt to
the changing domain using limited labels.

The continual domain shift severely challenges the con-
ventional domain adaptation methods (Tzeng et al.,
2014; Ganin and Lempitsky, 2015; Hoffman et al., 2018),
for most of them are designed to adapt to a fixed target
domain (Su et al., 2020a; Prabhu et al., 2021) (Figure 1
bottom). Some previous works consider gradual do-
main shift (Bobu et al., 2018; Wu et al., 2019; Kumar
et al., 2020), where the data distribution gradually
evolves from batch to batch, but it is not realistic to
model the continual shift that happens in continuous
time. The adaptive online learning (Besbes et al., 2015)
provides a classical theoretical framework to deal with
changing environments. However, it requires the tar-
get data to be fully labeled (Figure 1 middle), which
may be infeasible. Furthermore, it remains an open
problem for online learning with limited labels (online
active learning) under continual domain shift (Lu et al.,
2016; Shuji, 2017). Recent work (Chen et al., 2021)
studies online active domain adaptation for regression
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Figure 1: Illustration of OACA and previous works.
The environments change continually from daytime
to nightfall, introducing a shift of illumination and
weather conditions. We model such a problem as an
online active continual adaptation, where the online
learner adapts to the environment with active queries
of limited labels. In contrast, adaptive online learning
requires full labels, and active domain adaptation can
only adapt to a fixed domain.

problem under covariant (i.e. P (X)) shift, but can not
deal with classification problem under joint distribu-
tion (i.e. P (X, Y )) shift, which is more general and
realistic (Long et al., 2017, 2018).

To the best of our knowledge, no previous work has con-
sidered the online continual adaptation for classification
with limited labels1. To fill this gap, we formulate the
Online Active Continual Adaptation (OACA) problem,
where learners start with initial models and aim to min-
imize the dynamic regret caused by the distributional
shifts using unlabeled data and active queries.

To resolve this problem, we propose the Online Self-
Adaptive Mirror Descent (OSAMD) algorithm, which
adopts an online teacher-student structure to enable
the self-adaptation from unlabeled data: an “aggres-
sive” model that updates actively using limited label
queries with aggressive stepsizes, to track the max-
margin classifier and provide accurate pseudolabels; a
“conservative” model that adapts continually using the
pseudolabels (taught by the aggressive model) with con-
servative stepsizes, to track the domain and minimize
the dynamic regret. The active queries are given by a
margin-based strategy that measures the confidence of
the pseudolabels to query uncertain samples.

Theoretically, we show that OSAMD achieves an
O(T 2/3) dynamic regret under mild assumptions in

1Please refer to the detailed discussion in our literature
view in Appendix. B

the separable case, which is aligned with the Ω(T 2/3)
lower bound of full-label online algorithms. We then
extend this result to the general non-separable case,
and derive a dynamic regret of O(T 2/3 + α∗T ), where
α∗ represents the separability of the data distribution.
Since α∗ is often a small constant by the representation
ability of machine learning models (Kumar et al., 2020),
the bias O(α∗T ) is small such that the regret still ap-
proximates the lower bound. The above results lead to
algorithmic insights that OSAMD is competitive with
the optimal model in hindsight with fast convergence.

Empirically, we establish a simulation with changing
environment to corroborate our theoretical findings.
The results show that OSAMD performs accurately
with limited labeled samples, and the regret aligns
with Online Mirror Descent (OMD) with full labels.
Furthermore, we extend OSAMD to deep learning
on the real-world datasets Portraits (Ginosar et al.,
2015) and Cover-Type (Blackard and Dean, 1999)
to verify its practical effectiveness. OSAMD attains
93.7%(Portraits)/76.8%(Cover-Type) accuracy using
only 3.8%/2.3% labels, comparing with 94.0%/76.8%
accuracy of OMD with full labels. While OMD with
uniform query and online active learning baseline only
obtain 91.8%/75.3% and 92.0%/76.5% with 3.8%/2.3%
queries, respectively. Finally, our ablation study shows
that both the self-adaptation and active strategy con-
tribute to the remarkable performance.

Our contributions

1. We are the first to formulate the problem of Online
Active Continual Adaptation, which models the
online continual domain adaptation with limited
labels under realistic assumptions;

2. We propose an effective online self-adaptive algo-
rithm named OSAMD with the novel design of
the online teacher-student structure supported by
strong theoretical guarantees;

3. We provide strict and novel dynamic regret analy-
sis, highlighting the power of the proposed online
teacher-student structure to get tight regret bound
as in the regime of full-label online learning;

4. We demonstrate the effectiveness of our algorithm
on both simulated and real-world datasets with
changing environments, corroborating our theory.

2 Preliminaries

We first give a formal definition of the online convex
optimization (OCO) with dynamic regret, and then
briefly review the classic online mirror descent (OMD)
algorithm. Next, we introduce the problem setting of
domain adaptation (DA) and a statistical distance that
will be used in our analysis.
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2.1 Online Convex Optimization with
Dynamic Regret

The basic protocol of Online Convex Optimization
(OCO) (Hazan et al., 2016) is: at each time step
t = 1, . . . T, the online learner takes a decision wt in
a convex set K. After that, the environment reveals
a convex loss function lt : K → R, and the online
learner suffers a loss lt(wt). The dynamic regret is a
theoretical metric for an online algorithm in changing
environments, defined as

D-Regret :=
T∑

t=1
lt(wt) −

T∑
t=1

lt(w∗
t ),

where w∗
t = arg minw∈K lt(w). It is well known that

a sublinear dynamic regret bound is not possible un-
less specific constraints are made about the environ-
ments (Zinkevich, 2003). The first type of such con-
straint is the path-length (Zinkevich, 2003; Hall and
Willett, 2013): CT :=

∑T −1
t=1 ∥w∗

t − w∗
t+1∥, which mea-

sures how the optimal models change with the environ-
ment. Others include the temporal variability (Bes-
bes et al., 2015; Campolongo and Orabona, 2020):
VT := sumT −1

t=1 supw∈K ∥lt(w) − lt+1(w)∥, which mea-
sures the variation of the loss functions.

Online Mirror Descent (OMD) (Hazan et al., 2016) is
a general and classic algorithm, where the decision is
updated by

wt+1 = arg min
w∈K

η⟨∇lt(wt), w⟩ + DR(w, wt)

for t = 1, . . . , T, where η denotes the stepsize, and
DR(a, b) := R(a) − R(b) − ⟨∇R(b), a − b⟩ denotes the
Bregman divergence with regularizer R.

2.2 Domain Adaptation

Domain adaptation (DA) (Zhao et al., 2020) is a typical
machine learning method to learn a model from a source
domain P that can perform well on a target domain
Q. Researches (Wei et al., 2020) often assume that
the source domain and target domain are different but
measured by some discrepancies. In this paper, we
utilize the celebrated total variation (TV) distance dTV
to describe the similarity between two distributions
over the same sample space:
Definition 1 (Total Variation). We use dTV(P, Q) to
denote the total variation distance between distributions
P and Q:

dTV(P, Q) := sup
E

|P(E) − Q(E)|,

where the supremum is over all the measurable events.

1. The data distribution begins with P1(X, Y ).
2. The learner has enough data samples from

P1(X, Y ), and chooses an online algorithm A.
3. The adversary chooses a sequence of data distri-

bution {P2, . . . , PT }.
4. For each t = 1, . . . , T :

(a) The data (xt, yt) is sampled from joint dis-
tribution Pt(X, Y ).

(b) Instance xt is revealed to the learner.
(c) The learner then chooses action wt, in-

curring a loss on the domain lt(wt) =
E(x,y)∼Pt

f(wt; x, y) in hindsight.
(d) The active agent decides whether to query

the label. If query, true label yt are revealed.

Figure 2: Online Active Continual Adaptation setting.

Several variants of the TV distance have been proposed
and used in the domain adaptation (Ben-David et al.,
2010; Zhao et al., 2018, 2019). It is also worth point-
ing out that other metrics can and have been used in
the literature, e.g., the Wasserstein infinity (Kumar
et al., 2020) distance and the maximum mean discrep-
ancy (Long et al., 2015), as described in our appendix.

3 The Online Active Continual
Adaptation Problem

In this section, we first formulate the online active con-
tinual adaptation (OACA) problem. We then formally
introduce the assumptions used in our analysis and
provide justifications for their necessities.

3.1 Problem Formulation

For the purpose of presentation, we consider an online
binary classification task2 of sequentially predicting la-
bels yt ∈ {1, −1} from input features xt ∈ X for round
t = 1, . . . , T . In each round t, assume that our predic-
tion model is parameterized by a vector wt ∈ K, and
it outputs a soft label prediction3 over instance xt de-
noted as Ht(wt) = H(wt; xt). The prediction result suf-
fers a instantaneous loss as ft(wt) = f(wt; xt, yt), xt ∈
X , yt ∈ {−1, 1}. We assume that H, f (unrelated with
x, y) are known by the learner. We present the in-
teraction between the learner and the environment
as Figure 2. Specially, we assume each data sample
(xt, yt) comes from a different distribution by the con-
tinual environmental change, which leads to different
distributions at different times. To measure how the

2This can be readily extended to the multi-class case, as
shown in Appendix. E

3The model output before the sign function, its absolute
value is related to the distance to the decision boundary.
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learner adapts to the environment, we use the theoreti-
cal metric of expected dynamic regret to measure the
adaptation performance of the online learner:

D-RegretA({Pt}, T ) := EA[
T∑

t=1
lt(wt)] −

T∑
t=1

lt(w∗
t ),

where lt(wt) = E(x,y)∼Pt
f(wt; x, y) is the expected loss,

and the optimal action in hindsight is defined as w∗
t =

arg minw∈K lt(w). The rest expectation EA is on the
online decision wt provided by a potentially randomized
algorithm A.

In particular, we here use the expected loss that re-
flects the performance on the distribution Pt not the
instantaneous sample (xt, yt). Intuitively, we study
the continual domain adaptation problem, where the
expected loss reflects the performance on the domain
(environment), while the instantaneous loss only re-
flects the performance on individual samples. On the
technical side, although the distributional change is con-
tinual, the change between consecutive samples could
be large due to the randomness in sampling, leading
to an unbounded dynamic regret (Besbes et al., 2015).

3.2 Assumptions

First, we assume the domain shift is continual and
bounded.
Assumption 1 (Continual Domain Shift). There exists
a constant VT , s.t.

∑T −1
t=1 dT V (Pt, Pt+1) ≤ VT . In other

words, the total domain shift is bounded.

This assumption is closed related to the temporal vari-
ability constrain (Besbes et al., 2015), where we specify
the expectation change as domain shift.

Next, we assume a niceness condition of the environ-
ments by its separability.
Assumption 2 (Separation). For each time step
t ∈ [T ], the data distribution Pt can be classified almost
correctly with a margin R, i.e., there exists vt ∈ K
and a constant α∗ such that E(xt,yt)∼Pt

[max{0, R −
ytHt(vt)}] ≤ α∗. Furthermore, there exists a constant
CT such that

∑T −1
t=1 ∥vt − vt+1∥ ≤ CT , i.e., the classi-

fiers with margin R change continually.

Note that the coefficient α∗ represents the optimal
hinge loss for the classifier space. It is commonly as-
sumed to be small by previous works (Kumar et al.,
2020; Wei et al., 2020). The constraint of

∑T −1
t=1 ∥vt −

vt+1∥ is similar to the path-length regularity (Zinke-
vich, 2003) in online learning. Intuitively, vt can be
viewed as a max-margin classifier, and the continual
rotation is bounded by CT .

Finally, we present the following standard assumptions
in online learning.

Assumption 3 (Convexity). We assume that
f(·), −yH(·) are all convex functions.
Assumption 4 (Smoothness). We assume that
f and H are differentialable and G-Lipschitz, i.e.
∥∇f(w; x, y)∥∗, ∥∇H(θ; x)∥∗ ≤ G, ∀x, y, w, where ∥ · ∥∗
is the dual norm of ∥ · ∥. Furthermore, f is L-smooth,
i.e. ∥∇f(w) − ∇f(w′)∥ ≤ L∥w − w′∥.

Assumption 5 (Bounded Decision Space and Func-
tion). The diameter of decision space K (convex set
in Rn) is bounded, i.e. there exists D > 0 such
that maxw,w′∈K ∥w − w′∥ ≤ D. The function value is
bounded, i.e. there exists F > 0 such that f(w; x, y) ≤
F, ∀w, x, y.

4 The Online Self-Adaptive Mirror
Descent Algorithm

Here we describe the proposed Online Self-Adaptive
Mirror Descent (OSAMD) in Algorithm 1. To make
our description easier to follow, we first introduce the
following procedures.

1. Pseudolabel: Pseudolabel the example xt by an
aggressive model (parameterized by θ).

2. Self-adaptation: Before making the decision, the
learner trusts the pseudolabel and self adapts the
conservative model (parameterized by w, ŵ) by im-
plicit mirror descent.

3. Active query: The active agent decides whether
to query the label based on the margin measured
by |Ht(θ)|. If query, update the aggressive model
by mirror descent with the true label by adaptive
stepsizes. The conservative model is updated with
pseudolabel or queried label by mirror descent.

Intuitive description At a high level, we design an
“aggressive” model to track the max-margin classifier
in order to produce correct pseudolabels. On the other
hand, the conservative model is updated with pseudola-
bels with the goal of minimizing the dynamic regret.
Intuitively, the aggressive model is updated with an
aggressive stepsize, thus can track the max-margin
classifier by limited updates with the true labels and
provide trustful pseudolabels, although its regret might
be large. The trustful pseudolabels enable the learner
to “look ahead” with the incoming label and self-adapt
the conservative model before making the final decision,
leading to a lower regret. Our active query agent mea-
sures the uncertainty of pseudolabels by the margin
between the data samples and the decision boundary,
i.e., |Ht(θ)|, and tends to query the uncertain sam-
ples. Then update the aggressive model with the active
queries in time. Finally, the conservative model is up-
dated with highly confident pseudolabels or queried
real labels by a fixed conservative stepsize, and thus
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Algorithm 1 Online Self-Adaptive Mirror Descent
Input: Active probability controller σ, aggressive step size τt, conservative step size η, initial data.
Initial: Learn from initial data, get aggressive model θ1 and conservative model ŵ1.
for t = 1, . . . , T do

observe data sample xt

pseudolabel:
give the pseudolabel provided by the aggressive model ŷt = sign(Ht(θt))

self-adaptation:
adapt the conservative model wt = arg minw∈K ηf(w; xt, ŷt) + DR(w, ŵt), and then make the decision

active query:
draw a Bernoulli random variable with probability Zt ∼ Bernoulli(σ/(σ + |Ht(θt)|))

if Zt = 1 then
query label yt, and let ỹt = yt

update the aggressive model by θt+1 = arg minθ∈K −τt⟨yt∇Ht(θt), θ⟩ + DR(θ, θt)
else

let θt+1 = θt and ỹt = ŷt

end if
update the conservative model by ŵt+1 = arg minw∈K η⟨∇f(wt; xt, ỹt), w⟩ + DR(w, ŵt)

end for

keeps tracking the continual domain shift.

Online teacher-student structure Our novel de-
sign of running two models θ and w, where the aggres-
sive model θ teaches the adaptation of the conserva-
tive model w, is motivated by the special property of
continual domain shifts. Specifically, the max-margin
classifier shifts continually and will not “cross over” the
margin in a short time, thus the aggressive model does
not need to update frequently, since the old model still
can give correct pseudolabels. When the max-margin
classifier “crosses over” the margin, the active agent
will detect the uncertainty, then the aggressive model
θ needs to track the max-margin classifier shift with
an “aggressive” stepsize. On the other hand, as the
continual domain shift leads to the continual change of
the expected loss (on the distribution) lt, the optimal
minimizer w∗

t evolves continually, leading to the need
for a conservative model w that frequently adapts to
the shift using a “conservative” stepsize.

Remark Our pseudolabel and self-adaptation in the
online setting, where we adopt a teacher-student struc-
ture, are different from the existing works in the offline
setting (Zhao et al., 2020). Also, there is no previous
online learning algorithm that uses the same ideas to
the best of our knowledge. In fact, this is an open ques-
tion for online active learning under non-stationary
scenarios (Lu et al., 2016; Shuji, 2017).

5 Theoretical Analysis

In this section, we analyze the dynamic regret bound
of the proposed algorithm. We first begin with the

separable case, and theoretically show the necessity
of active query and the efficacy of the online teacher-
student structure. Finally, we generalize the results to
the non-separable case.

5.1 Separable Case

We begin with analyzing the regret bound in the sep-
arable case, i.e., α∗ = 0. Since the pseudolabel errors
are highly related to the regret bound, we first present
the following lemma:
Lemma 1 (Pseudolabel Errors). Let the regularizer
R : K 7→ R be a 1-strongly convex function on K with
respect to a norm ∥ · ∥. Assume that DR(·, ·) satisfies
DR(x, z) − DR(y, z) ≤ γ∥x − y∥, ∀x, y, z ∈ K. Set τt =
max{0,σ−ytHt(θt)}

∥∇Ht(θt)∥2
∗

, and σ ≤ R. If α∗ = 0, the expected
number of pseudolabel errors made by Algorithm 1 is
bounded by

E[
T∑

t=1
Mt] ≤ 2G2

σ2 (γCT + ϵv),

where Mt = 1ŷt ̸=yt
is the instantaneous mistake indi-

cator, and ϵv = DR(θ1, v1).

We provide detailed proof in the appendix, where we
refer to and generalize the technique of online active
learning (Cesa-Bianchi et al., 2006; Lu et al., 2016) in
stationary settings with l2 regularizer. Our results hold
for non-stationary scenarios with any regularizers R,
which solves the open question proposed in (Lu et al.,
2016; Shuji, 2017).

As illustrated in Lemma 1, we have three observations:
1) Higher query rate leads to lower errors bound. From
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the upper bound, the expected mistakes bound is in-
versely proportional to query probability controller σ;
2) The pseudolabel mistakes are bounded by the classi-
fier shift CT . This is aligned with the intuition that if
the max-margin classifier shifts severely, then the pseu-
dolabel agent is more likely to make mistakes; 3) Better
initialization implies fewer errors. Better initialization
leads to small ϵv, and thus implies a tighter upper
bound, which shows the importance of the pre-trained
model. As we assume both CT and ϵv are constants,
the expected errors are small and controllable.

It should be noted that E[f(wt; xt, yt)|wt] ̸= lt(wt),
since wt depends on xt, such that fixing wt changes
the distribution of (xt, yt). This leads to biased gradi-
ents that complicate the regret analysis. Thus, before
presenting the regret, we first measure the impact of
the bias brought by this dependency.
Lemma 2. For algorithm 1. We have the following
inequality for ut ∈ K, t = 1, . . . , T

E[lt(wt) − lt(ut)] ≤ E[⟨∇f(wt; xt, yt), wt − ut⟩]
+E[2(LD + G)∥wt − ŵt∥].

Lemma 2 shows that the impact of the gradient bias
is bounded by ∥wt − ŵt∥, which is controlled by the
choice of the stepsize η. Now, we are ready to analyze
the dynamic regret bound.
Theorem 1 (Dynamic Regret). Under the same condi-
tions and parameters in Lemma 1, Algorithm 1 achieves
the following dynamic regret bound

D-RegretOSAMD({Pt}, T ) ≤ 4(ηG4 + G3D)
σ2 (γCT + ϵv)

+2(LD + G)2ηT + ϵw + γD

η
+ 4

√
γDTFVT

η
,

where ϵv = DR(θ1, v1), ϵw = DR(ŵ1, w∗
1).

Proof Sketch. By Lemma 2, the path-length version of
instantaneous regret can be decomposed as

E[lt(wt) − lt(ut)]
≤ E[⟨∇f(wt; xt, yt), wt − ut⟩ + 2(LD + G)∥wt − ŵt∥]
= E[⟨∇f(wt; xt, yt) − ∇f(wt; xt, ŷt), wt − ŵt+1⟩︸ ︷︷ ︸

term A

]

+ E[⟨∇f(wt; xt, ŷt), wt − ŵt+1⟩︸ ︷︷ ︸
term B

]

+ E[⟨∇f(wt; xt, ỹt), ŵt+1 − ut⟩︸ ︷︷ ︸
term C

]

+ E[⟨∇f(wt; xt, yt) − ∇f(wt; xt, ỹt), ŵt+1 − ut⟩︸ ︷︷ ︸
term D

]

+ E[2(LD + G)∥wt − ŵt∥],

where u1, . . . , uT ∈ K. Since the pseudolabel er-
rors are bounded by Theorem 1, we know the bias
∥ŷt − yt∥ = 2Mt. From the definition of algorithm, the
bias ∥ỹt −yt∥ is not larger than ∥ŷt −yt∥, we then have∑T

t=1 ∥ỹt − yt∥ ≤
∑T

t=1 ∥ŷt − yt∥ ≤
∑T

t=1 2Mt. From
this, as we assume the gradient and decision space are
bounded, term A and term D can be bounded in terms
of the errors bound, which is small and controllable
by Lemma 1. Term C is bounded in terms of a re-
cursive term by a proposition of mirror descent (Beck
and Teboulle, 2003). We prove that the implicit gra-
dient update rule has a similar property with explicit
gradient mirror descent, then bound term B in terms
of a recursive term. By adding all the terms up and
setting a suitable stepsize, we obtain a sum of recursion
and get a path-length version of dynamic regret bound.
Finally, using the similar technique with (Besbes et al.,
2015; Zhang et al., 2020b), we could transfer from path-
length bound to temporal variability bound, i.e., bound
the regret in terms of the continual domain shift. ■

We then carefully choose the parameters to obtain the
detailed result.
Corollary 1. In Theorem 1, set the stepsize η =
V

1/3
T T −1/3. We have for σ ≤ R

D-RegretOSAMD({Pt}, T ) ≤ O(σ−2CT + V
1/3

T T 2/3).

Corollary 1 implies that the dynamic regret of OSAMD
is controlled by active probability controller σ, classifier
shift CT , and continual domain shift VT . Since we
assume CT , VT are constants, the regret is dominated
by O(T 2/3), i.e., D-Regret({Pt}, T ) ≤ O(T 2/3), leading
to the insight that OSAMD can compete with the
optimal competitor in hindsight with fast convergence.

Remark We do not provide the regret bound for
σ > R. Since in the worst case (e.g., all the samples
are on the margin, then |H(vt)| = R), the algorithm
would query at least half of the labels in expectation,
which is contrary to the assumption of limited labels.

We then begin to discuss the advantage of our design
from a theoretical review.

The necessity of query We have the following lower
bound for any unsupervised (i.e., without query) online
algorithms.
Theorem 2. Assume α∗ = 0. For any unsupervised
online algorithm A, there exists a sequence of {Pt}
satisfying our assumptions such that

D-RegretA({Pt}, T ) ≥ Ω(T ).

We provide detailed proof in the appendix, where we
create a special example. Theorem 2 implies that it is
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impossible for unsupervised algorithms to keep adaptive
if the environment is changing over time, which shows
the necessity of active query.

The efficacy of the online teacher-student struc-
ture It should be noted that the online teacher-
student structure leads to tight regret bound, which is
even aligned with the lower bound for online algorithms
with full labels.
Theorem 3. (Besbes et al. (2015)) Assume α∗ = 0.
Even if we have all the labels during the process, for
any online learning algorithm A, there exists a sequence
of {Pt} satisfying our assumptions such that

D-RegretA({Pt}, T ) ≥ Ω(V 1/3
T T 2/3).

This result is immediate from Theorem 2 of (Besbes
et al., 2015), where OMD with suitable stepsize attains
the lower bound. As illustrated in Theorem 3, all
algorithms suffer from an Ω(V 1/3

T T 2/3) dynamic regret
lower bound. Recall our result of OSAMD is upper
bounded by O(V 1/3

T T 2/3). From this, we conclude
that the online teacher-student structure is effective in
attaining tight regret bound, which shows that OSAMD
can adapt well to the changing environments with an
optimal convergence.

Remark Note that the query strategy in Algorithm
1 is probabilistic, given by a Bernoulli distribution with
probability σ

σ+|Ht(θt)| , indicating that the query rate
is relatively low when σ is small. Notice that we also
provide a regret bound for σ ≤ R that can be arbitrarily
small in Corollary 1, which means the tight regret
bound holds even in the limited-labels case, showing
the advantage of the online teacher-student structure
compared with previous works with full labels.

5.2 General Case

In this subsection, we extend the results to the non-
separable case, i.e., α∗ > 0 but is a small or negligible
constant (typical assumption in previous works (Kumar
et al., 2020; Wei et al., 2020)). We still begin with the
analysis of the pseudolabel errors, as follows.
Lemma 3 (Pseudolabel Errors). Under
the same conditions in Lemma 1. Set
τt = min{ σ

G2 , max{0,σ−ytHt(θt)}
∥∇Ht(θt)∥2

∗
}, σ ≤ R. The expected

number of pseudolabel errors made by Algorithm 1 is
bounded by

E[
T∑

t=1
Mt] ≤ 2G2

σ2 (γCT + ϵv + σ

G2 Tα∗).

where Mt = 1ŷt ̸=yt is the instantaneous mistake indi-
cator, and ϵv = DR(θ1, v1).

We provide detailed proof in the appendix, where
we generalize the proof of the separable case. From
Lemma 3, we observe that the expected pseudolabel
errors are bounded by an O(α∗T ) term, which is lin-
ear increasing. This cannot be eschewed, because any
classifier would make mistakes if the data distribution
is not separable. We then present the regret bound in
such a case.
Theorem 4 (Regret Bound). Under the same condi-
tions and parameters in Lemma 3. Algorithm 1 achieves
the following regret bound

D-RegretOSAMD({Pt}, T )

≤ ϵw + γD

η
+ 4

√
γDTFVT

η
+ 2(LD + G)2ηT

+ 4(ηG4 + G3D)
σ2 (γCT + ϵv + σ

G2 Tα∗),

where ϵv = DR(θ1, v1), ϵw = DR(ŵ1, w∗
1).

We provide detailed proof in the appendix, where it
is a simple generation of the separable case. We next
choose the parameters to obtain the detailed results.
Corollary 2. In Theorem 4, set the parameter η =
V

1/3
T T −1/3. We have for σ ≤ R

D-RegretOSAMD({Pt}, T )

≤ O(σ−2CT + V
1/3

T T 2/3 + σ−1α∗T ).

Since CT is assumed to be a constant. Therefore, from
Corollary 2, we show the regret is of O(V 1/3

T T 2/3 +
α∗T ), suggesting that the OSAMD algorithm is com-
parable to the optimal in hindsight with only O(α∗T )
bias, which is the best we can hope to achieve. Besides,
recall the regret lower bound of traditional algorithms is
Ω(V 1/3

T T 2/3). As α∗ is often much small and negligible,
the convergent rate is still aligned with the theoretical
lower bound. Thus, we can claim that OSAMD can
still adapt well to the changing environment.

Remark The α∗ bias can not be eschewed for any
self-adaptive algorithms with limited labeled data. For
instance, if all the data are on the margin of vt, then
the mistake probability is at least α∗/2R. Since la-
beled data is limited, we could assume that number of
unlabeled data is of Ω(T ). Then the pseudolabel errors
are of Ω(α∗T/2R), which leads to Ω(α∗T/2R) mistake
feedbacks. Therefore, it is easy to prove that the dy-
namic regret suffers from an Ω(α∗T/2R) term, which
is aligned with the term of O(σ−1α∗T ) in Corollary 2.

6 Experiments

In this section, we extensively evaluate OSAMD on
both synthetic and real-world datasets. We first ver-
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ify OSAMD on the synthesis dataset with continually
changing distributions for the linear classification task.
Then, we evaluate OSAMD on a deep learning model
using a real-world dataset and demonstrate that the
theoretical intuition can be applied to practical deep
learning tasks as well.

6.1 Experimental Setup

We first briefly introduce our experimental setup, and
leave the details in the appendix due to the space limit.

Dataset We experiment on two synthesis datasets -
Rotating Gaussian (binary) & Rotating MNIST (multi-
class), and two real-world datasets - Portraits (Ginosar
et al., 2015) & Cover-Type (Blackard and Dean, 1999):
1) Rotating Gaussian: We sequentially sample the data
from two continually changing Gaussian distributions
representing two classes. The center points rotate from
0◦ to 180◦. 2) Rotating MNIST : We averagely rotate
the images from 0◦ to 90◦ counterclockwise to be the
target dataset with a continually changing domain.
3) Portraits: It contains 37,921 photos of high school
seniors labeled by gender. This real dataset suffers from
a natural continual domain shift over the years (Kumar
et al., 2020). 4) Cover-Type: It contains 495141 samples
with 54 features labeled by cover types. This dataset
suffers from a natural continual domain shift over the
sample indexes (Kumar et al., 2020).

Baselines We compare with the following baselines:
1) PAA (Lu et al., 2016): To demonstrate the advantage
of the online teacher-student structure, we compare
with one online active algorithm – passive-aggressive
active (PAA) learning; 2) OMD (all): To compare
OSAMD and traditional non-stationary online learning
with full labels, we use all the labels to update by
OMD; 3) OMD (partial): To compare OSAMD and
OMD with the same amount of labeled samples, we use
uniform sampled labels to update by OMD; 4)OSAMD
w/o Self-adaptation: To evaluate the self-adaptation
method of OSAMD, we use the same active queries as
OSAMD to update by OMD; 5) OSAMD w/o Active-
query: To evaluate the active query strategy of OSAMD,
we use uniform sampled labels to update the aggressive
pseudolabel model for OSAMD.

We do not compare with the proposed methods in
Kumar et al. (2020) and Chen et al. (2021), which study
similar setting. For Kumar et al. (2020), their algorithm
should learn from batch data, thus can not be directly
applied in the online continual adaptation setting that
we study. For Chen et al. (2021), the classification
algorithm needs to memorize all the active queries
during the online training and find the minimal of the
received samples in every round. It is computationally

intractable in our deep learning experiments.

Implementation Details For Rotating Gaussian,
we set the objective function to be the SVM loss. For
other datasets, we follow the deep learning setting as
previous work on unsupervised gradual domain adap-
tation (Kumar et al., 2020). For rotating MNIST and
Portraits, we used a 3-layer convolutional network with
dropout(0.5) and batchnorm on the last layer. For the
Cover-Type dataset we used a 2 hidden layer feedfor-
ward neural network with dropout(0.5). Due to space
limitations, please refer to the supplementary material
for more details.

6.2 Experimental Results

We next present the experimental results and ablation
study for the proposed method.

Synthesis data We first investigate whether the
simulation can corroborate our theoretical findings,
and present the results illustrated in Table 1 (Rotating
Gaussian, Rotating MNIST) and Figure 3(a),3(b), from
which we can make the following observations: OSAMD
performs remarkably well with limited labels. There is
no accuracy decrease from the full-label OMD with
only 18.2% labels in Rotating Gaussian, and marginal
decrease in Rotating MNIST with only 6.4% labels.
In the above two datasets, OSAMD achieves similar
regret/accumulated loss with full-label OMD, show-
ing remarkable adaptation ability. In contrast, the
regrets/accumulated losses of other baselines increase
dramatically. This experimental result is aligned with
our dynamic regret bound in Theorem 4, where OS-
AMD has similar dynamic regret to full-label OMD
with only a small bias in the general case.

Real-world data We then extend OSAMD to work
with deep learning models, and observe the perfor-
mance in practice. As shown in Table 1 (Portraits,
Cover-Type) and Figure 3(c),3(d), the practical results
are similar to the synthesis data. OSAMD attains
93.7%(Portraits)/76.8%(Cover-Type) accuracy using
only 3.8%/2.3% labels compared with 94.0%/76.8%
accuracy of OMD (all) with full labels, while PAA and
OMD (partial) with 3.8%/2.3% uniform queries only
obtains 92.0%/76.5% and 91.8%/75.3%. The accumu-
lated loss of OSAMD is aligned with OMD (full), being
a side-information to reflect the consistent of the regret,
which demonstrates the remarkable adaptation ability
to real-world environments. While the accumulated
losses of other baselines increase quickly, showing the
practical advantage of our theoretical design.

Ablation study Note that we have two key designs
on OSAMD, i.e., self-adaptation and active query. To
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Figure 3: Regret/Accumulated loss v.s. timestep on different datasets.

Table 1: Classification accuracy with 90% confidence intervals for the mean over 10 runs.

Rotating Gaussian Rotating MNIST Portraits Cover-Type
Accuracy Labels Accuracy Labels Accuracy Labels Accuracy Labels

OSAMD 98.9±0.2% 18.2±1.3% 86.8±0.8% 6.4±0.8% 93.7±0.3% 3.8±0.8% 76.8±0.07% 2.3±0.08%
PAA 98.5±0.2% 18.2±1.3% 84.0±0.6% 6.4±0.8% 92.0±1.0% 3.8±0.8% 76.5±0.02% 2.3±0.08%
OMD(all) 98.9±0.0% 100.0±0.0% 88.1±0.7% 100.0±0.0% 94.0±0.4% 100.0±0.0% 76.8 ±0.02% 100.0±0.0%
OMD(partial) 97.0±1.0% 18.2±1.3% 81.7±1.3% 6.4±0.8% 91.8±1.1% 3.8±0.8% 75.3±0.04% 2.3±0.08%
OSAMD w/o
Self-adaption 98.2±0.3% 18.2±1.3% 81.7±1.2% 6.4±0.8% 91.8±1.1% 3.8±0.8% 75.3±0.03% 2.3±0.08%

OSAMD w/o
Active-query 96.6±1.0% 18.2±1.3% 84.9±1.0% 6.4±0.8% 92.7±0.6% 3.8±0.8% 76.1±0.16% 2.3±0.08%

verify the efficacy of each component, we compare with
two baselines: OSAMD w/o Self-adaptation and OS-
AMD w/o Active query. The experimental results in
Table 1 and Figure 3 show that: 1) The self-adaptation
is effective: OSAMD outperforms OSAMD w/o Self-
adaptation, obtains a noticeable accuracy increase, and
achieves a significant lower regret, which highlights
the power of self-adaptation as in our theoretical find-
ings. 2) The active query is effective: OSAMD is more
accurate and achieves a lower regret than OSAMD
w/o Active-query, which demonstrates that the active
queries are more effective than uniform samples.

Sensitivity of Query Rate We test the perfor-
mance regarding the effect of query number, as shown
in Figure 4. We vary the parameter choice of σ that
balances the number of queries and performance, and
compare it with other baselines on the Rotating Gaus-
sian dataset. From the result, we find that the proposed
OSAMD consistently outperforms others under differ-
ent query rates, suggesting the advantage of OSAMD
is not sensitive to the query number.

7 Conclusions and Limitations

This paper studies an open problem for machine learn-
ing models to continually adapt to changing environ-
ments with limited labels, where previous works show
limitations on realistic modeling and theoretical guaran-
tees. To fill this gap, we formulate the OACA problem
and propose OSAMD, an effective online active learning
algorithm with the novel design of the online teacher-
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Figure 4: Accuracy v.s. query on Rotating Gaussian.

student structure. We show it can compete with the
optimal model in hindsight with optimal convergence
order. Experimental evaluations corroborate our the-
oretical findings and verify the efficacy of OSAMD.
Our results take the first step towards online domain
adaptation in continually changing environments.

Limitations In this work, we tradeoff the number
of queries and regret in an implicit way by setting
the parameter σ. When seeking the explicit way, we
face the common challenge of estimating the expected
queries in online active learning literate (Cesa-Bianchi
et al., 2006; Lu et al., 2016), and this becomes even
harder under non-stationary settings. Although the
limitation does not affect our experimental results and
practical usage, it remains a future theoretical interest.
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Supplementary Material:
Online Continual Adaptation with Active Self-Training

A FORMATTING INSTRUCTIONS FOR THE SUPPLEMENTARY
MATERIAL

We first provide a brief overview of the appendix. In Section B, we introduce previous works related to our
literature. In Section C, we discuss how to connect various discrepancy measures between probability distributions
in domain adaptation with the temporal variability condition in online learning, as described in Section 2 of the
main paper. In Section D, we provide detailed proof for the analysis in Section 5 of the main paper. We then
extend the results to the multiclass case in Section E. We provide the experimental details in Section F.

B Related Work

The topic of this paper sits well in between two amazing bodies of literature: domain adaptation (Tzeng et al.,
2014; Ganin and Lempitsky, 2015; Hoffman et al., 2018; Zhao et al., 2020) that is a typical method to improve
the generalization of a pre-trained model when testing on new domains without or with limited labels, and online
learning (Hazan et al., 2016) that is a basic framework for learning with streaming online data. Our results
therefore contribute to both fields and hopefully will inspire more interplay between the two communities.

B.1 Domain Adaptation

In the domain adaptation literature, our setting is related to active domain adaptation that queries additional
labels to enable effective adaptation, and gradual domain adaptation that studies the adaptation problem under
gradual domain shift. We present a brief summary as follows.

Active Domain Adaptation Active Domain Adaptation (Rai et al., 2010; Chattopadhyay et al., 2013;
Su et al., 2020b; Prabhu et al., 2021) aims to actively select the most representative samples from the target
domain, and learn a model to maximize performance on the target set. It was first proposed by Rai et al. (2010)
with application to sentiment classification from text data, where they embedded an online uncertainty-based
sample strategy in domain adaptation. Chattopadhyay et al. (2013) proposed a method that performs transfer
and active learning simultaneously by solving a single convex optimization problem. Recently, active adversarial
domain adaptation (AADA) (Su et al., 2020b) was proposed to solve the active domain adaptation problem in
the context of deep learning, where AADA selects samples based on the uncertainty measured by entropy and
targetness measured by the domain discriminator. Prabhu et al. (2021) proposed ADA-CLUE that queried labels
based on uncertainty and diversity, then adopts a semi-supervised domain adaptation to transfer the domain
knowledge to the target. However, current works are designed to adapt from a fixed source domain to a fixed
target domain, and can not be applied to continual domain adaptation in the changing environment.

Gradual Domain Adaptation Gradual domain adaptation (Hoffman et al., 2014; Gadermayr et al.,
2018; Wulfmeier et al., 2018; Bobu et al., 2018; Kumar et al., 2020) cares about how to adapt the model to a
changing environment with unlabeled data. Continuous manifold learning (Hoffman et al., 2014) tried to adapt to
evolving visual domains by learning a sequence of transformations on a fixed source representation. Gadermayr
et al. (2018) extended previous approaches by adding two methods for regularization of the fully-unsupervised
adaptation process. Wulfmeier et al. (2018) presented an adversarial approach benefiting from unsupervised
alignment to a series of intermediate domains. Bobu et al. (2018) proposed a continuous replay model that
enforced the past prediction to be matched. Kumar et al. (2020) first developed a theory, and proposed a gradual
self-training method, which self-trains on the finite unlabeled examples from each batch successively. However,
the generalization bound in (Kumar et al., 2020) suffers from an exponential error blow-up in time horizon T . Our



Shiji Zhou, Han Zhao, Shanghang Zhang, Lianzhe Wang, Heng Chang, Zhi Wang, Wenwu Zhu

analysis further shows that unsupervised methods suffer from linear regret even in the separable case, implying
the necessity of additional labels in the dynamic online setting.

B.2 Online Learning

In the online learning literature, our setting is related to adaptive online learning that aims to achieve optimal
bound in dynamic environments, online active learning that studies online classification with active queries, online
meta learning that provides a framework for adapting to a new domain with few-shot samples. We present a brief
summary as follows.

Adaptive Online Learning Adaptive online learning (Besbes et al., 2015; Mokhtari et al., 2016; Jadbabaie
et al., 2015) extends the traditional online learning setting to deal with dynamic problems, by introducing the
dynamic regret that measures the online performance in dynamic environments. Under the path-length (Zinkevich,
2003; Hall and Willett, 2013) or temporal variability (Besbes et al., 2015; Campolongo and Orabona, 2020)
conditions, sublinear regret is achieved by online algorithms with suitable stepsizes (Yang et al., 2016). However,
practical deployments of fully online learning systems have been somewhat limited and impractical, partly due to
the expense of annotations.

Online Active Learning Previous works (Cesa-Bianchi et al., 2005; Lu et al., 2016; Hao et al., 2017) study
online active learning for classification. However, online classification with limited labels in changing environments
remains an open question (Shuji, 2017). Recent work (Chen et al., 2021) considers online active learning with
hidden covariate shift for regression tasks. However, both the algorithm and theory can not be generalized to
online classification with joint distribution shift. In this paper, we tackle this problem and resolve the open
question proposed in (Lu et al., 2016; Shuji, 2017).

Online Meta Learning Online meta learning (Finn et al., 2019; Balcan et al., 2019; Khodak et al., 2019)
provides a framework for online few shot adaptation by learning the meta regularization. It studies how the
model can fast adapt to a new environment using only a few samples by capturing the optimal initialization.
However, online meta-learning focuses on “few-samples learning” using passively received labeled samples (usually
not sufficient to achieve sublinear regret), while our setting focuses on “few-labels learning”, where the active
queries and unlabeled samples also help the adaptation.

C Domain Discrepancy to Temporal Variability

In this section, we discuss how to connect classic distance metrics between probability distributions to the
temporal variability condition used in the online learning literature. We present all the results in Table 2, where
we provide the conditions for connecting these two.

Table 2: The conditions for connecting different domain discrepancy with the temporal variability condition

Temporal Variability
Bounded sum of Total Variation Bounded function f
Bounded sum of Wasserstein Infinity f is Lischitz continuous on x; No label shift
Bounded sum of Maximum Mean Discrepancy Bounded reproducing kernel Hilbert space K; Linear function f

C.1 Bounded Sum of Total Variation

We first show that the bounded sum of total variation (Ben-David et al., 2010; Zhao et al., 2018, 2019) (as
Assumption 1) with bounded function (as Assumption 5) can lead to the temporal variability condition in the
online learning literature.
Proposition 1. Assume the sum of total variation between Pt, Pt+1 is bounded, i.e., satisfying Assumption 1. If
the function value f(w; x, y) is bounded for all w ∈ K, x ∈ X , y ∈ {−1, 1}, i.e., satisfying Assumption 5. Then the
temporal variability is bounded as following

T −1∑
t=1

sup
w∈K

|lt(w) − lt+1(w)| ≤ 2FVT .
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Proof. First, by the definition of lt and bounded f, we have

sup
w∈K

|lt(w) − lt+1(w)| = sup
w∈K

∣∣Ex,y∼Pt(x,y)[f(w; x, y)] − Ex,y∼Pt+1(x,y)[f(w; x, y)]
∣∣

≤ sup
w∈K

∫
x,y

|f(w; x, y)dPt − f(w; x, y)dPt+1|

≤ sup
w∈K

∫
x,y

|f(w; x, y)||dPt − dPt+1|

≤ F

∫
x,y

|dPt − dPt+1| .

The last inequality is from Assumption 5. Then, sum this term from 1 to T − 1, and by the definition of dT V , we
obtain

T −1∑
t=1

sup
w∈K

|lt(w) − lt+1(w)| ≤ F

T −1∑
t=1

∫
x,y

|dPt − dPt+1|

≤ F · 2
T −1∑
t=1

sup
E

|Pt(E) − Pt+1(E)|

= 2F

T −1∑
t=1

dTV(Pt, Pt+1)

≤ 2FVT .

The last inequality is from Assumption 1. We thus end the proof. ■

The Proposition 1 also holds for the multiclass case, since we define the total variation by measurable events,
which do not depend on the class set.

C.2 Bounded Sum of Wasserstein Infinity Distance

We next present the bounded sum of wasserstein infinity distance that also leads to the temporal variability
condition in the online learning literature, under conditions that f is Lischitz continuous over x and Pt has no
label shift. We begin with the definition of wasserstein infinity distance.
Definition 2 (Wasserstein Infinity Distance). We use W∞(P, Q) to denote the Wasserstein-infinity distance
between distributions P and Q:

W∞(P, Q) := inf
{

sup
x∈X

∥h(x) − x∥ : h : X → X , h#P = Q
}

,

where # denotes the push-forward of a measure, that is, for every set A ⊆ X , h#P (A) = P
(
h−1(A)

)
.

Remark Note that in the definition above we use the Monge formulation of the Wasserstein distance. Under
mild assumptions, e.g., both P and Q have densities, the Monge formulation is well-defined. This formulation
has also been used in a previous work (Kumar et al., 2020) to measure the distributional shift.

In particular, the authors (Kumar et al., 2020) assume that the conditional distributions do not shift too much,
i.e.,

ρ(P, Q) := max
(
W∞

(
PX|Y =1, QX|Y =1

)
, W∞

(
PX|Y =−1, QX|Y =−1

))
is bounded, and there is no label shift, i.e., P(Y ) = Q(Y ). We adopt similar assumptions and further assume
that f(w; x, y) is Lipschitz continuous on x, a general assumption on the loss function, which leads to temporal
variability:
Proposition 2. Let the function value f(w; x, y) be Lipschitz continuous on x, i.e., there exists a constant L ≥ 0,
such that

|f(w; x1, y) − f(w; x2, y)| ≤ L∥x1 − x2∥, ∀x1, x2 ∈ X , w ∈ K.
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Assume the sum of Wasserstein Infinity Distance between each consequent pair of conditional distribution is
bounded, i.e.

T −1∑
t=1

ρ(Pt, Pt+1) ≤ VT .

Further assume there is no label shift, i.e., ∀t ∈ [T ], Pt(Y ) = Pt+1(Y ) = P (Y ). Then the temporal variability is
bounded, as follows

T −1∑
t=1

sup
w∈K

|lt(w) − lt+1(w)| ≤ LVT .

Proof. First, by the definition of Wasserstein Infinity Distance, we know that there exist h
(y)
t , y ∈ {−1, 1} such

that
h

(y)
t #Pt(· | y) = Pt+1(· | y)

and
sup
x∈X

∥∥∥h
(y)
t (x) − x

∥∥∥ ≤ ρ(Pt, Pt+1) + ϵ, ∀ε > 0.

Then, by the definition of lt, we have

|lt(w) − lt+1(w)| ≤
∑

y=−1,1

∣∣P (Y = y)Ex∼Pt(x|y)[f(w; x, y)] − P (Y = y)Ex∼Pt+1(x|y)[f(w; x, y)]
∣∣

=
∑

y=−1,1

∣∣∣∣∫
x

f(w; x, y)P (y)dPt(X|Y = y) −
∫

x

f(w; x, y)P (y)dPt+1(X|Y = y)
∣∣∣∣

=
∑

y=−1,1

∣∣∣∣∫
x

f(w; x, y)P (y)dPt(X|Y = y) −
∫

x

f(w; h
(y)
t (x), y)P (y)dPt(X|Y = y)

∣∣∣∣
≤

∑
y=−1,1

∫
x

∣∣∣f(w; x, y)P (y) − f(w; h
(y)
t (x), y)P (y)

∣∣∣ dPt(X|Y = y)

≤ L

∫
x

∥x − h
(1)
t (x)∥P (Y = 1)dPt(X|Y = 1) + L

∫
x

∥x − h
(−1)
t (x)∥P (Y = −1)dPt(X|Y = −1)

≤ L max
h=h

(1)
t ,h

(−1)
t

sup
x∈X

∥h(x) − x∥2

(∫
x

P (Y = 1)dPt(X|Y = 1) +
∫

x

P (Y = −1)dPt(X|Y = −1)
)

≤ L(ρ(Pt, Pt+1) + ε), ∀ε > 0.

There is no w in right side, and thus the inequality still hold if we take supw in the left side. Then

sup
w∈K

|lt(w) − lt+1(w)| ≤ inf
ε>0

L(ρ(Pt, Pt+1) + ε) = Lρ(Pt, Pt+1).

By summing up, we get

T −1∑
t=1

sup
w∈K

|lt(w) − lt+1(w)| ≤ L

T −1∑
t=1

ρ(Pt, Pt+1) ≤ LVT .

■

C.3 Bounded Sum of Maximum Mean Discrepancy

We finally show that under the conditions that the decision space K is a bounded reproducing kernel Hilbert
space and f is linear on the representation space, the bounded sum of maximum mean discrepancy (Long et al.,
2015) can lead to the temporal variability condition in the online learning.
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Definition 3 (Maximum Mean Discrepancy). We use MMD(P, Q) to denote the maximum mean discrepancy
between distributions P and Q:

MMDϕ(P, Q) := ∥Ex∼P [ϕ(x)] − Ex∼Q[ϕ(x)]∥H,

where feature map ϕ : X → H, and H is a reproducing kernel Hilbert space. In binary class, the distance between
conditional distribution

dϕ
MMD(P, Q) := max{MMDϕ

(
PX|Y =1, QX|Y =1

)
, MMDϕ

(
PX|Y =−1, QX|Y =−1

)
}.

Proposition 3. Let K to be a reproducing kernel Hilbert space. Assume the sum of Maximum Mean Discrepancy
between conditional Pt, Pt+1 is bounded, i.e.

T −1∑
t=1

dϕ
MMD(Pt, Pt+1) ≤ VT ,

where ϕ : X → K. Let f(w; x, y) = y⟨w, ϕ(x)⟩ linear on the representation space. Assume K is bounded by
∥w∥H ≤ F, ∀w ∈ K, then the temporal variability is bounded, as following

T −1∑
t=1

sup
w∈K

|lt(w) − lt+1(w)| ≤ FVT .

Proof. From the linear property of f, and the definition of lt, we have

lt(w) =
∑

y=−1,1
P (Y = y)Ex∼Pt(x|y)f(w; x, y) =

∑
y=−1,1

P (Y = y)y⟨w,Ex∼Pt(x|y)ϕw(x)⟩.

Then, by the definition of Maximum Mean Discrepancy

sup
w∈K

|lt(w) − lt+1(w)|

= sup
w∈K

|
∑

y=−1,1
P (Y = y)y⟨w,Ex∼Pt(x|y)ϕ(x)⟩ −

∑
y=−1,1

P (Y = y)y⟨w,Ex∼Pt+1(x|y)ϕ(x)⟩|

≤ sup
w∈K

∑
y=−1,1

P (Y = y)∥w∥H∥Ex∼Pt(x|y)ϕ(x) − Ex∼Pt+1(x|y)ϕ(x)∥H

≤ Fdϕ
MMD(Pt, Pt+1).

The first inequality comes from the Hölder inequality. By summing up, we finally get

T −1∑
t=1

sup
w∈K

|lt(w) − lt+1(w)| ≤
T −1∑
t=1

Fdϕ
MMD(Pt, Pt+1) ≤ FVT .

■

D Missing Proofs

In this section, we provide the detailed proof of the pseudolabel errors bound and the dynamic regret bound for
OSAMD.

D.1 Pseudolabel Errors

In this subsection, we analyze the pseudolabel errors for the OSAMD algorithm. We will first present some useful
lemmas, then provide the proof of the separable case, where the data distribution can be correctly classified
within a margin (i.e., α∗ = 0 in Assumption 2). Finally, we generalize it to the non-separable case. Here we
generalize the proof in Lu et al. (2016); Cesa-Bianchi et al. (2006) to non-stationary cases with mirror descent.

We first introduce the lemma on the property of Bregman divergence.
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Lemma 4 (Beck and Teboulle (2003)). Let K be a convex set in a Banach space B, and regularizer R : K 7→ R
be a convex function, and let DR(·, ·) be the Bregman divergence induced by R. Then, any update of the form

w∗ = arg min
w∈K

{⟨a, w⟩ + DR(w, c)}

satisfies the following inequality

⟨w∗ − d, a⟩ ≤ DR(d, c) − DR (d, w∗) − DR (w∗, c)

for any d ∈ K.

Denote the instantaneous hinge loss with margin r by fr
t (θ) = max{0, r − ytH(θ; xt)}, where xt, yt is sampled

from Pt. We then present a useful lemma to get the recurrence.
Lemma 5. When regularizer R : K 7→ R is a 1-strongly convex function on K with respect to a norm ∥ · ∥. Then
for algorithm 1, the following inequality holds

τtr − τtytHt(θt) − τ2
t

2 ∥∇Ht(θt)∥2
∗ ≤ DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt).

for r > 0.

Proof. First, by the definition of fr
t , we have

r − fr
t (vt) = r − max{0, r − ytHt(vt)} ≤ ytHt(vt)

= ytHt(vt) − ytHt(θt) + ytHt(θt).

By the convexity of −yH(·), we have

ytHt(vt) − ytHt(θt) = −ytHt(θt) − (−ytHt(vt))
≤ ⟨−yt∇Ht(θt), θt − vt⟩
≤ ⟨−yt∇Ht(θt), θt+1 − vt⟩ + ⟨−yt∇Ht(θt), θt − θt+1⟩.

By the update rule of θ and Lemma 4, the first term can be bounded by

⟨−yt∇Ht(θt), θt+1 − vt⟩ ≤ 1
τt

(DR(vt, θt) − DR(vt, θt+1) − DR(θt+1, θt)).

Due to Hölder inequality and the fact that ab ≤ η
2 a2 + 1

2η G2 for η > 0, for the second term, we have

⟨−yt∇Ht(θt), θt − θt+1⟩ ≤ ∥∇Ht(θt)∥∗∥θt+1 − θt∥

≤ τt

2 ∥∇Ht(θt)∥2
∗ + 1

2τt
∥θt+1 − θt∥2.

Due to the strong convexity of regularizer R, we have DR(x, y) ≥ 1
2 ∥x − y∥2 for any x, y ∈ X (Mohri et al., 2018).

Therefore, by plugging the above term, we obtain that

r − fr
t (vt) ≤ 1

τt
(DR(vt, θt) − DR(vt, θt+1) − 1

2∥θt+1 − θt∥2)

+ τt

2 ∥∇Ht(θt)∥2
∗ + 1

2τt
∥θt+1 − θt∥2 + ytHt(θt).

By rearranging, we have

τtr − τtytHt(θt) − τ2
t

2 ∥∇Ht(θt)∥2
∗ ≤ DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt).

■

Denote the instantaneous mistake by Mt(w) = 1ŷt ̸=yt , and let Lt(w) = 1ŷt=yt,ŷtHt(w)≤r to be the indicator of the
right decision but in the margin r, where 1(·) is the indicator function. We then have the following relationship.
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Lemma 6. Take the same assumptions as Lemma 5. For Algorithm 1, let τt = 0 if fr
t (θt) = 0, then the following

inequality holds for every t

MtZtτt(r + |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗) + LtZtτt(r − |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗)

≤ DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt)

for r > 0.

Proof. From Lemma 5, we know that

τtr − τtytHt(θt) − τ2
t

2 ∥∇Ht(θt)∥2
∗ ≤ DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt).

If Mt = 1 then ytHt(θt) ≤ 0, and if Lt = 1 then ytHt(θt) ≥ 0. Therefore, we can obtain

MtZtτt(r + |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗) + LtZtτt(r − |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗)

≤ MtZt(DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt)) + LtZt(DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt))

= (Mt + Lt)Zt(DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt)).

From Algorithm 1, we know that if Zt = 0, then τt = 0, θt = θt+1. And if Mt + Lt = 0, we get ytHt(θt) ≥ r, then
τt = 0, θt = θt+1. Therefore, we have

(Mt + Lt)Zt(DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt)) = DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt).

We finally get

MtZtτt(r + |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗) + LtZtτt(r − |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗)

≤ DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt).

■

D.1.1 Separable Case

Here, we analyze pseudolabel errors for the separable case, i.e., α∗ = 0, where we can easily know that fr
t (vt) = 0

if r ≤ R. Before proving the theorem, we first present the following lemma.
Lemma 7. Take the same assumptions as Lemma 1. Let τt = fr

t (θt)/∥∇Ht(θt)∥2
∗. Then for Algorithm 1, the

following inequality holds
r

2G2 MtZt(r + |Ht(θt)|) ≤ DR(vt, θt) − DR(vt, θt+1),

for r ≤ R.

Proof. By the separability, we know fr
t (vt) = 0, r ≤ R. According to Lemma 6, we have

MtZtτt(r + |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗) + LtZtτt(r − |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗)

≤ DR(vt, θt) − DR(vt, θt+1).

By taking τt = fr
t (θt)/∥∇Ht(θt)∥2

∗, we can obtain

MtZtτt(r + |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗) + LtZtτt(r − |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗)

= MtZtτt(r + |Ht(θt)| − 1
2(r + |Ht(θt)|) + LtZtτt(r − |Ht(θt)| − 1

2(r − |Ht(θt)|)

= 1
2MtZtτt(r + |Ht(θt)|) + 1

2LtZt(r − |Ht(θt)|)

≥ 1
2MtZtτt(r + |Ht(θt)|).
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The last inequality comes from the definition of Lt. Therefore

1
2MtZtτt(r + |Ht(θt)|) ≤ DR(vt, θt) − DR(vt, θt+1).

From Assumption 4, we know that

Mtτt = Mt
fr

t (θt)
∥∇Ht(θt)∥2

∗
≥ Mt

fr
t (θt)
G2 ≥ Mt

r

G2 ,

we thus have
r

2G2 MtZt(r + |Ht(θt)|) ≤ DR(vt, θt) − DR(vt, θt+1).

■

With the above Lemmas, we are now ready to proof the Lemma 1.

Proof of Lemma 1. First, by the condition DR(x, z) − DR(y, z) ≤ γ∥x − y∥, ∀x, y, z ∈ K, we have

T∑
t=1

DR(vt, θt) − DR(vt, θt+1) ≤ DR(v1, θ1) +
T −1∑
t=1

(DR(vt+1, θt+1) − DR(vt, θt+1))

= ϵv + γ

T −1∑
t=1

∥vt+1 − vt∥

= ϵv + γCT

Then, by the definition of OSAMD algorithm and Lemma 7, we have

E[
T∑

t=1
Mt] = 1

r
E[

T∑
t=1

MtZt(r + |Ht(θt)|)]

= 2G2

r2 E[
T∑

t=1

r

2G2 MtZt(r + |Ht(θt)|)]

≤ 2G2

r2 E[
T∑

t=1
DR(vt, θt) − DR(vt, θt+1)]

≤ 2G2

r2 (ϵv + γCT )

= 2G2

σ2 (ϵv + γCT ),

where r = σ. We thus end the proof. ■

D.1.2 General Case

Here, we provide the analysis for the pseudolabel errors of the general case, where we do not assume that the
data distribution Pt is 100% separated within a margin. We first present the following lemma.

Lemma 8. Take the same assumptions as Lemma 1. Then for Algorithm 1, let τt = min{C,
fr

t (θt)
∥∇Ht(θt)∥2

∗
}, the

following inequality holds

min{C,
r

G2 }1
2MtZt(r + |Ht(θt)|) ≤ DR(vt, θt) − DR(vt, θt+1) + Cfr

t (vt),

for r ≤ R.
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Proof. First, according to Lemma 6, we have

MtZtτt(r + |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗) + LtZtτt(r − |Ht(θt)| − τt

2 ∥∇Ht(θt)∥2
∗)

≤ DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt).

Since we take
τt = min{C,

fr
t (θt)

∥∇Ht(θt)∥2
∗

} ≤ fr
t (θt)/∥∇Ht(θt)∥2

∗.

Similar to Lemma 7, we have
τt

2 MtZt(r + |Ht(θt)|) ≤ DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt).

Since we know that

Mtτt = Mt min{C,
fr

t (θt)
∥∇Ht(θt)∥2

∗
} ≤ Mt min{C,

r

G2 }.

Further, by τt ≤ C. We therefore have

min{C,
r

G2 }1
2MtZt(r + |Ht(θt)|) ≤ DR(vt, θt) − DR(vt, θt+1) + Cfr

t (vt).

■

We are now ready to prove the Lemma 3.

Proof of Lemma 3. First by the proof of Lemma 1, we have
T∑

t=1
DR(vt, θt) − DR(vt, θt+1) ≤ ϵv + γCT .

Then

E[
T∑

t=1
Mt] = 1

r
E[

T∑
t=1

MtZt(r + |Ht(θt)|)]

= 2
r2 max{ r

C
, G2}E[

T∑
t=1

min{C,
r

G2 }1
2MtZt(r + |Ht(θt)|)]

≤ 2
r2 max{ r

C
, G2}E[

T∑
t=1

DR(vt, θt) − DR(vt, θt+1) +
T∑

t=1
Cfr

t (vt)]

≤ 2
r2 max{ r

C
, G2}(ϵv + γCT + C

T∑
t=1

lr
t (vt))

≤ 2
r2 max{ r

C
, G2}(ϵv + γCT + CTα∗)

= 2G2

σ2 (ϵv + γCT + σ

G2 Tα∗),

where r = σ and C = σ/G2. The second inequality comes from lr
t (vt) = E[fr

t (vt)], and the last inequality comes
from lr

t (vt) ≤ lR
t (vt) ≤ α∗. We thus end the proof. ■

D.2 Dynamic Regret Bound

In this subsection, we begin to bound the dynamic regret. We will first provide necessary lemmas, and then use
these lemmas to give the final proof.

We here give similar result as Lemma 4 for property of the implicit gradient mirror descent.
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Lemma 9. Let K be a convex set in a Banach space B, and regularizer R : K 7→ R be a convex function, and let
DR(·, ·) be the Bregman divergence induced by R. Then, any update of the form for convex function f

w∗ = arg min
w∈K

{f(w) + DR(w, c)}

satisfies the following inequality

⟨w∗ − d, ∇f(w∗)⟩ ≤ DR(d, c) − DR (d, w∗) − DR (w∗, c)

for any d ∈ K.

Proof. By the convexity of f and R, it is easy to verify the convexity of DR. Then f(w) + DR(w, c) is convex,
and by the optimality of w∗ and KKT condition (Theorem 2.2 (Hazan et al., 2016)), we have

⟨d − w∗, ∇w∗(f(w∗) + DR(w∗, c))⟩ ≥ 0, ∀d ∈ K.

By the definition of Bregman divergence, we can see that

⟨d − w∗, ∇f(w∗) + ∇R(w∗) − ∇R(c)⟩ ≥ 0, ∀d ∈ K.

Thus we obtain
⟨w∗ − d, ∇f(w∗)⟩ ≤ ⟨d − w∗, ∇R(w∗) − ∇R(c)⟩, ∀d ∈ K.

The rest is the same with Lemma 4. For completeness, we present the proof here. By the definition of Bergman
divergence, we know that

DR(d, c) − DR (d, w∗) − DR (w∗, c)
= R(d) − R(c) − ∇R(c)(d − c) − (R(d) − R(w∗) − ∇R(w∗)(d − w∗))

− (R(w∗) − R(c) − ∇R(c)(w∗ − c))
= −⟨∇R(c), d⟩ + ⟨∇R(w∗), d − w∗⟩ + ⟨∇R(c), w∗⟩
= ⟨d − w∗, ∇R(w∗) − ∇R(c)⟩.

Therefore, we finally conclude for ∀d ∈ K

⟨w∗ − d, ∇f(w∗)⟩ ≤ DR(d, c) − DR (d, w∗) − DR (w∗, c) .

■

Usually, previous works handle the noisy gradient by the property of E[ft(wt)|wt] = lt(wt). However, since xt

and wt are mutually depended, we have E[ft(wt)|wt] ̸= lt(wt). Fortunately, using the linearity of expectation and
by the law of total expectation, we wouldn’t need to handle the conditional expectation directly, as the following
Lemma.
Lemma 10 (Restatement of Lemma 2). For algorithm 1. We have for t = 1, . . . , T

E[lt(wt) − lt(ut)] ≤ E[⟨∇ft(wt), wt − ut⟩] + E[2(LD + G)∥wt − ŵt∥]. (1)

Proof. First, from the above condition and by the convexity, we have

E[lt(wt) − lt(ut)] ≤ E[⟨∇lt(wt), wt − ut⟩]
= E[⟨E[∇ft(wt)|wt], wt − ut⟩] + E[⟨∇lt(wt) − E[∇ft(wt)|wt], wt − ut⟩]
= E[E[⟨∇ft(wt), wt − ut⟩|wt]] + E[⟨∇lt(wt) − E[∇ft(wt)|wt], wt − ut⟩]
= E[⟨∇ft(wt), wt − ut⟩] + E[⟨∇lt(wt) − E[∇ft(wt)|wt], wt − ut⟩].
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Since ŵt does not depend on xt, we know that ∇lt(ŵt) = E[∇ft(ŵt)|ŵt]. We then begin to estimate the second
term, which can be decomposed as

E[⟨∇lt(wt) − E[∇ft(wt)|wt], wt − ut⟩] = E[⟨∇lt(wt) − ∇lt(ŵt), wt − ut⟩]︸ ︷︷ ︸
term A

+ E[⟨E[∇ft(ŵt)|ŵt] − ∇ft(ŵt), wt − ut⟩]︸ ︷︷ ︸
term B

+ E[⟨∇ft(ŵt) − E[∇ft(wt)|wt], wt − ut⟩]︸ ︷︷ ︸
term C

.

We next bound each term step by step. First, by the assumption of L-smoothness (Assumption 4), we can bound
the term A by

term A = E[⟨∇lt(wt) − ∇lt(ŵt), wt − ut⟩]
≤ E[∥∇lt(wt) − ∇lt(ŵt)∥∥wt − ut∥]
≤ E[L∥wt − ŵt∥∥wt − ut∥]
≤ E[LD∥wt − ŵt∥].

The first inequality comes from Hölder inequality, and the last one is from the bounded space (Assumption 5).
Second, by the law of total expectation, we have E[⟨E[∇ft(ŵt)|ŵt], ŵt − ut⟩] = E[⟨∇ft(ŵt), ŵt − ut⟩], hence the
term B can be bounded as

term B = E[⟨E[∇ft(ŵt)|ŵt] − ∇ft(ŵt), wt − ut⟩]
= E[⟨E[∇ft(ŵt)|ŵt] − ∇ft(ŵt), ŵt − ut⟩] + E[⟨∇lt(ŵt) − ∇ft(ŵt), wt − ŵt⟩]
= E[⟨E[∇ft(ŵt)|ŵt], ŵt − ut⟩] − E[⟨∇ft(ŵt), ŵt − ut⟩]

+ E[⟨∇lt(ŵt) − ∇ft(ŵt), wt − ŵt⟩]
≤ 0 + E[∥∇lt(ŵt) − ∇ft(ŵt)∥∥wt − ŵt∥]
≤ 0 + E[2G∥wt − ŵt∥].

The last inequality is from Hölder inequality and bounded gradient (Assumption 4). Finally, we have for term C

term C = E[⟨∇ft(ŵt) − E[∇ft(wt)|wt], wt − ut⟩]
= E[⟨∇ft(ŵt), wt − ut⟩] − E[E[∇ft(wt)|wt], wt − ut⟩]
= E[⟨∇ft(ŵt), wt − ut⟩] − E[E[∇ft(wt), wt − ut⟩|wt]]
= E[⟨∇ft(ŵt) − ∇ft(wt), wt − ut⟩]
≤ E[L∥wt − ut∥∥wt − ŵt∥]
≤ E[LD∥wt − ŵt∥].

The last two inequality is from Hölder inequality and L-smoothness, and the last one is from bounded space
(Assumption 5). By summing up, we get

E[lt(wt) − lt(ut)] ≤ E[⟨∇ft(wt), wt − ut⟩] + E[2(LD + G)∥wt − ŵt∥]. (2)

■

The continual domain shift (Assumption 1) and bounded function (Assumption 5) lead to the temporal variability
condition in the online learning (as shown in Proposition 1). It is not easy to analyze the dynamic regret (temporal
variability form) directly, thus we first provide the path-length version as the following lemma.
Lemma 11. Under the same assumption as Lemma 1. If we choose η ≤ 1

4(LD+G) , Algorithm 1 has the following
bound

E[
T∑

t=1
lt(wt)] −

T∑
t=1

lt(ut) ≤ (2ηG2 + 2GD)E[
T∑

t=1
Mt] +

T −1∑
t=1

1
η

γ∥ut+1 − ut∥ + 1
η

DR(u1, ŵ1),

for all u1, . . . , uT ∈ K.



Shiji Zhou, Han Zhao, Shanghang Zhang, Lianzhe Wang, Heng Chang, Zhi Wang, Wenwu Zhu

Proof. Denote f̂t(·) = f(·; xt, ŷt), f̃t(·) = f(·; xt, ỹt), ft(·) = f(·; xt, yt) for simplicity. By Lemma 2, we have

E[
T∑

t=1
lt(wt)] −

T∑
t=1

lt(ut) = E[
T∑

t=1
lt(wt) −

T∑
t=1

lt(ut)]

≤ E[⟨∇ft(wt), wt − ut⟩ + 2(LD + G)∥wt − ŵt∥]
= E[⟨∇ft(wt) − ∇f̂t(wt), wt − ŵt+1⟩︸ ︷︷ ︸

term A

+ ⟨∇f̂t(wt), wt − ŵt+1⟩︸ ︷︷ ︸
term B

+ ⟨∇f̃t(wt), ŵt+1 − ut⟩︸ ︷︷ ︸
term C

+ ⟨∇ft(wt) − ∇f̃t(wt), ŵt+1 − ut⟩︸ ︷︷ ︸
term D

+2(LD + G)∥wt − ŵt∥].

We next bound each term step by step. First, we can bound term A in terms of the pseudolabel errors.

term A = ⟨∇ft(wt) − ∇f̂t(wt), wt − ŵt+1⟩

= Mt⟨∇ft(wt) − ∇f̂t(wt), wt − ŵt+1⟩

≤ Mt∥∇ft(wt) − ∇f̂t(wt)∥∗∥wt − ŵt+1∥
≤ Mt2G∥wt − ŵt+1∥

≤ 2ηMtG
2 + 1

2η
∥wt − ŵt+1∥2.

The first inequality holds due to Hölder inequality, and the last one holds due to the fact that 2ab ≤ 2ηa2 + 1
2η b2

for η > 0 and M2
t = Mt. By Lemma 9, we could bound term B

term B = ⟨∇f̂t(wt), wt − ŵt+1⟩

≤ 1
η

(DR(ŵt+1, ŵt) − DR (ŵt+1, wt) − DR (wt, ŵt))

≤ 1
η

(DR(ŵt+1, ŵt) − 1
2∥wt − ŵt+1∥2 − 1

2∥wt − ŵt∥2).

The last inequality is from the strongly convexity of regularizer R. By Lemma 4, we next bound term C

term C = ⟨∇f̃t(wt), ŵt+1 − ut⟩ ≤ 1
η

(DR(ut, ŵt) − DR (ut, ŵt+1) − DR (ŵt+1, ŵt)).

From the Algorithm 1, we know that only when the pseudolabel makes mistake and the active agent does not
query the label, ỹ ̸= y. Similar to term A, we have the bound for term D

term D = ⟨∇ft(wt) − ∇f̃t(wt), ŵt+1 − ut⟩

= ⟨Mt(1 − Zt)(∇ft(wt) − ∇f̂t(wt)), ŵt+1 − ut⟩

≤ Mt(1 − Zt)∥∇ft(wt) − ∇f̂t(wt)∥∗∥ŵt+1 − ut∥
≤ 2Mt(1 − Zt)GD

≤ 2MtGD.

The first inequality is from the Hölder inequality, and second inequality is from the Assumption 4 and Assumption 5.
Also from the Hölder inequality, the last term can be bounded as 2(LD+G)∥wt−ŵt∥ ≤ 2(LD+G)2η+ 1

2η ∥wt−ŵt∥2.
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Finally, we have the path-length version of dynamic regret bound

E[
T∑

t=1
lt(wt)] −

T∑
t=1

lt(ut)

≤ E[
T∑

t=1
term A + term B + term C + term D + 2(LD + G)2η + 1

2η
∥wt − ŵt∥2]

≤ E[
T∑

t=1
2ηMtG

2 +
T∑

t=1
2MtGD +

T∑
t=1

1
η

(DR(ut, ŵt) − DR (ut, ŵt+1))] + 2(LD + G)2ηT

= (2ηG2 + 2GD)E[
T∑

t=1
Mt] + E[

T∑
t=1

1
η

(DR(ut, ŵt) − DR (ut, ŵt+1))] + 2(LD + G)2ηT.

By the condition DR(x, z) − DR(y, z) ≤ γ∥x − y∥, ∀x, y, z ∈ K, we can get

E[
T∑

t=1

1
η

(DR(ut, ŵt) − DR (ut, ŵt+1))]

≤ E[
T −1∑
t=1

1
η

(DR(ut+1, ŵt+1) − DR (ut, ŵt+1))] + 1
η

DR(u1, ŵ1)

≤
T −1∑
t=1

1
η

γ∥ut+1 − ut∥ + 1
η

DR(u1, ŵ1).

From the above, we thus have

E[
T∑

t=1
lt(wt)] −

T∑
t=1

lt(ut) ≤ (2ηG2 + 2GD)E[
T∑

t=1
Mt] + 2(LD + G)2ηT + ϵw

η
+

T −1∑
t=1

1
η

γ∥ut+1 − ut∥.

■

Next, we give a general version of our regret bound analysis, concluding both the separable case and the general
case.
Theorem 5. Take the same assumptions as Lemma 1, Algorithm 1 has the following bound for η ≤ 1

4(LD+G)

D-Regret({Pt}, T ) ≤ (2ηG2 + 2GD)E[
T∑

t=1
Mt] + 2(LD + G)2η + ϵw + γD

η
T + 4

√
γDTFVT

η
.

Proof Sketch. This proof shares the same technique with Zhang et al. (2020b), which introduces detailed proof for
converting path-length bound to temporal variability bound. The key of this converting is to specify a sequence
of {u1, . . . , uT } in the following way.

{u1, . . . , uT } =

w∗
1 , w⋆

I2
, . . . , w⋆

I2︸ ︷︷ ︸
∆ times

, w⋆
I3

, . . . , w⋆
I3︸ ︷︷ ︸

∆ times

, . . . , w⋆
I⌈T −1/∆⌉+1

, . . . , w⋆
I⌈T −1/∆⌉+1︸ ︷︷ ︸

∆ times

 .

This piece-wise stationary sequence starts with w∗
1 and next changes every ∆ ∈ [T ] iterations. We specify ut as

the best fixed decision w⋆
Ii

= arg minw∈K
∑

t∈Ii
lt(w) of the corresponding interval Ii. The rest is same as the

proof of Lemma 2 in (Zhang et al., 2020b). ■

Within Theorem 5, it is simple to bound both the separable and the general (non-separable) cases.
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Proof of Theorem 1. By the result of Lemma 1 we know that

E[
T∑

t=1
Mt] ≤ 2G2

σ2 (γCT + ϵv).

Plugging in Theorem 5, we then have

D-Regret({Pt}, T ) ≤ (2ηG2 + 2GD)E[
T∑

t=1
Mt] + 2(LD + G)2ηT + ϵw + γD

η
+ 4

√
γDTFVT

η

≤ 4(ηG4 + G3D)
σ2 (γCT + ϵv) + 2(LD + G)2ηT + ϵw + γD

η
+ 4

√
γDTFVT

η
.

■

Similarly, we can generate it to the separable case.

Proof of Theorem 4. By the result of Lemma 3, we know that

E[
T∑

t=1
Mt] ≤ 2G2

σ2 (γCT + ϵv + σ

G2 Tα∗).

Plugging in Theorem 5, we then have

D-Regret({Pt}, T )

≤ (2ηG2 + 2GD)E[
T∑

t=1
Mt] + 2(LD + G)2ηT + ϵw + γD

η
+ 4

√
γDTFVT

η

≤ 4(ηG4 + G3D)
σ2 (γCT + ϵv + σ

G2 Tα∗) + 2(LD + G)2ηT + ϵw + γD

η
+ 4

√
γDTFVT

η
.

■

D.3 Lower bound

Here, we show the lower bound for Theorem 2.

Proof of Theorem 2. We here create an example for the worst case that satisfies our assumptions.

Assume we have two data points (−1, 0) and (1, 0) with the same probability 1/2 to be sampled. Then we let
(−1, 0) to be class 1 and (1, 0) to be class −1 when t = 1, . . . , T

2 , and let (−1, 0) to be class −1 and (1, 0) to
be class 1 when t = T

2 + 1, . . . , T. We use the hinge loss lt = max{0, 1 − ytwtxt}, and the decision space is
{w|∥w∥2 ≤ 1}. It is easy to verify that this setting satisfies our assumptions where VT ≤ 2, CT ≤ 2.

For any unsupervised self-training algorithm that begins with a good initial w = (−1, 0), it is impossible to get
the information for the label change in hindsight. Then the learner takes no update when t = T

2 + 1, . . . , T, and
therefore suffers from T/2 regret, which is an order of T.

■

E Extension to Multiclass

In this section, we extend the results to the multiclass case.
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Algorithm 2 Multiclass Online Self Adaptive Mirror Descent (MOSAMD)
Input: Active probability controller σ, aggressive step size τt, conservative step size η, initial data.
Initial: Learn from initial data, get aggressive model θ1 and conservative model ŵ1.
for t = 1, . . . , T do

observe data sample xt

pseudolabel:
give the pseudolabel provided by the aggressive model ŷt = arg maxst∈Y Hst

t (θt)
self-adaptation:

adapt the conservative model wt = arg minw∈K ηf(w; xt, ŷt) + DR(w, ŵt) before making the decision
active query:

compute the confidence score pt = H ŷt
t (θt) − maxst ̸=ŷt,st∈Y Hst

t (θt)
draw a Bernoulli random variable with probability Zt ∼ Bernoulli(σ/(σ + pt))

if Zt = 1 then
query label yt, compute the margin Ψt(θt) = Hyt

t (θt) − maxst ̸=yt,st∈Y Hst
t (θt), and let ỹt = yt

update the aggressive model θt+1 = arg minθ∈K −τt⟨∇Ψt(θt), θ⟩ + DR(θ, θt)
else

let θt+1 = θt and ỹt = ŷt

end if
update the conservative model ŵt+1 = arg minw∈K η⟨∇f(wt; xt, ỹt), w⟩ + DR(w, ŵt)

end for

E.1 Multiclass setting

Denote Y to be the class set. The multiclass setting is slightly different from the binary setting, and we present
the important formulations and assumptions of multiclass case as follows.

Denote the soft prediction over instance x as H(θ; x), which outputs |Y| prediction scores:

Hs(θ; x), s ∈ Y.

Denote H(θ; xt) = Ht(θ) for simplicity. In each round t, the margin function is defined as

Ψt(θ) := Hyt

t (θ) − max
st ̸=yt,st∈Y

Hst
t (θ),

which is the gap between the prediction score of the real class and the irrelevant class with the highest score.
Assumption 2 is modified as
Assumption 6 (Multiclass Separation). There exists α∗ > 0 such that for each time step t = 1, . . . , T , the data
distribution Pt can be classified almost correctly with a margin R, i.e., there exists vt ∈ K and a constant α∗ such
that

E(xt,yt)∼Pt
[max{0, R − Ψt(vt)}] ≤ α∗.

We further assume that there exists a constant CT such that

T −1∑
t=1

∥vt − vt+1∥ ≤ CT ,

i.e., the classifiers with margin R change continually.

We further assume the convexity and bounded gradient on the margin function.
Assumption 7 (Margin Function). We assume that −Ψt(·) is convex, and ∥∇Ψt(θt)∥∗ ≤ G.

Others are the same as the binary class case.

E.2 Multiclass OSAMD

We here present the Multiclass OSAMD (MOSAMD) as Algorithm 2. Specifically, we modify three areas in the
binary OSAMD:

1. Pseudolabel is given by the class with the largest prediction scores ŷt = maxst∈Y Hst
t (θt);
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2. The uncertainty is measured by the difference between the largest and second largest prediction scores
pt = H ŷt

t (θt) − maxst ̸=ŷt,st∈Y Hst
t (θt), which is designed to compute the query rate;

3. The margin is defined by the gap between the prediction score of the real class and the irrelevant class with
the highest score Ψt(θ) = Hyt

t (θ) − maxst ̸=yt,st∈Y Hst
t (θ), based on which the pseudolabel (aggressive) model

updates.

E.3 Analysis

In this subsection, we analyze the theoretical performance of MOSAMD in the general case, which can be reduced
to the separable case by setting C = ∞. We first begin with the pseudolabel errors bound, and then present the
dynamic regret bound.

E.3.1 Pseudolabel Errors

Here, we present the theoretical bound of pseudolabel errors for the multiclass case.
Lemma 12 (Pseudolabel Errors). Let regularizer R : K 7→ R be a 1-strongly convex function on K with
respect to a norm ∥ · ∥. Assume that DR(·, ·) satisfies DR(x, z) − DR(y, z) ≤ γ∥x − y∥, ∀x, y, z ∈ K. Set τt =
min{C, max{0,σ−Ψt(θt)}

∥∇Ψt(θt)∥2
∗

}, σ ≤ R. The expected number of pseudolabel errors made by Algorithm 2 is bounded by

E[
T∑

t=1
Mt] ≤ 2G2

σ2 (γCT + ϵv + σ

G2 Tα∗).

where Mt = 1ŷt ̸=yt
is the instantaneous mistake indicator.

The proof shares the same idea with the binary case. Before proving the theorem, we shall begin with important
lemmas.

Denote fr
t (θ) = max{0, r − Ψt(θ)}. We first give the recursive of the multiclass case.

Lemma 13. Take the same assumptions as Lemma 12. Then for algorithm 2, the following inequality holds

τtr − τtΨt(θt) − τ2
t

2 ∥∇Ψt(θt)∥2
∗ ≤ DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt).

for r > 0.

Proof. First, by the definition of fr
t , we have

r − fr
t (vt) = r − max{0, r − Ψt(vt)} ≤ Ψt(vt)

= Ψt(vt) − Ψt(θt) + Ψt(θt).

By the convexity of −Ψt(·), we have

Ψt(vt) − Ψt(θt) = −Ψt(θt) − (−Ψt(vt))
≤ ⟨−∇Ψt(θt), θt − vt⟩
≤ ⟨−∇Ψt(θt), θt+1 − vt⟩ + ⟨−Ψt(θt), θt − θt+1⟩.

By the update rule of θ and Lemma 4, the first term can be bounded that

⟨−∇Ψt(θt), θt+1 − vt⟩ ≤ 1
τt

(DR(vt, θt) − DR(vt, θt+1) − DR(θt+1, θt)).

Due to Hölder inequality and the fact that ab ≤ η
2 a2 + 1

2η G2 for η > 0, we obtain for the second term

⟨−∇Ψt(θt), θt − θt+1⟩ ≤ ∥∇Ψt(θt)∥∗∥θt+1 − θt∥

≤ τt

2 ∥∇Ψt(θt)∥2
∗ + 1

2τt
∥θt+1 − θt∥2.
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Due to the strong convexity of regularizer R, we have DR(x, y) ≥ 1
2 ∥x − y∥2 for any x, y ∈ X (Mohri et al., 2018).

Therefore, by plugging the above term, we obtain that

r − fr
t (vt) ≤ 1

τt
(DR(vt, θt) − DR(vt, θt+1) − 1

2∥θt+1 − θt∥2)

+ τt

2 ∥∇Ψt(θt)∥2
∗ + 1

2τt
∥θt+1 − θt∥2 + Ψt(θt).

By rearranging, we have

τtr − τtΨt(θt) − τ2
t

2 ∥∇Ψt(θt)∥2
∗ ≤ DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt).

■

Denote the instantaneous mistake by Mt(w) = 1ŷt ̸=yt , and let Lt(w) = 1ŷt=yt,Ψt(w)≤r to be the indicator of the
right decision but in the margin r, where 1(·) is the indicator function. We then have the following relationship
Lemma 14. Take the same assumptions as Lemma 12. For Algorithm 2, let τt = 0 if fr

t (θt) = 0, then the
following inequality holds for every t

MtZtτt(r + |Ψt(θt)| − τt

2 ∥∇Ψt(θt)∥2
∗) + LtZtτt(r − |Ψt(θt)| − τt

2 ∥∇Ψt(θt)∥2
∗)

≤ DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt)

for r > 0.

Proof. From Lemma 13, we know that

τtr − τtΨt(θt) − τ2
t

2 ∥∇Ψt(θt)∥2
∗ ≤ DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt).

Therefore, we can obtain

MtZtτt(r + |Ψt(θt)| − τt

2 ∥∇Ψt(θt)∥2
∗) + LtZtτt(r − |Ψt(θt)| − τt

2 ∥∇Ψt(θt)∥2
∗)

≤ MtZt(DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt)) + LtZt(DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt))

= (Mt + Lt)Zt(DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt)).

From Algorithm 2, we know that if Zt = 0, then τt = 0, θt = θt+1. And if Mt + Lt = 0, we get Ψt(θt) ≥ r, then
τt = 0, θt = θt+1. Therefore, we have

(Mt + Lt)Zt(DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt)) = DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt).

We finally get

MtZtτt(r + |Ψt(θt))| − τt

2 ∥∇Ψt(θt)∥2
∗) + LtZtτt(r − |Ψt(θt)| − τt

2 ∥∇Ψt(θt)∥2
∗)

≤ DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt).

■

Next, we give a similar result as Lemma 8 of binary case.
Lemma 15. Take the same assumptions as Lemma 12. Then for Algorithm 2, let τt = min{C,

fr
t (θt)

∥∇Ψt(θt)∥2
∗
}. then

the following inequality holds

min{C,
r

G2 }1
2MtZt(r + pt) ≤ DR(vt, θt) − DR(vt, θt+1) + τtf

r
t (vt),

for r ≤ R.
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Proof. First, according to Lemma 14, we have

MtZtτt(r + |Ψt(θt)| − τt

2 ∥∇Ψt(θt)∥2
∗) + LtZtτt(r − |Ψt(θt)| − τt

2 ∥∇Ψt(θt)∥2
∗)

≤ DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt).

Since we take
τt = min{C,

fr
t (θt)

∥∇Ψt(θt)∥2
∗

} ≤ fr
t (θt)/∥∇Ψt(θt)∥2

∗.

Similar to Lemma 7, we have
τt

2 MtZt(r + |Ψt(θt)|) ≤ DR(vt, θt) − DR(vt, θt+1) + τtf
r
t (vt).

Since we know that

Mtτt = Mt min{C,
fr

t (θt)
∥∇Ψt(θt)∥2

∗
} ≤ Mt min{C,

r

G2 }.

Since τt ≤ C. We therefore have

min{C,
r

G2 }1
2MtZt(r + |Ψt(θt)|) ≤ DR(vt, θt) − DR(vt, θt+1) + Cfr

t (vt).

By the definition, we could infer that pt ≤ |Ψt(θt)|. Because if ŷ = y then pt = |Ψt(θt)|, and if ŷ ̸= y then
Hy

t (θt) ≤ Hst
t (θt), where st = maxst ̸=ŷt,st∈Y Hst

t (θt), which leads to

pt = H ŷ
t (θt) − Hst

t (θt) ≤ H ŷ
t (θt) − Hy

t (θt) = |Ψt(θt)|.

Thus we obtain

min{C,
r

G2 }1
2MtZt(r + pt) ≤ min{C,

r

G2 }1
2MtZt(r + |Ψt(θt)|)

≤ DR(vt, θt) − DR(vt, θt+1) + Cfr
t (vt).

■

Within the above lemmas, we are now ready to prove the Theorem 12.

Proof of Lemma 12. First by the proof of Lemma 1, we have
T∑

t=1
DR(vt, θt) − DR(vt, θt+1) ≤ ϵv + γCT .

Then

E[
T∑

t=1
Mt] = 1

r
E[

T∑
t=1

MtZt(r + pt)]

= 2
r2 max{ r

C
, G2}E[

T∑
t=1

min{C,
r

G2 }1
2MtZt(r + pt)]

≤ 2
r2 max{ r

C
, G2}E[

T∑
t=1

DR(vt, θt) − DR(vt, θt+1) +
T∑

t=1
Cfr

t (vt)]

≤ 2
r2 max{ r

C
, G2}(ϵv + γCT + C

T∑
t=1

lr
t (vt))

= 2G2

σ2 (γCT + ϵv + σ

G2 Tα∗),

where r = σ, C = σ/G2. The second inequality comes from lr
t (vt) = E[fr

t (vt)], and the last inequality comes from
lr
t (vt) ≤ lR

t (vt) ≤ α∗. We thus end the proof. ■
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E.3.2 Regret Bound

The regret bound analysis is actually the same as the binary case, since the Proposition 1 and Theorem 5 do not
depend on the number of class. For contentedness, we present the result as follows.
Theorem 6 (Regret Bound). Under the same conditions and parameters in Lemma 12. Algorithm 2 achieves
the following regret bound

D-RegretOSAMD({Pt}, T ) ≤ 4(ηG4 + G3D)
σ2 (γCT + ϵv + σ

G2 Tα∗) + 2(LD + G)2ηT + ϵw + γD

η
+ 4

√
γDTFVT

η
.

The proof is also the same as Theorem 4. From this, we know that our result still works in the multiclass case.

F Experimental Details

In this section, we provide experimental details in Section 6.

Datasets We provide detailed descriptions of our datasets as follows:

1. Rotating Gaussian: We simulate a non-stationary environment with continual domain shift. We use two
Gaussian distributions with center points (5, 0) and (15, 0), and covariance matrix 3I (I denotes identity
matrix), to represent class 1 and −1. We let the center points averagely rotate from 0◦ to 180◦ counterclockwise
in 2000 time steps, and in each time, we sample one data instance. Therefore, every data sample comes from a
different domain. All the time, we keep P (Y = 1) = P (Y = −1) = 1/2.

2. Rotating MNIST : We randomly select and shuffle 35000 images from the original MNIST dataset, using the
first 10,000 images with no rotation as the source dataset. We averagely rotate the next 25,000 images from 0◦

to 90◦ counterclockwise to be the target dataset with a continually changing domain.
3. Portraits: It is a realistic dataset, which contains 37,921 photos of high school seniors labeled by gender across

many years. This real dataset suffers from a natural continual domain shift, including covariate shift and label
shift, as shown in previous works (Ginosar et al., 2015; Kumar et al., 2020). We downsample all the images to
32x32, and do no other preprocessing. We take the first 2000 images as the source domain. We use the next
16000 images as target data with a continually changing domain, and test the online adaptation.

4. Cover-Type: It is a realistic dataset from the UCI repository. This goal is to predict the forest Cover-Type at
a particular location given 54 features (Blackard and Dean, 1999). The original Cover-Type dataset contains
581012 samples and has 7 type classes to be predicted. In our experiment, we leave the examples in the first
two classes (which compose the majority of the dataset, have 500k samples in total) and sort the examples
by increasing horizontal distance to the water body. Then we split the data into a source domain (first 50K
examples), an intermediate domain (next 400K examples), and a target domain (final 50K examples). This
dataset setting follows the setting in Kumar et al. (2020).

Baselines We provide a detailed introduction about the baselines we compare. Since we are the first to study
the OACA setting, no specific baseline is suitable for this setting. To demonstrate the efficacy of our design, we
compare with the following baselines:

1. Passive-aggressive active (PAA) learning: The design of our aggressive model is similar to online active learning
(OAL) algorithms. To demonstrate the advantage of the online teacher-student structure, we compare with one
typical algorithm PAA. Although OAL is a well-studied topic of statistical learning, most recently proposed
methods are not suitable for implementation in deep learning settings. For instance, the second-order OAL
algorithm (Hao et al., 2017) is designed only for the linear model, and requires additional computation cost
of the second-order matrix. More recently, Zhang et al. (2018, 2019) studied OAL with class imbalance, but
provided no additional improvement in the balance cases. Therefore, comparing with PAA is sufficient to show
the advantage against online active learning.

2. Online mirror descent with all labels (OMD (all)): Our theory shows that the regret of OSAMD is aligned
with the lower bound for online learning with full labels. To verify the theoretical results, we compare with
online mirror descent with all labels, which has been shown to attain the lower bound (Besbes et al., 2015;
Jadbabaie et al., 2015). By observing whether the regret or accumulated loss of OSAMD is aligned with OMD
(all), we could empirically verify the theory.
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3. Online mirror descent with uniform sampled labels (OMD (partial)): Online mirror descent with uniform
sampled labels is the naive way to deal with the OACA problem. By comparing it with OMD (all), we could
know whether the naive method can solve this problem. By comparing it with OSAMD, we can demonstrate
the advantage of our sophisticated design.

Next, we introduce the baselines for the ablation study. Recall the online teacher-student structure consists
of self-adaptation and active query, we then compare with the following baselines to show the efficacy of each
component:

1. OSAMD without Self-adaptation: To evaluate the efficacy of self-adaptation, we run a OMD with the same
active queries as OSAMD. By comparing it with OSAMD, we could empirically observe the efficacy of the
design of self-adaptation.

2. OSAMD without Active-query: To evaluate the efficacy of self-adaptation, we replace the active queries with
uniform sampled labels in OSAMD. By comparing it with OSAMD, we could empirically observe the efficacy
of the design of active-query.

Model and Parameters setting We provide our model and parameters setting as follows:

1. Models:
• For Rotating Gaussian, we set objective function to be the svm loss f(w; x, y) = max{0, 1−ywT x}+C∥w∥2

2
with penalty parameter 0.2, the soft prediction is H(w) = wT x.

• For Rotating MNIST and Portraits, we design the same neural network feature extractor with two conv
layers. We use filter size of 5×5, stride of 2×2, 64 output channels, and relu activation for each layer.
After the final convolution layer, we add a dropout layer with a probability of 0.5 and a batchnorm layer
after dropout. The extracted features are then flattened and fed into fully connected layers with 2 and 10
outputs, respectively, for Portraits and Rotating MNIST. Each of the output neurons is matched with a
specific prediction class.

• For Cover-Type, we used a two hidden layer feedforward. Each linear hidden layer contains 30 neurons.
Dropout layer with a probability of 0.5 is added before the final fully connected layer. The final output is
activated by softmax.

2. Parameters:
• For Rotating Gaussian, the step size η is set to be 0.01 for both OMD and OSAMD. We set active

controller σ = 0.35, and aggressive step size τt = min{1, max{0, 1 − ytθ
T
t xt}/∥xt∥2

2} for OSAMD. We
use l2 norm as the regularizer R, and initialize all the models with [0.4, 0, −4]. For the implicit gradient
update of self adaptation, we run 20 inner gradient descent loops to approximate the optimal.

• For Rotating MNIST, the step size η is set to be 0.000005 for both OMD and OSAMD (abbreviation for
MOSAMD). We set active controller σ = 0.2, and aggressive step size τt = min{0.006, 0.0027 ∗ max{0, 1 −
ytΨt(θt)}} for OSAMD, where Ψt(θt) is the margin function of the deep learning model. l2 norm is used
as the regularizer R and all the models are initialized with a model pre-trained with the source data,
i.e., the first 10000 images. For the implicit gradient update of self adaptation, we run 10 inner gradient
descent loops to approximate the optimal.

• For Portraits, the step size η is set to be 0.000001 for both OMD and OSAMD. We set active controller
σ = 0.15, and aggressive step size τt = min{0.0025, 0.0012 ∗ max{0, 1 − ytHt(θt)}} for OSAMD, where
Ht(θt) is the output of the deep learning model. l2 norm is used as the regularizer R and all the models
are initialized with a model pre-trained with the source data, i.e., the first 2000 images. For the implicit
gradient update of self adaptation, we run 20 inner gradient descent loops to approximate the optimal.

• For Cover-Type, the step size η is set to be 0.0000015 for both OMD and OSAMD. We set active controller
σ = 0.005, and aggressive step size τt = min{0.02, 0.01 ∗ max{0, 1 − ytHt(θt)}} for OSAMD, where Ht(θt)
is the output of the deep learning model. l2 norm is used as the regularizer R and all the models are
initialized with a model pre-trained with the source data, i.e., the first 50K examples. For the implicit
gradient update of self adaptation, we run 5 inner gradient descent loops to approximate the optimal.

Implementation:

1. Set Up: The training and evaluation of models are realized with PyTorch (https://pytorch.org). We repeat
every experiment over 10 times, and report the mean performance across independent runs. We also present
the confidence intervals to eschew the experimental randomness.

2. Computation Resources: We have run the simulation on a single Intel(R) Xeon(R) E5-2650 CPU, and the

https://pytorch.org
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deep learning experiments on a single 16GB GeForce GTX 1080 Ti GPU.

G Social Impact

For the social impact, as a study on a general learning problem, our work will not incur ethical issues by itself.
However, ethical issues may arise if our learning method is improperly applied to some application fields - just as
any other general learning method if it is misused.
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