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Abstract

Informed Markov chain Monte Carlo
(MCMC) methods have been proposed as
scalable solutions to Bayesian posterior com-
putation on high-dimensional discrete state
spaces, but theoretical results about their
convergence behavior in general settings
are lacking. In this article, we propose a
class of MCMC schemes called informed
importance tempering (IIT), which combine
importance sampling and informed local
proposals, and derive generally applicable
spectral gap bounds for IIT estimators.
Our theory shows that IIT samplers have
remarkable scalability when the target pos-
terior distribution concentrates on a small
set. Further, both our theory and numerical
experiments demonstrate that the informed
proposal should be chosen with caution:
the performance of some proposals may be
very sensitive to the shape of the target
distribution. We find that the “square-root
proposal weighting” scheme tends to perform
well in most settings.

1 INTRODUCTION

Bayesian inference provides a flexible framework for
modeling complex data and assessing uncertainty of
model selection and parameter estimation, but these
advantages often come at the cost of intensive poste-
rior computation. In recent years, various informed
Markov chain Monte Carlo (MCMC) methods have
been proposed for sampling from discrete state spaces,
which are particularly useful for model selection prob-
lems and have been shown numerically to scale well to
high-dimensional data (Titsias and Yau, 2017; Zanella
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and Roberts, 2019; Zanella, 2020; Griffin et al., 2021);
see Zhou et al. (2021) and the references therein.1

These methods require evaluating the posterior dis-
tribution locally in each iteration so that neighbor-
ing states with larger posterior probabilities are more
likely to be proposed. A theoretical guarantee for
the scalability of informed MCMC samplers was re-
cently obtained by Zhou et al. (2021), who proved that
their informed Metropolis-Hastings (MH) algorithm
for high-dimensional variable selection can achieve a
mixing rate that is independent of the number of vari-
ables.

In this article, we consider another approach to mak-
ing use of informed proposals that is not based on MH
algorithm: accept all the proposed moves and use im-
portance weights to correct for the proposal bias. We
call this scheme informed importance tempering (IIT).
Since an informed proposal distribution usually has a
shape similar to the local posterior landscape, a combi-
nation of informed proposals and importance sampling
can sometimes be strikingly efficient. One example in
the literature is the tempered Gibbs sampler (TGS)
for variable selection devised by Zanella and Roberts
(2019), which has largely motivated the general frame-
work to be proposed in this work. The convergence
rate of IIT estimators can be measured by the spec-
tral gap of a continuous-time Markov chain, which en-
ables us to use Markov chain theory to investigate the
complexity of IIT schemes in general high-dimensional
settings. We first consider the case where the target
posterior distribution satisfies a unimodal condition
and concentrates on one state, which, for model selec-
tion problems, can be interpreted as a strong notion
of statistical consistency. Our theory suggests that
in this setting, IIT schemes with locally balanced pro-
posals (see Definition 1), including TGS, have superior
scalability. Next, we relax the unimodal condition by

1We only consider discrete-state-space problems in
this article. On continuous state spaces, gradient-
based informed MCMC samplers, such as Metropolis-
adjusted Langevin algorithm and Hamiltonian Monte
Carlo (Roberts and Rosenthal, 1998; Girolami and Calder-
head, 2011), have become almost standard solutions to
posterior computation, and their theoretical properties are
well understood.
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assuming the posterior mass concentrates on a small
set. It turns out that then TGS may lose its advan-
tage completely, while some other IIT samplers still
perform well. More interestingly, both our theory and
numerical study support the use of the square root of
the posterior probability as the proposal weight, which
renders the algorithm much more robust than other
weighting schemes such as the one used by TGS. Fi-
nally, we extend our results to general decomposable
target distributions. The spectral gap bound we ob-
tain suggests that another way to achieve robustness
is to use bounded proposal weights (see Remark 10),
which echoes the LIT-MH algorithm (MH with lo-
cally informed and thresholded proposals) developed
by Zhou et al. (2021).

The rest of the paper is structured as follows. We
introduce the notation and the IIT algorithm in Sec-
tion 2. Spectral gap bounds for IIT samplers are pre-
sented in Section 3. Section 4 presents two simulation
studies, and Section 5 concludes the paper with some
discussion on the literature and how to use IIT in prac-
tice. All proofs are deferred to the supplement.

2 INFORMED IMPORTANCE
TEMPERING

2.1 Notation, Problem Setup and
Preliminaries

Throughout this work, we use X = X (p) to denote a
finite set, where p ∈ (1,∞) is a parameter describing
the problem size, and use π to denote a target posterior
distribution with support X ; that is, π(x) > 0 for
every x. Our goal is to approximate π by sampling
when π is known only up to a normalizing constant.
For convenience of interpretation, we treat X as a set
of candidate models in a model selection problem with
p variables. The cardinality of a set is denoted by | · |.
We are mostly interested in the cases where |X | grows
super-polynomially with p. For any function f : X →
R, let Eπ[f ] =

∑
x∈X f(x)π(x) denote its expectation.

A stochastic matrix (i.e., transition matrix) is denoted
by P or K, which is treated as a mapping from X 2 to
[0, 1]. Similarly, a transition rate matrix is denoted by
a mapping Q : X 2 → R.

Suppose that a neighborhood mapping N : X → 2X

is given such that x /∈ N (x) for each x; the set N (x)
is referred to as the neighborhood of x. Let M(X ,N )
denote the collection of all stochastic matrices K with
state space X such that K(x, y) > 0 if and only if
y ∈ N (x). We make two assumptions on N . First,
N is symmetric, which means that x ∈ N (y) im-
plies y ∈ N (x). Second, any K ∈ M(X ,N ) is irre-
ducible. The term “neighborhood” also connotes that

|N (·)| tends to be much smaller than |X |, though we
will not formally impose this assumption until Sec-
tion 3. Any K ∈M(X ,N ) can be used as the proposal
scheme for constructing an MH algorithm targeting π.
If K(x, y) = |N (x)|−1 for each y ∈ N (x), we refer to
the corresponding algorithm as RWMH (RW: random
walk). Details of MH algorithms are omitted since
they are not the focus of this work.

Example 1. Variable selection will be used as a run-
ning example. Define X = {x ∈ {0, 1}p : ‖x‖1 ≤ s}
for some s = s(p) > 0, where ‖x‖1 denotes the L1-
norm. Each x ∈ X represents a sparse linear regres-
sion model such that the i-th variable is included if
and only if xi = 1. In high-dimensional settings, we
usually let s → ∞, so |X | is super-polynomial in p.
For each x ∈ X , we can define “add”, “delete” and
“swap” neighborhoods by

Nadd(x) = {y ∈ X : ‖x− y‖1 = 1, ‖y‖1 = ‖x‖1 + 1},
Ndel(x) = {y ∈ X : ‖x− y‖1 = 1, ‖y‖1 = ‖x‖1 − 1},
Nswap(x) = {y ∈ X : ‖x− y‖1 = 2, ‖y‖1 = ‖x‖1}.

Let N 1(x) = Nadd(x)∪Ndel(x) and N 2(x) = N 1(x)∪
Nswap(x). Both N 1 and N 2 satisfy our assump-
tions. For most MH algorithms on X used in prac-
tice, the proposal matrix belongs to either M(X ,N 1)
or M(X ,N 2).

We say a proposal scheme K ∈M(X ,N ) is informed if
the proposal probability depends on the un-normalized
posterior. We follow Zanella (2020) to consider in-
formed proposals that can be written as

Kh(x, y) =
1N (x)(y)

Zh(x)
h

(
π(y)

π(x)

)
, (1)

for some h : R+ → R+, where R+ = (0,∞), 1 is the
indicator function, and the normalizing constant Zh is

Zh(x) =
∑

y∈N (x)

h

(
π(y)

π(x)

)
. (2)

The function h determines how the proposal weight of
each neighboring state is calculated. In most cases, we
want h to be non-constant and non-decreasing. One
simple choice is h(u) = ua for some a > 0, which favors
neighboring states with larger posterior probabilities.
Zanella (2020) proposed to use a “balancing function”.

Definition 1. If h(u) = uh(1/u) for any u ∈ R+,
we say h is a balancing function and Kh is a locally
balanced proposal.

Remark 1. The class of balancing functions is very
rich. Let h, h′ be two balancing functions and
g : R+ → R+ be an arbitrary non-negative function.
We can define new balancing functions h1, h2, h3 by
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letting h1 = ah + a′h′ for any a, a′ ≥ 0, h2(u) =
h(u)g(u)g(1/u) and h3(u) = min{g(u), ug(1/u)} (or
h3(u) = max{g(u), ug(1/u)}). The last property was
used in Zanella (2020) to compare different informed
proposals.

Example 2. Three balancing functions will be con-
sidered in our analysis, which we denote by

h0.5(u) =
√
u, h∧1(u) = 1 ∧ u, h+1(u) = 1 + u. (3)

Note that h+1 behaves just like h(u) = 1 ∨ u, since
(1+u)/2 ≤ 1∨u < 1+u for any u > 0. So h+1, h∧1 and
h0.5 represent three very different proposal weighting
strategies: h∧1 treats any y ∈ N (x) with π(y) ≥ π(x)
equally, while h+1 assigns roughly the same weight to
any y ∈ N (x) with π(y) < π(x). Only h0.5 always
“makes full use” of the knowledge about the local pos-
terior landscape.

We will always assume that the time needed to evalu-
ate π(x) (up to a normalizing constant) for any x ∈ X
is O(1), which is also the complexity of one itera-
tion of RWMH. Generating a sample from an informed
proposal distribution Kh(x, ·) typically requires eval-
uating π in the entire neighborhood N (x), so the
time complexity of one informed iteration at state x
is O(|N (x)|). This needs to be taken into account
when we compare any informed MCMC method with
RWMH.

2.2 Algorithm

Let x(1), x(2), . . . , x(t) denote t samples generated from
an irreducible Markov chain with stationary distribu-
tion π̃. For any function f : X → R, we can estimate
Eπ[f ] using the self-normalized importance sampling
estimator

f̂(t, ω) =

∑t
k=1 f(x(k))ω(x(k))∑t

k=1 ω(x(k))
, (4)

where ω(x) = π(x)/π̃(x) is called the importance
weight of the sample x. Note that we do not need
to know the normalizing constants of π and πh, which
are canceled out. Such an MCMC importance sam-
pling scheme is commonly used with π̃(x) ∝ π(x)1/T ,
where the “temperature” T can be treated as either
fixed or an auxiliary random variable (Jennison, 1993;
Neal, 1996). Gramacy et al. (2010) called this method
importance tempering (IT), and they noted that suc-
cessful applications of IT schemes were surprisingly
rare. Recently, Zanella and Roberts (2019) proposed
the TGS algorithm by combining IT with Gibbs sam-
pling, and a weighted version of TGS demonstrated
excellent performance in high-dimensional variable se-
lection. The great success of TGS can be mainly at-
tributed to its informed choice of the coordinate to

update. The IIT algorithm we propose generalizes the
main idea of TGS.

Algorithm 1 (Informed importance tempering). Let
x(0) ∈ X and h : R+ → R+ be given. Define Kh by (1)
and denote its stationary distribution by πh. For k =
1, . . . , t,

(i) draw x(k) from Kh(x(k−1), ·),
(ii) calculate ω̌(k) ∝ π(x(k))/πh(x(k)).

Return samples x(1), . . . , x(t) and their un-normalized
importance weights ω̌(1), . . . , ω̌(t).

Remark 2. The generic TGS algorithm was proposed
as a Gibbs sampler on a product space, which updates
one coordinate by conditioning on all the others. Algo-
rithm 1 generalizes it to arbitrary finite spaces. Some
algebra shows that the TGS algorithm for variable se-
lection introduced in Zanella and Roberts (2019, Sec-
tion 4.2) is a special case of Algorithm 1 with h = h+1.
We explain in detail the link between TGS and Algo-
rithm 1 in Supplement B.

To implement Algorithm 1, we need to evaluate πh.
The following lemma gives πh for two classes of re-
versible IIT schemes that are of particular interest to
this work.

Lemma 1. Let Kh be as given in (1) with stationary
distribution πh. If h(u) = ua for some a ≥ 0, then
πh ∝ π2aZh. If h is a balancing function, then πh ∝
πZh. Further, Kh is reversible in both cases.

In Supplement A, we detail the implementation of IIT
using Lemma 1 for the two classes of function h consid-
ered above. When h is a balancing function, we refer
to Algorithm 1 as a locally balanced IIT scheme.

Suppose h is non-decreasing. Since Zh is defined as
the sum of h(π(y)/π(x)) for all neighboring states y,
Zh is most likely to achieve its minimum (resp. max-
imum) at a local maximum (resp. minimum) point
of π. But in most parts of X , we expect that Zh(x)
does not depend much on π(x) and it behaves just like
a random noise. Hence, Lemma 1 suggests that for
locally balanced IIT schemes, the distribution πh can
be seen as a random perturbation of π (except around
local extrema of π). This is an intuitive reason why
locally balanced IIT schemes may work well as im-
portance sampling tends to be most efficient when πh
looks similar to the target distribution π (Liu, 2008,
Chapter 2.5). For h(u) = ua, by Lemma 1, we have
ω = π/πh ∝ π1−2aZ−1

h . Ignoring the term Z−1
h , we

see that if a > 1/2, states with negligible posterior
probabilities can receive exceedingly large importance
weights, which can cause the estimator (4) to converge
very slowly. This will be confirmed in the next section
by analyzing a toy example.
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2.3 Measuring Rates of Convergence

Given an irreducible and reversible transition matrix
P , we can denote its eigenvalues by 1 = λ1(P ) >
λ2(P ) ≥ · · · ≥ λ|X |(P ) ≥ −1, and define its spec-
tral gap by Gap(P ) = 1 − λ2(P ). If all eigenvalues of
P are non-negative, it is well known that the mixing
time of P can be bounded by CπGap(P )−1, where the
constant Cπ only depends on minx∈X π(x) (Sinclair,
1992). If Q is the transition rate matrix of an irre-
ducible and reversible continuous-time Markov chain,
it has eigenvalues 0 = λ1(Q) > λ2(Q) ≥ · · · ≥ λ|X |(Q),
and we define its spectral gap by Gap(Q) = −λ2(Q).

Though the performance of the IIT estimator partially
depends on the mixing rate of Kh, Gap(Kh) does
not reflect the overall efficiency of IIT since it does
not take into account the importance weights. But
if we replace ω(x(k)) in (4) with an exponential ran-
dom variable with mean ω(x(k)), we obtain the (un-
weighted) time average of a continuous-time Markov
chain. This motivates us to use the spectral gap of
this new chain, which we denote by Qh, to measure
the “convergence rate” of IIT. The importance weight
of state x, ω(x), becomes the average holding time
at state x of the chain Qh. The following result was
proved in Zanella and Roberts (2019, Lemma 2) for
TGS by using a variational characterization of the
asymptotic variance (Andrieu and Vihola, 2016). We
give a different proof in the supplement. As usual,
N(0, σ2) denotes the normal distribution (or a normal
random variable) with mean 0 and variance σ2.

Lemma 2. Consider Algorithm 1 and assume Kh is
reversible with respect to πh. Define a transition rate
matrix Qh by

Qh(x, y) =

{
Kh(x, y)/ω(x), if x 6= y,
−
∑
x′ 6=xQh(x, x′), if x = y,

(5)

where ω = π/πh. Let x(1), . . . , x(t) be samples gener-

ated from Kh. Consider the estimator f̂(t, ω) defined
in (4) for some function f such that Eπ[f ] = 0. Then,√
tf̂(t, ω)

D→ N(0, σ2) where
D→ denotes the conver-

gence in distribution and σ2 ≤ 2Eπ[f2]/Gap(Qh).

Remark 3. We call σ2 the asymptotic variance of the
estimator f̂(t, ω). Analogously, the asymptotic vari-
ance of an unweighted time average of a discrete-time
Markov chain P can be bounded by Eπ[f2]/Gap(P ),
regardless of the periodicity of P (Rosenthal, 2003,
Proposition 1). Henceforth, we use Gap(Qh) to mea-
sure the convergence rate of Algorithm 1, and simi-
larly, the convergence rate of RWMH is measured by
the spectral gap of its transition matrix.

From the construction of Qh, we see that ω(x) needs to
be small for states x with negligible posterior probabil-
ities so that the chain Qh can quickly move to better

states. Below we analyze the importance weight ω for
a toy model, which provides important insights into
the choice of a for IIT schemes with h(u) = ua.

Example 3. Let X = {0, 1, . . . , p} and N (x) = {y ∈
X : |x − y| = 1}. Assume that π(0) = π(1), and for
k = 1, . . . , p− 1, π(k)/π(k + 1) ≥ r for some constant
r = r(p) such that r → ∞ as p → ∞. This setup
ensures that π(k) quickly decays as k grows so that π
concentrates on only states 0 and 1. Letting ∼ denote
asymptotic equivalence as p → ∞, one can show that
π(0) = π(1) ∼ 1/2. Consider IIT schemes with h(u) =
ua for some fixed a > 0. In Supplement E.1, we show
that as p→∞,

ω(k) =
π(k)

πh(k)
∼ 21−2a π(k)1−a

π(k − 1)a
, k = 1, . . . , p.

We make a few observations.

(i) If a ≥ 1, we have ω(p) & 21−ar(p−2)a, which grows
super-exponentially with p (as we assume r →∞).

(ii) If 0 < a ≤ 1/2, for each k ≥ 2, we have ω(k) .
2r−a, which goes to zero as r →∞.

(iii) Suppose for k = 1, . . . , p, π(k) ∝ r−k
c

for some
universal constant c ≥ 1. One can show that for any
a > 1/2, ω(p) still grows super-exponentially with p.

Hence, for this toy model, Qh always mixes quickly for
any a ∈ (0, 1/2], while a > 1/2 can easily make Qh mix
slowly, even if the tail of π decays quickly. Since a very
small value of a defeats the purpose of using a locally
informed sampling scheme, this example suggests that
we may want to use a = 1/2 in practice. Interestingly,
h(u) = ua is a balancing function only when a = 1/2.

3 SPECTRAL GAP BOUNDS

3.1 Results for Unimodal Targets

MCMC sampling from continuous distributions has
been extensively studied in the literature. A com-
monly used assumption in these works is the log-
concavity or strong log-concavity of the target;
see Saumard and Wellner (2014, Section 9.10) for a
brief review, and for recent works, see Dalalyan (2017);
Mangoubi and Smith (2017); Dwivedi et al. (2018);
Cheng et al. (2018); Mangoubi and Smith (2019); Shen
and Lee (2019), among many others. All log-concave
continuous distributions are unimodal and have sub-
exponential tails. In our setting, we propose to con-
sider the following condition on π, which also assumes
unimodality and “sub-exponential tails” but concep-
tually requires less than log-concavity.

Assumption 1. Let |X | < ∞, π(x) > 0 for each x,
and N be a symmetric neighborhood mapping such
that maxx∈X |N (x)| ≤ pα for some α > 0 and p > 1.
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There exist a state x∗ ∈ X , an operator T : X → X
and some constants ν > α such that T(x) ∈ N (x) and
π(T(x)) ≥ pνπ(x) for each x 6= x∗. Define T(x∗) = x∗.

Remark 4. Observe that under Assumption 1, we
have x∗ = arg maxx∈X π(x), and x∗ is the unique fixed
point of T. To see the link between Assumption 1 and
log-concavity, first consider the one-dimensional case
where X = {0, 1, . . . ,m} for some finite m. Then π
is log-concave if π(x)2 ≥ π(x + 1)π(x − 1) for each
x (Saumard and Wellner, 2014). Assuming π is max-
imized at x = 0, we can define T(x) = x − 1 for
each x > 0, and use log-concavity of π to show that
π(T(x))/π(x) ≥ π(0)/π(1) for each x ≥ 1. In higher
dimensions, we point out that Assumption 1 requires a
much weaker notion of unimodality than log-concavity.
If ϕ is a log-concave probability density function de-
fined on Rp, then for any unit vector e, the mapping
x 7→ ϕ(xe) for x ∈ R is again log-concave and thus uni-
modal. In contrast, Assumption 1 does not require π
to be unimodal “in every direction”; see Supplement C
for a toy example. This is very important when we con-
sider high-dimensional model selection; see Example 1
(continued) below. The condition ν > α is imposed in
Assumption 1 so that π has “sub-exponential tails”.
Let D(x) = min{k : Tk(x) = x∗} denote the distance
from x to the mode x∗. One can show that D is sub-
exponential: π({D ≥ k}) ≤ e−ck for c = (ν − α) log p.

For some model selection problems, we can rigor-
ously verify Assumption 1 by imposing mild high-
dimensional conditions and letting x∗ be the “true”
model (more precisely, x∗ is often defined as the model
that contains all signals that exceed some threshold).
Below we briefly explain why we expect it holds for
variable selection, and we refer readers to Zhou and
Chang (2021) for how to establish Assumption 1 for
sparse structure learning.

Example 1 (continued). Consider Example 1 again.
Yang et al. (2016) considered high-dimensional
Bayesian variable selection with a standard g-prior for
linear regression models and a sparsity prior on x. In
their Lemma 4, the authors essentially proved that,
under some reasonable high-dimensional conditions,
Assumption 1 holds for the triple (X ,N 2, π) where
we recall N 2 denotes the “add-delete-swap” neighbor-
hood and it satisfies |N 2(x)| = O(sp) for any x. To
explain their construction of the function T, let x∗

denote the “true” model, and we say the i-th vari-
able is “influential” if x∗i = 1 and “non-influential” if
x∗i = 0. We say x is “overfitted” if xi ≥ x∗i for each
i ∈ {1, . . . , p}. First, if x 6= x∗ is overfitted, we let
T(x) be the best model that we can obtain by remov-
ing a non-influential variable from x (“best” means
it maximizes π). Second, if x is underfitted (i.e., not
overfitted) and ‖x‖1 < s, we let T(x) be the best model

that we can obtain by adding an influential variable.
Finally, if x is underfitted and ‖x‖1 = s, we use the
best swap move that exchanges a non-influential vari-
able with an influential one. By construction, we have
‖T(x)−x∗‖1 < ‖x−x∗‖1 for any x 6= x∗. This explains
why Assumption 1 can be seen as a consistency prop-
erty of model selection procedures: it assumes that any
x 6= x∗ has a neighbor T(x) which has a larger poste-
rior probability and is “more similar” to x∗ than x. It
is important to note that in the proof of Yang et al.
(2016), T(x) is always defined to be the best move of
its type. In particular, if x is underfitted, there is no
guarantee that we can increase the posterior probabil-
ity by adding any influential variable that is not in x,
because of the collinearity of the design matrix. This
underscores one point made in Remark 4: under As-
sumption 1, π can still look very “irregular” due to the
dependence among coordinate variables (if X takes a
product form), which is very likely to happen in high-
dimensional model selection. Lastly, we note that from
a purely theoretical standpoint, there is often no loss
of generality in assuming that ν in Assumption 1 is a
sufficiently large universal constant, which is explained
in detail in Zhou et al. (2021, Supplement S2) for the
variable selection problem.

It is known that when the unique mode is “sufficiently
sharp”, we can bound the spectral gap of a reversible
Markov chain using “canonical paths” (Sinclair, 1992).
In Lemma 3 below, we further improve the existing
spectral gap bounds (Yang et al., 2016; Zhou and
Chang, 2021) by using a refined path argument. The
key idea of our proof is to measure the “length” of each
edge in the canonical paths in light of π.

Lemma 3. Suppose Assumption 1 holds. For any
transition matrix P or transition rate matrix Q that
is irreducible and reversible with respect to π, we have

Gap(P ) ≥ κ(p, α, ν) min
x 6=x∗

P (x,T(x)),

where

κ(p, α, ν) =
1

2

{
1− p−(ν−α)/2

}3

,

and Gap(Q) ≥ κ(p, α, ν) minx 6=x∗ Q(x,T(x)).

Remark 5. Lemma 3 is non-asymptotic. For high-
dimensional model selection problems, we can consider
the asymptotic regime where p → ∞ and ν > α are
fixed constants. Then, by Lemma 3, the convergence
rate of an MCMC algorithm has the same order as the
minimum transition probability/rate from x to T(x).
For RWMH, one can use Lemma 3 to show that its
convergence rate is O(p−α). Since each IIT iteration
has complexity O(pα), we need Gap(Qh) ≥ c for some
universal constant c so that the “real-time convergence
rate” of IIT is at least as fast as that of RWMH.
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Theorem 1. Suppose Assumption 1 holds and let
κ(p, α, ν) be as given in Lemma 3. For Algorithm 1
with some non-decreasing balancing function h, we
have

Gap(Qh) ≥ κ(p, α, ν)
h(pν)

Eπ[Zh]
,

where Qh is as defined in (5), Further, for the three
balancing functions defined in (3), we have

2Gap(Qh)

κ(p, α, ν)
≥


pν−α, if h = h+1,
pν−2α, if h = h∧1,
pν/2/(p2α−ν + pα−ν/2), if h = h0.5.

Theorem 1 provides the theoretical guarantee for the
scalability of IIT schemes when the posterior mass con-
centrates on just one model x∗. Consider h+1 for ex-
ample, which was used by the TGS algorithm for vari-
able selection proposed in Zanella and Roberts (2019,
Section 4.2). Theorem 1 suggests that the real-time
convergence rate of TGS is O(pν−2α) under Assump-
tion 1, which is always faster than that of RWMH by
Remark 5. If ν > 2α (which happens when the sample
size is sufficiently large), h0.5 is as efficient as h+1.

One may find Theorem 1 to be counter-intuitive. If
ν > 2α, our bound implies that the IIT scheme h+1

converges even faster (in real time) for larger p. To
gain insights into this surprising phenomenon, recall
that for locally balanced IIT schemes the importance
weight π/πh ∝ Z−1

h . For h = h+1, under Assump-
tion 1, Zh(x) ≥ pν for any x 6= x∗ while Zh(x∗) ≈ pα;
that is, x∗ receives a much larger importance weight
than any other state. Consequently, the estimator
f̂(t, π/πh) defined in (4) becomes almost a constant
(i.e., variance gets reduced to almost zero) once the
chain visits x∗, which should happen quickly due to
the use of informed proposals. Essentially, under As-
sumption 1, when ν is sufficiently large, an IIT sam-
pler can behave just like a single best model selection
procedure due to the importance weighting.

3.2 Results for Targets Concentrating on a
Set

The excellent scalability of IIT demonstrated by The-
orem 1 needs to be taken with a grain of salt. In prac-
tice, even if the sample size is very large, the posterior
distribution may fail to satisfy the unimodal condition
in Assumption 1 due to collinearity among the vari-
ables or identifiability issues; for example, in struc-
ture learning, observational data cannot distinguish
between Markov equivalent directed acyclic graphs.
In such cases, we expect that there exists a small set
X ∗ ⊂ X such that π(X ∗) is close to one and for any
x /∈ X ∗, an MCMC sampler can easily move from x to
X ∗. However, because now IIT has to visit all those

models in X ∗ many times to reduce the variance of the
estimator, importance weighting can no longer boost
the sampler’s efficiency as significantly as under As-
sumption 1. Consider the following setting which gen-
eralizes Assumption 1 to cases where π concentrates
on the set X ∗.
Assumption 2. Let X , π,N be as given in Assump-
tion 1 such that maxx∈X |N (x)| ≤ pα for some α > 0,
p > 1. There exist a set X ∗ ⊂ X with |X ∗| ≥ 2, an op-
erator T : X → X and constants ν > α and B ≥ 1 such
that (i) maxx,x′∈X∗ π(x′)/π(x) ≤ B, (ii) T(x) ∈ N (x)
for each x, (iii) π(T(x)) ≥ pνπ(x) for each x /∈ X ∗.
Remark 6. Condition (i) means all states in X ∗ have
comparable stationary probabilities. Conditions (ii)
and (iii), roughly speaking, imply that π satisfies As-
sumption 1 if we collapse all states in X ∗ into one
single state.

Before we state the spectral gap bounds for Assump-
tion 2, we define “restricted” Markov chains.

Definition 2. Given a transition matrix K with state
space X , its restriction to S ⊂ X is a transition matrix
KS : S2 → [0, 1] such that KS(x, x′) = K(x, x′) if x 6=
x′, and KS(x, x) = 1−

∑
x′∈S\{x}K(x, x′). Similarly,

for a transition rate matrix Q, its restriction to S is a
mapping QS : S2 → R such that QS(x, x′) = Q(x, x′)
if x 6= x′, and QS(x, x) = −

∑
x′∈S\{x}Q(x, x′).

Theorem 2. Suppose Assumption 2 holds with B = 1.
Let κ(p, α, ν) be as given in Lemma 3 and M = |X ∗|.
Consider Algorithm 1 with some non-decreasing bal-
ancing function h. If Kh restricted to X ∗ is irre-
ducible,

Gap(Qh) ≥ κ(p, α, ν)h(1)

3(Mpα−ν + 1)M(M − 1)Eπ[Zh]
.

Further, for the three balancing functions defined
in (3), we have h(1) ≥ 1 and

Eπ[Zh] ≤


2pα, if h = h+1,
2p2α−ν +M − 1, if h = h∧1,
p2α−ν + 2pα−ν/2 +M − 1, if h = h0.5.

Remark 7. The condition B = 1 is used merely for
ease of presentation, and it will be removed later in
Theorem 3. In our proof of Theorem 2, we use a gen-
eral “worst-case” bound on the spectral gap of Qh re-
stricted to X ∗, which yields the O(M2) term on the
denominator of the bound. It may be significantly
improved when one applies Theorem 2 to a specific
problem.

Assuming M is bounded as p→∞, by Theorem 2, we
have Gap(Qh)−1 = O(Eπ[Zh]), from which we see that
h+1 appears to be the least efficient, while we recall
h+1 is the best in Theorem 1. Indeed, our estimate



Quan Zhou, Aaron Smith

suggests that for h = h+1, Gap(Qh) may have the
same order as the spectral gap of RWMH (so RWMH
would perform much better in reality since each it-
eration of RWMH runs much faster). For the other
two choices h∧1 and h0.5, we have Gap(Qh) & c for
some universal constant c if Assumption 2 holds with
ν − 2α > ε for some fixed ε > 0. Hence, when the
posterior mass concentrates on more than one models,
the IIT schemes h∧1 and h0.5 tend to have better scal-
ability than the scheme h+1. We use variable selection
as an example to show that for h = h+1, the bound
Gap(Qh)−1 = O(p−α) can be attained.

Example 4. Let X = {0, 1}p and, as in Example 1,
let N 1(x) = {y ∈ X : ‖x − y‖1 = 1}. Assume π(x) ∝
r−d(x) for some r ≥ 1 and d(x) =

∑p
i=2 xi. Hence,

the empty model and the model with only variable
1 are equally the best. Consider Algorithm 1 with
h(u) = 1 + u, and let Qh be as given in (5). It can be
shown that Gap(Qh) ≤ 2/p; see Supplement E.2.

We can also derive a mixing time bound under As-
sumption 2. To this end, we first prove a generic de-
composition bound in Supplement F, similar to those
found in Pillai and Smith (2017), by studying the
“trace” of a Markov chain. This approach allows us
not to require the irreducibility of Kh restricted to X ∗
as in Theorem 2.

Definition 3. Fix a discrete-time Markov chain
{Xt}t≥0 and a subset S ⊂ X of its state space. Define
η0 = min{t : Xt ∈ S}, then inductively set:

ηi+1 = min{t > ηi : Xt ∈ S}.

The trace of {Xt}t≥0 on S is the process {Xηt}t≥0. If
K is the transition matrix of {Xt}t≥0, define K|S to
be the transition matrix of the trace.

Theorem 3. Suppose Assumption 2 holds with pν−α

being sufficiently large. Consider Algorithm 1 with
some non-decreasing balancing function h. Let b =
2 maxx∈X |Q(x, x)| and P = b−1Q + I. If there exists
δ > 0 such that the graph with vertex set X ∗ and edge
set {(x, x′) ∈ X 2 : P |X∗(x, x′) ≥ δ/b} is connected,

Gap(Qh) ≥ τmix(Qh)−1 ≥ C min
{ δ

BM2 log(4BM)
,

κ h(pν)

MEπ[Zh] log(8M/πmin)

}
,

where C > 0 is a universal constant, κ is as given in
Lemma 3, M = |X ∗|, πmin = minx∈X π(x), and

τmix(Qh) = max
x

min{t : ‖etQh(x, ·)− π(·)‖TV ≤ 1/4}

denotes the mixing time of Qh (TV stands for total
variation distance).

For most high-dimensional model selection problems,
we may assume that log(π−1

min) grows at most poly-
nomially in p. Thus, the bounds on Eπ[Zh] pro-
vided in Theorem 2 suggest that, if ν is sufficiently
large and δ,B,M are bounded from above, we have
τmix(Qh) = O(δ−1). The advantage of Theorem 3 is
that the trace chain P |X∗ mixes much more quickly
than the restriction chain used in Theorem 2. As an
extreme but common illustration, the trace is always
ergodic and mixes at least as quickly as P , while the
restriction chain may fail to be ergodic (e.g. if X ∗ is
not connected by moves of the chain).

Example 5. Let X = {0, 1}p and N 1 be as given
in Example 1. Let xi denote the model with only
the i-th variable, e.g., x2 = (0, 1, 0, 0, . . . , 0). As-
sume that x1, x2 are two equally best models, and let
X ∗ = {x1, x2}. We can not apply Theorem 2 since x1

and x2 are not neighbors (N 1 does not include swap
moves). But Theorem 3 can be applied, and for the
transition matrix P defined in the theorem, we have

P |X∗(x1, x2) ≥ P (x1, x0)P (x0, x2)/(1− P (x0, x0))

where x0 denotes the empty model. This can be used
to estimate the parameter δ.

3.3 Results for Decomposable Targets

We can further relax Assumption 2 using decom-
posable Markov chains. Given a surjective mapping
G : X → Y where Y is a finite space with |Y| < |X |,
we let Xy = {x ∈ X : G(x) = y} and πG be the push-
forward measure of π on Y; that is, πG(y) = π(Xy) for
each y ∈ Y.

Assumption 3. Let |X | < ∞, π(x) > 0 for each
x ∈ X and N be a symmetric neighborhood function
on X . Let |Y| < |X |, G : X → Y be surjective, and
T : Y → Y be an operator with a unique fixed point
y∗ ∈ Y. For each y 6= y∗, define

Xy(T(y), c) =

{
x ∈ Xy : max

x′∈XT(y)∩N (x)
π(x′) ≥ pcπ(x)

}
.

Suppose there exist universal constants ν > α > 0,
ε > 0 and ν̃ > 0 such that (i) for each y ∈ Y, |{y′ ∈
Y : T(y′) = y}| ≤ pα, (ii) for each y 6= y∗, πG(T(y)) ≥
pνπG(y) and (iii) for each y 6= y∗, π(Xy(T(y), ν̃)) ≥
επ(Xy).

Remark 8. In Assumption 3, the mapping G can be
interpreted as a clustering of the states: for each y,
states in Xy tend to be close to each other and have
similar posterior probabilities. Conditions (i) and (ii)
essentially assume that πG satisfies a unimodal condi-
tion on Y. The set Xy(T(y), ν̃) can be interpreted as
a collection of states from which a locally informed
Markov chain is likely to enter the set XT(y), and
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condition (iii) ensures that the stationary measure of
Xy(T(y), ν̃) is not too small. Compared with Assump-
tion 2, here we allow π to be multimodal even outside
of the set Xy∗ where the posterior concentrates.

Theorem 4. Suppose Assumption 3 holds. Consider
Algorithm 1 with some non-decreasing balancing func-
tion h, and let Qh be as defined in (5). Let Qy be the
restriction of Qh to Xy. We have

Gap(Qh) ≥κεh(pν̃) min
{ 1

3Eπ[Zh]
,

miny∈Y Gap(Qy)

κεh(pν̃) + 3 maxx∈X Zh(x)

}
,

where κ = κ(p, α, ν) is as given in Lemma 3.

Remark 9. The proofs of Theorems 2 and 4 rely on
the state decomposition result of Jerrum et al. (2004,
Theorem 1). While there exist various spectral gap
bounds for decomposable Markov chains (Martin and
Randall, 2000; Madras and Randall, 2002; Guan and
Krone, 2007), for our problem we need to be care-
ful with which one to apply. Most bounds estimate
the spectral gap of a Markov chain by a product of
two spectral gaps, one corresponding to the mixing
between components and the other corresponding to
the mixing within each component. But in our analy-
sis we need to use uniformization argument to bound
Gap(Qh), and such multiplicative bounds can yield
poor estimates because the uniformization constants
cannot cancel out.

Remark 10. Theorem 4 is most useful when we can
bound maxx Zh(x). But this is not a limitation since
one can always construct a balancing function bounded
by pc for any c > 0. By Remark 1, one way to achieve
this is to define g(u) = u ∧ pc, and let h(u) = g(u) ∨
ug(u−1) = (u ∧ pc) ∨ (1 ∧ upc). Then h is a balancing
function taking value in (0, pc]. Intuitively, the use of
a bounded h should be beneficial since it prevents the
informed proposal from being too “aggressive”, which
means to overly favor those neighboring states with
larger posterior probabilities.

4 SIMULATION STUDIES

4.1 Weighted Permutations

In the first numerical example, we consider the
“weighted permutations” problem (Zanella, 2020)
where X is the collection of all possible permutations of
{1, . . . , p}. For applications in statistics, we can think
of π on X as an approximate representation of the tar-
get posterior distribution in order-based MCMC meth-
ods for structure learning (Friedman and Koller, 2003;
Agrawal et al., 2018). We choose p = 100 and simu-
late π under four different settings such that π always

has one unique mode at τ∗ = (1, . . . , p). We con-
sider the following five choices for h in Algorithm 1:
h+1, h∧1, h0.5, h0.3(u) = u0.3 and h0.4(u) = u0.4. We
find that the IIT scheme h0.5 appears to be the best
and the only one that is consistently better than
RWMH. As is consistent with our theory, the scheme
h+1 is most sensitive to the unimodality of π. It is
worse than RWMH when the posterior mass does not
concentrate on τ∗ alone. Details are given in Supple-
ment D.1.

4.2 Variable Selection

In the second simulation study, we consider variable
selection with p = 5, 000 and sample size n = 1, 000.
We simulate the data using correlated design matrices,
20 “causal” predictors and different values of signal-
to-noise ratio (SNR). In both strong and weak SNR
cases, π tends to concentrate on 1 or 2 models, while
in the intermediate SNR case, π tends to be multi-
modal. Details of the simulation settings and results
are presented in Supplement D.2. The code for IIT
sampling is written in C++. We summarize our main
findings here.

First, as in Section 4.1, the IIT scheme h+1 performs
poorly and the scheme h0.5 overperforms RWMH in all
cases. When π is multimodal, IIT exhibits a huge ad-
vantage. We suspect one main reason is that IIT can
get out of local modes more easily since it is “rejection-
free”. A more careful comparison between h0.5 and
h0.3 shows that h0.3 is more robust in the interme-
diate SNR (multimodal) case but less efficient in the
other cases, which is expected from the theory. The
IIT scheme h∧1 is also much better than RWMH but
seems to be too conservative and less desirable than
h0.5 or h0.3. Second, for every sampled x in IIT, we
can check maxy∈N (x) π(y)/π(x), a key quantity in the
assumptions used in our theory. We find that when the
SNR is either strong or weak, Assumption 1 is likely
to be satisfied, which is consistent with the main re-
sult of Yang et al. (2016). In the intermediate SNR
case, the ratio maxy∈N (x) π(y)/π(x) is still very large
for most x, and thus Assumption 2 appears to be sat-
isfied.

5 DISCUSSION

5.1 Other Related Works

Zanella (2020) proposed to use balancing functions
to devise locally informed MH algorithms on dis-
crete spaces, which we note is a generalization of the
reduced-rejection-rate MH of Baldassi (2017). One
main advantage of IIT is that by construction, it never
gets stuck at a single state. In contrast, the perfor-
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mance of an informed MH sampler largely depends
on the acceptance rate, which can be very difficult to
control; the same concern applies to other importance
sampling schemes built on MH chains (Geyer and
Thompson, 1995; Rudolf and Sprungk, 2020; Schus-
ter and Klebanov, 2020). In particular, it was shown
in Zhou et al. (2021) that even if Assumption 1 holds,
an informed MH algorithm that uses proposal Kh with
h = h0.5 or h = h+1 can be slowly mixing, while our
Theorem 1 shows that the convergence of the corre-
sponding IIT samplers can be very quick.

Recall that we measure the convergence rate of IIT
using the spectral gap of a continuous-time Markov
chain denoted by Qh. One can directly simulate Qh
and use the time average to estimate Eπ[f ] for any
function f of interest. This approach dates back to ki-
netic Monte Carlo (Bortz et al., 1975; Dall and Sibani,
2001) and was taken in a recent paper of Power and
Goldman (2019) on non-reversible MCMC algorithms.
The authors only considered balancing functions and
called Qh the “Zanella process”. Compared with IIT,
the Zanella process essentially replaces the importance
weight of state x with the random holding time at
x, which appears to be slightly less efficient. Our
work partially answers the question raised in Power
and Goldman (2019, Section 2.1) on how to choose a
balancing function for the Zanella process. For the use
of balancing functions on continuous state spaces, we
refer readers to Livingstone and Zanella (2019) (note
that the problem becomes very different due to the
availability of gradient information).

5.2 Using IIT in Practice

Observe that if π is the uniform distribution on X ,
no matter what h is used, Kh is identical to the ran-
dom walk proposal; thus, RWMH should be used since
it has a much smaller time complexity per iteration.
Roughly speaking, informed samplers tend to gain an
advantage over RWMH when the posterior mass con-
centrates on a small set of states, e.g. in model se-
lection problems with sufficiently large sample sizes.
Regarding the choice for h, heuristically, we want h to
“aggressively” push to the mode for unimodal targets,
and allow exploration for multimodal targets. One
can try to run a long burn-in period to empirically
check the multimodality, though in general measuring
multimodality is difficult. One surprising and inter-
esting consequence of our results is that it is usually
not useful to be more aggressive than h0.5, even in
the unimodal case, making it a reasonable default if
one does not wish to burn-in. We offer two explana-
tions. First, consider a state x and some y ∈ N (x)
such that π(y)� maxx′∈N (x)\{y} π(x′). Then, neither
h+1 nor h∧1 can ensure that the proposal probability

Kh(x, y) is always sufficiently large, while h0.5 does.
Second, among the class of informed proposals with
h(u) = ua, the choice a = 0.5 tends to yield the most
efficient importance weighting. The choice a > 0.5 is
too aggressive, as shown in Example 3 (in the extreme
case a → ∞, the chain becomes deterministic). We
tried h(u) = u0.6 in the simulation study, but the re-
sult was too poor and thus not presented. If a < 0.5,
the informed proposal explores posterior modes less ef-
ficiently than that with a = 0.5 (in the extreme case
a = 0, Kh becomes the random walk proposal).

In many real problems, π is severely multimodal. In
that setting, at least IIT can still be used to effi-
ciently explore the local posterior landscape, and one
can combine IIT with other multimodal sampling tech-
niques. For example, one may use tempering to real-
ize “long-range jumps” between modes, or partition
the state space so that π is roughly unimodal on each
subspace (Basse et al., 2016).

In both of our simulation studies, the wall time us-
age of each IIT iteration is much smaller than that
of |N (·)| RWMH iterations, probably because the em-
pirical complexity depends on many factors, includ-
ing problem dimension, likelihood complexity, imple-
mentation, hardware, etc. This seems to favor IIT,
though we expect when the problem dimension be-
comes extremely large, it may be helpful to approx-
imate Zh by only evaluating a subset of neighboring
states. When one has enough parallel computing re-
sources, informed MCMC samplers are usually more
appealing than RWMH since the time complexity of
each informed iteration can be greatly reduced by par-
allelizing the evaluation of π for neighboring states.

5.3 Concluding Remarks

The convergence theory of MCMC algorithms on high-
dimensional discrete state spaces is largely underdevel-
oped. One major contribution of this work is an effec-
tive and general approach to obtaining strong bounds
on the variance of MCMC-based methods. The path
method we use is easy to generalize and applies to
many problems, and by adjusting it to the context we
obtain sharp estimates for the convergence rates of IIT
samplers. Overall, our theory advocates the use of IIT
for model selection problems if there is sufficient data.
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Supplementary Material:
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The supplement is structured as follows. A: pseudocode for the two classes of IIT samplers considered in the
paper. B: a brief review of the TGS sampler and its weighted version proposed by Zanella and Roberts (2019). C:
a numerical example which shows that under Assumption 1, π is not necessarily unimodal “in every direction”.
D: results and simulation details for the two numerical studies presented in the main text. E: details about
Examples 3 and 4 in the main text. F: a generic mixing time bound for decomposable Markov chains based on
trace chains. G: proofs of all the theoretical results stated in the main text.

Simulation code can be downloaded at https://github.com/zhouquan34/IIT.

A Two IIT Algorithms

We still use the notation defined in Section 2.1. To avoid ambiguity, let π̌ be a measure on X such that
π̌(x) = Cπ(x) for some constant C > 0. To implement IIT schemes, we only need π̌ instead of π. Similarly,
we use ω̌ to denote the un-normalized version of the importance weight. For each a ≥ 0, define a function
ha : R+ → R+ by

ha(u) = ua, ∀u > 0.

Algorithm 2 shows how to implement IIT with h = ha, and Algorithm 3 is for IIT schemes with an arbitrary
balancing function h.

Algorithm 2: Informed importance tempering with ha

Input: Sample space X , symmetric neighborhood function N : X → 2X , measure π̌ > 0, constant a ≥ 0,

number of iterations t, and state x(0) ∈ X
1 Calculate π̌(y) for each y ∈ N (x(0))

2 for k = 1, . . . , t do

3 Draw x from N (x(k−1)) with probability proportional to π̌(x)a

4 Calculate π̌(y) for each y ∈ N (x)

5 z(k) ←
∑
y∈N (x)

π̌(y)a

π̌(x)a

6 ω̌(k) ← π̌(x)1−2a

z(k)

7 x(k) ← x

Output: samples x(1), . . . , x(t) and their un-normalized importance weights ω̌(1), . . . , ω̌(t)

B Tempered Gibbs Samplers

We first review the generic TGS algorithm introduced in Zanella and Roberts (2019, Section 2). Let X =
X1 × · · · × Xp be a product space. For convenience, we still assume |X | <∞. Define N (x) =

⋃p
i=1N i(x) where

N i(x) = {y ∈ X : yj = xj , ∀ j 6= i}. That is, N i(x) is the set of all states which can only differ from x at the
i-th coordinate; note that this definition is slightly different from the setting considered in the main text in that
we assume x ∈ N i(x) (indicated by the overbar). Let π(xi | x−i) denote the conditional density of the i-th
coordinate given x−i = (x1, . . . , xi−1, xi+1, . . . , xp). For each i and each possible value of x−i, let g(xi | x−i)
denote a conditional “proposal” distribution for the i-th coordinate with support N i(x). TGS is a Markov chain
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Algorithm 3: Locally balanced informed importance tempering

Input: Sample space X , symmetric neighborhood function N : X → 2X , measure π̌ > 0, balancing function

h : R+ → R+, number of iterations t, and state x(0) ∈ X
1 Calculate h

( π̌(y)
π̌(x(0))

)
for each y ∈ N (x(0))

2 for k = 1, . . . , t do

3 Draw x from N (x(k−1)) with probability proportional to h
( π̌(x)
π̌(x(k−1))

)
4 Calculate h

( π̌(y)
π̌(x)

)
for each y ∈ N (x)

5 z(k) ←
∑
y∈N (x) h

( π̌(y)
π̌(x)

)
6 ω̌(k) ← 1

z(k)

7 x(k) ← x

Output: samples x(1), . . . , x(t) and their un-normalized importance weights ω̌(1), . . . , ω̌(t)

with transition matrix KTGS(x, y) = 0 if y /∈ N (x), and

KTGS(x, y) ∝ g(xi | x−i)g(yi | x−i)
π(xi | x−i)

, ∀ i ∈ {1, . . . , p}, y ∈ N i(x).

In Zanella and Roberts (2019, Section 3.6), TGS was further generalized by introducing coordinate weight
functions ξi(x−i) for each (i, x−i). The transition matrix of the weighted TGS scheme is given by

KWTGS(x, y) ∝ ξi(x−i)
g(xi | x−i)g(yi | x−i)

π(xi | x−i)
, ∀ i ∈ {1, . . . , p}, y ∈ N i(x).

Denote the right-hand side of the above equation by H(x, y); that is, we write

KWTGS(x, ·) =
H(x, ·)
Z(x)

1N (x)(·), where Z(x) =
∑

y∈N (x)

H(x, y) =

p∑
i=1

ξi(x−i)
g(xi | x−i)
π(xi | x−i)

.

This can be seen as a generalization of the proposal scheme Kh defined in (1). Since for any y ∈ N i(x),

π(x)H(x, y) = π(x−i)ξi(x−i)g(xi | x−i)g(yi | x−i) = π(y)H(y, x),

KWTGS is reversible w.r.t. πZ. Further, Z−1(x) is the importance weight associated with x.

Next, we describe the TGS algorithm for variable selection proposed in Zanella and Roberts (2019, Section 4.2),
which turns out to be a special case of Algorithm 1. Let X = {0, 1}p and define

y(i)(x) = (x1, . . . , xi−1, 1− xi, xi+1, . . . , xp), i = 1, . . . , p. (6)

Suppose that the proposal g(xi | x−i) can be written as g̃(π(xi | x−i)) for some function g̃ : [0, 1]→ [0, 1], which
implies g̃(x) + g̃(1− x) = 1 for any x ∈ [0, 1]. Consider a balancing function

h(u) = (1 + u)g̃(1/(1 + u))g̃(u/(1 + u)),

and define Kh(x, ·) ∝ h(π(·)/π(x))1N (x)(y) as in (1). Observe that π(xi | x−i) = π(x)/[π(x)+π(y(i)(x))]. Hence,

for y = y(i)(x), we have

Kh(x, y) ∝
(

1 +
π(y)

π(x)

)
g̃

(
π(x)

π(x) + π(y)

)
g̃

(
π(y)

π(x) + π(y)

)
=
g(xi | x−i)g(yi | x−i)

π(xi | x−i)
,

which is a TGS scheme. Zanella and Roberts (2019, Section 4.2) used the above transition matrix Kh with
g̃ ≡ 1/2; that is, it is an IIT scheme with h(u) = 1 + u. Zanella and Roberts (2019, Section 4.2) further
pointed out that, by using the argument of Liu (1996, see also), one can replace the neighborhood N (x) by
N 1(x) = N (x) \ {x} = {y(1)(x), . . . , y(p)(x)}. In our formulation of the IIT sampler, this replacement is clearly
valid since we only require the neighborhood relation to be symmetric and “connect” all states in X .
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C On the Unimodal Condition in Assumption 1

In the left panel of Figure 1, we construct a discrete unimodal distribution on X = {1, 2, 3}2. For each x ∈ X , its
neighborhood is defined by N (x) = {y ∈ X : ‖x− y‖1 = 1} where ‖·‖1 denotes the L1-norm. The distribution π
has only one local mode (which is also the global mode) at (1, 3). For example, π is monotone increasing along
the path indicated by the black arrows in Figure 1. However, the conditional distributions π(1, ·) and π(2, ·)
are not unimodal. If we “extend” this distribution to a continuous state space, as shown in the right panel of
Figure 1, we get a unimodal distribution which is not log-concave.

Figure 1: Left: a unimodal distribution defined on X = {1, 2, 3}2 (the height of each bar is the value of log π). Right: a
continuous analogue of the distribution shown in the left panel.

D Simulation Settings and Results

D.1 Weighted Permutations

Let X be the collection of all possible permutations of {1, . . . , p}. For each permutation τ ∈ X , let τ(i) be the
index of the variable that has the i-th position in τ and τ−1(k) be the ranking of the k-th variable. Assume that

π(τ) ∝
p∏
k=1

W (k, τ−1(k)),

where W : X 2 → R+ is a positive matrix, and

logW (k, j) = −ηφk|j − µk| log p, ∀ j, k ∈ {1, . . . , p},

for some η > 0, φk > 0 and µk ∈ [1, p]. We interpret η as the signal-to-noise ratio (SNR) parameter. Let
N (τ) be the set of all permutations that can be obtained from τ by a transposition; thus, |N (τ)| = p(p− 1)/2.
We simulate W in two ways such that π has one unique mode at τ∗ = (1, . . . , p). In Scenario I, we draw
µk ∼ Unif(k − 0.1, k + 0.1) and φk ∼ Unif(0.5, 1) for k = 1, . . . , p, independently. In Scenario II, we draw
µk ∼ Unif(k − 0.5, k + 0.5) and φk ∼ Unif(0.1, 1) for k = 1, . . . , p, independently. We explain in the next
paragraph why π is unimodal in both scenarios. Loosely speaking, in Scenario I, π decays at roughly the same
rate in every direction, while in Scenario II, π tends to be more irregular and decay very slowly in some directions,
and some states in N (τ∗) can have posterior probabilities comparable to π(τ∗). Thus, Scenario II represents a
“weakly unimodal” setting where Assumption 1 is very likely to fail to hold for large p. We fix p = 100, and for
each scenario, we generate two instances of π, one with η = 1 and the other with η = 2.

In both scenarios, observe that for each k, j 7→ W (k, j) is unimodal with mode at j = k. To see that π is
guaranteed to be unimodal with mode at τ∗, consider any permutation τ 6= τ∗. Let

j1 = min{1 ≤ i ≤ p : τ−1(i) 6= i}, and j` = τ−1(j`−1) for ` = 2, 3, . . . .
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Figure 2: Each plot corresponds to one instance of π for the “weighted permutations” problem with p = 100. Each box

gives the empirical distribution of {Var(f̂k)}pk=1 for one sampler, where Var(f̂k) is calculated from 100 independent runs

of the algorithm. Each RWMH run has 7×105 iterations, which takes about 10.3 seconds; each IIT run has 103 iterations,
which takes about 10.1 seconds.

Observe that j2 > j1. If j3 < j2, then we can swap the ranks of variables j1 and j2 and the new permutation will
have a larger posterior probability. If j3 > j2, let m = min{` ≥ 1: j`+1 < j`}. Observe that m < p and jm+1 ≥ j1.
Hence, there exists some 1 ≤ s ≤ m − 1 such that js ≤ jm+1 < js+1. That is, js ≤ τ−1(jm) < τ−1(js) < jm,
which shows that we can increase the posterior probability by swapping variables s and m.

We compare RWMH and Algorithm 1 with the following five choices for h: h+1, h∧1, h0.5, h0.3(u) = u0.3 and

h0.4(u) = u0.4. For k = 1, . . . , p, let fk(τ) = τ−1(k) and consider the estimator f̂k(t, ω) defined in (4) (for
RWMH, ω ≡ 1, and for IIT samplers, ω = π/πh). The number of iterations t is chosen to be 7× 105 for RWMH
and 103 for each IIT sampler so that the wall time used by each algorithm is about the same (the number of
posterior evaluations does not dominate the empirical complexity in this study). For each instance of π, we run

each sampler 100 times and then calculate the variance of f̂k for each k. Boxplots for {Var(f̂k)}pk=1 are shown
in Figure 2. The simulation code is written in R.

From Figure 2, one can see that in Scenario I, the advantage of IIT schemes is overwhelming. In Scenario II with
SNR = 1, only the IIT scheme h0.5 is arguably slightly better than RWMH, and the IIT schemes h+1, h∧1 and
h0.3 are clearly less efficient than RWMH. But when SNR increases to 2, IIT schemes h0.3, h0.4, h0.5 all perform
significantly better than RWMH.

D.2 Variable Selection

We first describe how we simulate the data. Let L ∈ Rn×p denote the design matrix. To mimic complex
real-world problems with correlated predictors, we sample each row of L independently from N(0,Σ) where
Σij = e−|i−j| for each (i, j). Generate the response Y ∈ Rn by

Yi
i.i.d.∼ N(

∑j=s∗

j=1
βjLij , 1),

where s∗ = 20 is the number of “causal” predictors. Generate β by

βi
i.i.d.∼ SNR

√
log p

n
Unif((2, 3) ∪ (−3,−2)).

We use SNR = 1, 2, 3, and for each value of SNR, we simulate 100 replicates of (L, Y ). This simulation setting
is very similar to that used in Yang et al. (2016) (the main difference is that they used s∗ = 10).

As in Example 1, denote the state space by X = {0, 1}p (a hard threshold on the model size is unnecessary in
our simulation since an MCMC sampler never visits extremely large models in all of our runs). We follow (Yang
et al., 2016) to calculate the posterior distribution by

π(x) ∝ p−c0‖x‖1 (1 + g)−‖x‖1/2

(1 + g(1−R2
x))n/2

, (7)

where R2
x is the usual R-squared statistic for the model x, and c0 is the hyperparameter in the sparsity prior on

x, and g is the hyperparameter in the g-prior. We fix 1 + g = p3 and c0 = 2 in our simulation.
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We consider four IIT samplers with weighting scheme h+1, h∧1, h0.5 and h0.3. For all of them, we use the
neighborhood relation N 1, which we recall only includes “addition” and “deletion” moves. Note |N 1(x)| = p for
all x. For comparison, we consider the standard add-delete-swap MH sampler (denoted by ADS) with proposal
distribution

Kads(x, y) = 0.4
1Nadd(x)(y)

|Nadd(x)|
+ 0.4

1Ndel(x)(y)

|Ndel(x)|
+ 0.2

1Nswap(x)(y)

|Nswap(x)|
.

This is slightly different from a RWMH that proposes uniformly from N 2(x), since we fix the proposal prob-
abilities of three types of moves to 0.4, 0.4, 0.2. In the main text, we simply refer to this ADS sampler as
RWMH.

For each simulated data set, we initialize all samplers at the same model consisting of 10 random covariates,
and run ADS for 5 × 106 iterations and each IIT sampler for 5 × 103 iterations. Each IIT run takes less than
20 seconds while ADS takes about 2, 000 seconds (it is likely that the code for ADS sampler can be further
optimized, but due to overhead cost, our setting should already be very fair to ADS). The code for IIT sampling
is written in C++.

Before we discuss the performance of five samplers, we investigate the shape of π to verify whether the assumptions
used in our theory approximately hold for this variable selection problem. Calculating π at each x ∈ X is
impossible since |X | = 2p ≈ 101505. So we empirically check the multimodality of π by combining sample
paths of all IIT runs. First, we count the number of local modes of π. We say a point x is a local mode if
π(x) > arg maxy∈N 1(x) π(y). When SNR = 2 (intermediate SNR), among the 100 replicates, the number of local
modes of π (that have been visited by any sampler) ranges from 1 to 12 with an average of 5.3. When SNR = 1
or SNR = 3, the number of local modes tends to be much smaller; see Figure 3. Next, we consider the quantity

ν(x) = max
y∈N 1(x)

logp

(
π(y)

π(x)

)
. (8)

Assumption 1 would hold if ν(x) > 1 for each x 6= x∗, and Theorem 2 suggests that we need at least ν(x) > 2 at
most x so that IIT schemes can achieve optimal convergence rates. We find that ν(x) is indeed large and greater
than 2 at most points in all the three SNR cases. See Figure 4 and Table 1.

For the variable selection problem, the accuracy of posterior estimation largely depends on whether the sampler
is able to find the “best” model in its search. So, we compare the performance of samplers using Tx̂, where x̂
denotes the model with the largest posterior probability that has been visited by any sampler (ADS or IIT) and
Tx̂ denotes the number of iterations taken by a sampler to find x̂. See Figure 5 for the distribution of Tx̂ for each
sampler.

When SNR = 3, π tends to be unimodal with true model x∗ being the unique mode. In this case, IIT schemes
h∧1, h0.5 and h0.3 find x∗ very quickly and within ≈ 30 iterations in most cases. This is expected since we initialize
the sampler at some random x with ‖x‖1 = 10 (so it takes about 10 iterations to remove the non-influential
covariates and 20 iterations to add the influential ones). When SNR = 1, π is still likely to be unimodal, but the
mode may be the empty model (or some other model with very small size) due to the weak signal size. This is
why ADS sometimes can be very efficient since it only needs to remove the 10 non-influential covariates in the
initial model. However, we still observe that h0.5 and h0.3 have better performance. The intermediate SNR case
is the most challenging since π is usually multimodal. We observe that the advantage of IIT schemes h0.5 and
h0.3 is very significant in the sense that ADS often fails to find x̂ in 5 × 106 iterations; see Table 2. The best
sampler in this case appears to be h0.3 since it is most robust.

The IIT scheme h+1 performs worse than ADS in all the three cases. Zanella and Roberts (2019) also noted
that the naive TGS sampler (i.e., IIT scheme h+1) may converge slowly for variable selection, and thus they
proposed to use a weighted TGS algorithm, which yielded excellent performance. In addition, they used Rao-
Blackwellization to reduce the variance of posterior estimation. We note that both schemes are highly effective
but rely on the specific structure of X in variable selection. The same Rao-Blackwellization scheme can also be
applied to IIT, but we did not observe significant improvement.
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Figure 3: Distribution of the number of local modes in the variable selection simulation study. Left: SNR = 3; middle:
SNR = 2; right: SNR = 1. For each value of SNR, we count the number of local modes of π (visited by any IIT sampler)
for 100 simulated data sets.

Figure 4: Distribution of ν(x) in the variable selection simulation study. Left: SNR = 3; middle: SNR = 2; right: SNR
= 1. For each value of SNR, we pool together the sample paths of IIT samplers for all 100 simulated data sets.

SNR ν(x) > 1 ν(x) > 2 ν(x) > 3
SNR = 3 99.8% 99.5% 98.7%
SNR = 2 99.1% 98.5% 97.5%
SNR = 1 99.4% 98.7% 97.5%

Table 1: Distribution of ν(x). For each SNR, we report the percentage of points x with ν(x) > c for c = 1, 2, 3
using the data shown in Figure 4 (local modes are included in this calculation).

SNR ADS h+1 h∧1 h0.5 h0.3

SNR = 3 0 2 0 0 0
SNR = 2 38 72 15 10 1
SNR = 1 1 10 1 0 0

Table 2: Number of experiments (out of 100) where the sampler fails to find x̂ in the entire run. This supplements
Figure 5.
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SNR = 3

SNR = 2

SNR = 1

Figure 5: Violin plots for the distribution of Tx̂ in 100 replicates. The numbers on the y-axis correspond to Tx̂ for IIT
samplers and Tx̂×10−3 for ADS. Tx̂ is truncated at 5×103 for IIT and 5×106 for ADS. The plot is made using R package
vioplot. A boxplot is drawn inside each violin: the red dot denotes the median and the rectangle corresponds to the
interquartile range. Note that the width of each violin is forced to be the same.
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E Examples in the Main Text

E.1 Details of Example 3

We show how to derive the expression for ω. First, observe that

1 =

p∑
k=1

π(k) ≤ π(0) + π(1) + π(1)r−1 + · · ·+ π(1)r−(p−1) ≤ π(0) +
π(1)

1− r−1
.

Since π(0) = π(1) and r →∞, we get π(0) = π(1) ∼ 1/2, and for k ≥ 2, π(k) . r−(k−1)/2. For h(u) = ua with
some fixed a > 0, we have

∑
x∈X

π(x)2aZh(x) =
∑
x∈X

∑
y∈N (x)

π(x)aπ(y)a =

p−1∑
k=0

2π(k)aπ(k + 1)a.

Observe that as k grows, π(k)aπ(k + 1)a decreases at a rate not slower than r−a. Therefore, as r → ∞, we
obtain that ∑

x∈X
π(x)2aZh(x) ∼ 2π(0)aπ(1)a ∼ 21−2a.

By Lemma 1,

πh(k) =
π(k)2aZh(k)∑
x∈X π(x)2aZh(x)

∼
{

π(k−1)aπ(k)a

21−2a , k = 2, . . . , p,
1/2, k = 0, 1.

The importance weight ω then can be calculated by ω(k) = π(k)/πh(k).

E.2 Details of Example 4

Define a function f : X → {−1, 1} by letting f(x) = 1 if x1 = 1 and f(x) = −1 if x1 = 0. We show that f is
an eigenvector of Qh with eigenvalue −2/p, which proves Gap(Qh) ≤ 2/p. We use the notation y(i)(x) defined
in (6). For any x with x1 = 1, f(y(i)(x)) = 1 for any i ≥ 2, and f(y(1)(x)) = −1. Hence,

∑
x∈X

Qh(x, y)f(y) =

p∑
i=2

Qh(x, y(i)(x))−Qh(x, y(1)(x)) +Qh(x, x) = −2Qh(x, y(1)(x)).

Using π(y(1)(x)) = π(x) and (18), we find that Qh(x, y(1)(x)) = 2/Eπ[Zh]. Since |N 1(x)| = p for every x, we
get Eπ[Zh] = 2p from (19), and thus

∑
x∈X Qh(x, y)f(y) = −2/p. The case x1 = 0 follows by an analogous

calculation.

F A Generic Mixing Time Bound for Decomposable Markov Chains

Lemma 4. Consider the transition kernel P of a 1
2 -lazy discrete-time Markov chain with unique stationary

measure π on state space X . Denote by X = tMi=1Xi a decomposition of the state space, and denote by x∗i ∈ Xi a
privileged point satisfying π(x∗i )/π(Xi) > 0.65 for each i ∈ {1, 2, . . . ,M}. Define X ∗ = ∪Mi=1x

∗
i to be the collection

of all privileged points. Let P |Xi
denote the trace of P on Xi. Then there exists a universal constant C so that

τmix(P ) ≤ C max

{
Gap−1

minM log
8M

πmin
, τmix(P |X∗)

}
,

where Gapmin = mini∈{1,2,...,M}Gap(P |Xi
) and πmin = minx∈X π(x) .

Proof. Let Px denote the probability measure corresponding to a Markov chain {Xt}t≥0 with transition matrix

P and X0 = x. Let {X(k)
t }t≥0 denote the trace of {Xt} on Xk, as defined in Definition 3. Let πi(·) = π(·)/π(Xi)
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denote the stationary distribution of P |Xk
. By assumption, we have Eπi

[1{x∗i }(X
(i)
t )] = πi(x

∗
i ) ≥ 0.65. By the

Chernoff-like bound Lezaud (1998, Theorem 1.1),

Px[|{t ∈ {1, 2, . . . , T} : X
(i)
t 6= x∗i }| ≥ 0.5T ] ≤ 2

π(x)
exp

(
−Gap(P |Xi

)

56
T

}
. (9)

For i ∈ {1, 2, . . . ,M} and T ∈ N, denote by OT (i) = |{0 ≤ t ≤ T : Xt ∈ Xi}| the number of steps that the chain
spends in Xi. Denote by

GT =

{
i ∈ {1, 2, . . . ,M} : OT (i) > 56 Gap−1

min log

(
8M

πmin

)}
the collection of indices for which this occupation time is large relative to the relaxation time. By the union
bound, for all x ∈ X :

Px
[
∀ i ∈ GT , |{0 ≤ t ≤ T : X

(i)
t = x∗i }| >

1

2
OT (i)

]
≥ 0.75. (10)

By the pigeonhole principle, for T ≥ T1 = (5M)56 Gap−1
min log

(
8M
πmin

)
, we must have

|{0 ≤ t ≤ T : Xt ∈ ∪i∈GTXi}| ≥
4

5
T.

Combining this with inequality (10), we conclude that for all T ≥ T1, we have

Px
[
|{0 ≤ t ≤ T : Xt ∈ X ∗}| ≥

2

5
T

]
> 0.75. (11)

Next, for set S ⊂ X ∗, define
τ̃hit(S) = min{t : X̃t ∈ S}.

Denote by τhit the analogous hitting time for the original chain. Fix an arbitrary subset S ⊂ X with π(S) > 0.45.
Since π(X ∗) ≥ 0.65, we have π(S ∩ X ∗) > 0.1. For any x ∈ X , we have

Px[τ̃hit(S) ≤ 4τmix(P |X∗)] ≥ Px[X̃4τmix(P |X∗ ) ∈ S]

≥ π|X∗(S ∩ X ∗)− ‖P |4τmix(P |X∗ )
X∗ (x, ·)− π|X∗(·)‖TV

≥ 0.1− 2−4

≥ 0.03.

Iterating, for any S ⊂ X with π(S) > 0.45, we have for k ∈ N,

max
x∈X

Px[τ̃hit(S) > 4k τmix(P |X∗)] ≤ 0.97k. (12)

Consider an integer

T ≥ max

{
T1

5
,

2 log(4)

− log(0.97)
τmix(P |X∗)

}
.

Using a union bound and then combining inequalities (11) and (12), we have:

max
x∈X

Px[τhit(S) > 5T ] ≤ max
x∈X

Px[|{1 ≤ t ≤ 5T : Xi /∈ X ∗}| > 3T ] + max
x∈X

Px[τ̃hit(S) > 2T ]

≤ 0.25 + 0.25

≤ 0.5.

Thus, for each k ∈ N,

max
x∈X

Px[τhit(S) > 5kT ] ≤ 2−k.

It follows that

max
x∈X

max
S⊂X :π(S)>0.6

Ex[τhit(S)] ≤ 10T.

Applying the main result of Peres and Sousi (2015) completes the proof.
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G Proofs

G.1 Proof of Lemma 1

Proof. It suffices to check the detailed balance condition. If h(u) = ua, then for any y ∈ N (x),

π(x)2aZh(x)Kh(x, y) = π(x)2ah

(
π(y)

π(x)

)
= π(x)aπ(y)a = π(y)2aZh(y)Kh(y, x).

Hence, πh ∝ Zh · π. Similarly, if h is a balancing function, one can use Definition 1 to show that
π(x)Zh(x)Kh(x, y) = π(y)Zh(y)Kh(y, x).

G.2 Proof of Lemma 2

Proof. Without loss of generality, we can assume that x(0) is generated from πh, since the limiting distribu-
tion of the estimator (4) does not depend on the initial distribution (Douc et al., 2018, Chapter 22.5). Let
W (0),W (1), . . . ,W (t) denote random variables such that given x(k), W (k) is an exponential random variable with
mean ω(x(k)) and independent of everything else. Define

f̂Q(Tm) =

∑m
k=0 f(x(k))W (k)

Tm
, where Tm =

m∑
k=0

W (k).

Now one can see that Proposition 5 of Deligiannidis and Lee (2018) differs from our setting only in that the
former assumes each W (k) is geometrically distributed (c.f. Doucet et al., 2015, Proposition 2). So, we can apply
their argument. Since ω = π/πh, by the law of large numbers and central limit theorem for ergodic Markov
chains (Häggström and Rosenthal, 2007, Corollary 6),

1

t

t∑
k=1

ω(x(k))
a.s.→ Eπh

[ω] = 1,
1√
t

t∑
k=1

f(x(k))ω(x(k))
D→ N(0, σ2),

where

σ2 = lim
t→∞

t−1 Var

(
t∑

k=1

f(x(k))ω(x(k))

)
.

It then follows from Slutsky’s theorem that
√
tf̂(t, ω)

D→ N(0, σ2). Similarly, by a standard conditioning argument

and treating (f(x(k)),W (k)) as a bivariate Markov chain, we obtain that
√
Tmf̂Q(Tm)

D→ N(0, σ2
c ) as m → ∞,

where

σ2
c = lim

t→∞
t−1 Var

(
t∑

k=1

f(x(k))W (k)

)
.

But f̂Q(Tm) is just the time average of the continuous-time Markov chain Qh at time Tm. Thus, by standard
results (see, for example, Aldous and Fill (2002, Proposition 4.29)),

σ2
c ≤

Eπ[f2]

Gap(Qh)
. (13)

So it only remains to compare σ2 with σ2
c . A direct calculation using conditioning yields that

Eπh

[
t∑

k=1

f(x(k))W (k)

]2

− Eπh

[
t∑

k=1

f(x(k))ω(x(k))

]2

=

t∑
k=1

Eπh

[
f(x(k))2(W (k))2 − f(x(k))2ω(x(k))2

]
= tEπh

[
f(X)2W 2 − f(X)2ω(X)2

]
(where W | X ∼ Exp(1/ω(X)), X ∼ πh)

= tEπ[f2ω].

Hence, σ2 = σ2
c − Eπ[f2ω], from which the result follows.
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G.3 Proof of Lemma 3

Proof. We first show that it suffices to prove the claim for Gap(P ). Let b = maxx∈X |Q(x, x)|, which is finite
since |X | <∞. Then P = b−1Q+I is the transition matrix of a discrete-time Markov chain such that Gap(Q) =
bGap(P ), which is still irreducible and reversible w.r.t. π. Since x 6= T(x), we have P (x,T(x)) = b−1Q(x,T(x)).
Thus, if Gap(P ) ≥ κ(p, α, ν) minx 6=x∗ P (x,T(x)), the same bound holds for Gap(Q) with P replaced by Q.

Our proof for Gap(P ) is conceptually similar to the analysis of the birth-death chain given in Kahale (1997,
Section 3). Without loss of generality, we can assume that P (x,T(x)) > 0, since otherwise the spectral gap
bound holds trivially. Set T(x∗) = x∗ to avoid ambiguity. Let (X ,T) be the bidirected graph with node set X
and edge set E(T) = {(x, y) ∈ X 2 : x 6= y, and y = T(x) or x = T(y)}, which implies (x, y) ∈ E(T) if and only
if (y, x) ∈ E(T). Observe that (X ,T) is a tree, and thus for any x 6= y, there exists one unique directed path
without repeated edges that starts at x and ends at y; denote this path by γ(x, y). We use the notation e ∈ γ
to mean that the path γ traverses the edge e.

Given an edge e = (z, w) ∈ E(T), we define its load by

ρ(e) = π(z)P (z, w) = π(w)P (w, z).

The second equality holds since P is reversible. Define the “length” of this edge by

`(e) = {π(z) ∧ π(w)}−q , q =
ν − α

2ν
. (14)

For any directed path γ, let |γ|` =
∑
e∈γ `(e) denote the “length” of the path. Note that for any x 6= x∗, there

exists some d = d(x) <∞ such that γ(x, x∗) = (x,T(x), . . . ,Td(x)). It follows that

|γ(x, x∗)|` =
∑

e∈γ(x,x∗)

`(e) =

d−1∑
k=0

π(Tk(x))−q ≤
d−1∑
k=0

π(x)−qp−kνq ≤ π(x)−q

1− p−νq
,

where T0(x) denotes x itself. For any x 6= y, we can bound the length of γ(x, y) by

|γ(x, y)|` ≤ |γ(x, x∗)|` + |γ(y, x∗)|` ≤
π(x)−q + π(y)−q

1− p−νq
. (15)

By Saloff-Coste (1997, Theorem 3.2.3),

Gap(P )−1 ≤ max
e∈E(T)

 1

ρ(e)`(e)

∑
(x,y) : e∈γ(x,y)

π(x)π(y)|γ(x, y)|`

 . (16)

The rest of the argument is similar to the proof of Theorem 1 of Zhou and Chang (2021). To bound the right-
hand side of the above inequality, by symmetry, it suffices to consider edges e = (z, w) such that w = T(z). Fix
an arbitrary z 6= x∗ and let w = T(z). Let A(z) = {x ∈ X : Tk(x) = z for some k ≥ 0} denote all the “ancestors”
of z (including z itself). Recalling that (X ,T) is a tree, one can show that e = (z, w) ∈ γ(x, y) only if x ∈ A(z)
and y /∈ A(z). Hence, by (15),∑

(x,y) : e∈γ(x,y)

π(x)π(y)|γ(x, y)|` ≤
1

1− p−νq
∑

x∈A(z)

∑
y/∈A(z)

{
π(x)1−qπ(y) + π(x)π(y)1−q}

≤ 2

1− p−νq
∑

x∈A(z)

∑
y∈A(x∗)

π(x)1−qπ(y)1−q.

The assumption |N (x)| ≤ pα and the reversibility of P imply that |{y ∈ X : T(y) = x}| ≤ pα. Let T−k(z) =
{x : Tk(x) = z,Tk−1(x) 6= z}. Then, π(T−k(z))c ≤ p(α−νc)kπ(z)c for any c > 0. Using q = (ν − α)/2ν, we find
that ∑

x∈A(z)

π(x)1−q ≤
∞∑
k=0

π(z)1−qp[α−ν(1−q)]k ≤ π(z)1−q

1− pα−ν(1−q) =
π(z)1−q

1− p−(ν−α)/2
. (17)
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It follows that

∑
(x,y) : e∈γ(x,y)

π(x)π(y)|γ(x, y)|` ≤
2π(z)1−q{

1− p−(ν−α)/2
}3 .

Plugging this inequality into (16), we obtain that

Gap(P )−1 ≤ max
z 6=x∗

2

{1− p−(ν−α)/2}3
P (z,T(z))−1,

which yields the asserted spectral gap bound.

G.4 Proof of Theorem 1

Proof. From Lemma 1 we know that for a balancing function h, we have πh ∝ πZh, which can be equivalently
expressed as πh(x) = π(x)Zh(x)/Eπ[Zh]. Hence, for any y 6= x,

Qh(x, y) =
πh(x)

π(x)

h(π(y)/π(x))

Zh(x)
=
h(π(y)/π(x))

Eπ[Zh]
. (18)

If h is non-decreasing, we have Qh(x,T(x)) ≥ h(pν)/Eπ[Zh] under Assumption 1. Let Ih(x, y) =
π(x)h(π(y)/π(x)) = Ih(y, x). Then,

Eπ[Zh] =
∑
x∈X

π(x)Zh(x) =
∑
x∈X

∑
y∈N (x)

Ih(x, y). (19)

Since N is symmetric, Eπ[Zh] is twice the sum of Ih(x, y) over all unordered pairs of neighbors. Now we bound
Eπ[Zh] for each choice of h separately, from which the asserted bounds on Gap(Qh) follow.

Case 1: h(u) = 1 + u. We have Ih(x, y) = π(x) + π(y). Since each x has at most pα neighbors,

Eπ[Zh] = 2
∑
x∈X
|N (x)|π(x) ≤ 2pα.

Case 2: h(u) = 1 ∧ u. We have Ih(x, y) = π(x) ∧ π(y). For any x 6= x∗, π(x) can appear in the summation
in (19) at most 2|N (x)| times. But π(x∗) cannot appear in the summation since x∗ is the mode. By a calculation
similar to (17), we find that π(x∗) ≥ 1− pα−ν under Assumption 1. Thus,

Eπ[Zh] ≤ 2
∑
x6=x∗

|N (x)|π(x) ≤ 2pα(1− π(x∗)) ≤ 2p2α−ν .

Case 3: h(u) =
√
u. We have Ih(x, y) =

√
π(x)π(y) ≤ (π(x) + π(y))/2. Applying this inequality to any pair of

neighbors that does not involve x∗, we obtain from (19) that

Eπ[Zh] ≤ 2
∑
x 6=x∗

|N (x)|π(x) + 2
∑

y∈N (x∗)

√
π(x)π(y).

Since for any x 6= x∗, π(x) ≤ p−ν under Assumption 1, we have

Eπ[Zh] ≤ 2p2α−ν + 2pα−ν/2,

which completes the proof.
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G.5 Proof of Theorem 2

Proof. Let b = maxx∈X |Qh(x, x)|. Then P = b−1Qh+ I is the transition matrix of a discrete-time Markov chain
such that Gap(Qh) = bGap(P ). Treating X ∗ as a single state denoted by x∗, define a transition matrix P̄ with
state space (X \ X ∗) ∪ {x∗} by

P̄ (x, x′) =


P (x, x′), if x 6= x∗, x′ 6= x∗∑
y∈X∗ P (x, y), if x′ = x∗, x 6= x∗

π(X ∗)−1
∑
y∈X∗ π(y)P (y, x′) if x = x∗, x′ 6= x∗

π(X ∗)−1
∑
y,w∈X∗ π(y)P (y, w) if x = x′ = x∗.

(20)

Then P̄ is reversible with respect to π̄ defined by π̄(x) = π(x) for x 6= x∗ and π̄(x∗) = π(X ∗). Let N̄ denote
the neighborhood mapping on X̄ induced by N . Then, |N (x)| ≤ pα for any x 6= x∗, and |N (x∗)| ≤ Mpα. The
mapping T̄ : X̄ → X̄ induced by T can be defined by

T̄(x) =

 x∗ if x = x∗,
T(x) if x 6= x∗,T(x) /∈ X ∗,
x∗ if x 6= x∗,T(x) ∈ X ∗,

Observe that π̄(T̄(x)) ≥ pν π̄(x) for any x 6= x∗. Hence, we can bound Gap(P̄ ) by the same argument used to
prove Lemma 3. The only step that needs to be modified is (17). Since

π̄(T̄−1(x∗))c ≤Mpα
(
π̄(x∗)

Mpν

)c
= M1−cpα−νcπ̄(x∗)c, (21)

for any c > 0, one can show that it suffices to multiply the bound in (17) by Mq where q = (ν−α)/2ν. It follows
that

Gap(P̄ ) ≥ κ

M (ν−α)/ν
min
x 6=x∗

P̄ (x, T̄(x)) =
κ

M (ν−α)/ν
min
x/∈X∗

P (x,T(x)) ≥ κ

M
min
x/∈X∗

P (x,T(x)), (22)

where κ = κ(p, α, ν) is as given in Lemma 3.

Next, define P ∗ : X ∗ × X ∗ → [0, 1] as the restriction of P to X ∗; that is, P ∗(x, x′) = P (x, x′) if x 6= x′, and
P ∗(x, x) = 1−

∑
x′∈X∗\{x} P (x, x′). By Theorem 1 of Jerrum et al. (2004), we have

Gap(P ) ≥ min

{
Gap(P̄ )

3
,

Gap(P̄ )Gap(P ∗)

3γ0 + Gap(P̄ )

}
, (23)

where γ0 = maxx∈X∗ P (x,X \ X ∗).

As in the proof of Theorem 1, we have

Qh(x, x′) =
πh(x′)

π(x)

h(π(x′)/π(x))

Zh(x)
=
h(π(x′)/π(x))

Eπ[Zh]
. (24)

Using P = b−1Qh + I, we obtain the following bounds on Gap(P̄ ),Gap(P ∗) and γ0

Gap(P̄ ) ≥ κh(pν)

bMEπ[Zh]
, (25)

Gap(P ∗) ≥ h(1)

bM(M − 1)Eπ[Zh]
, (26)

γ0 ≤
pαh(p−ν)

bEπ[Zh]
. (27)

The first inequality follows from (22), the monotonicity of h and the fact that π̄(T̄(x)) ≥ pν π̄(x) for any x 6= x∗.
To prove the second, recall that Condition (iv) in Assumption 2 implies that P ∗ is irreducible. Hence, between
any x, x′ ∈ X ∗, there is a path on X ∗ with length at most M − 1. Further, P ∗ is reversible with respect to
the uniform measure on X ∗, and if x, x′ ∈ X ∗ and x′ ∈ N (x), we have P ∗(x, x′) = P (x, x′) ≥ h(1)/(bEπ[Zh]).
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Then, (26) follows from the standard canonical path method (Sinclair, 1992). Lastly, (27) can be proved by
noting that π(x) ≥ pνπ(x′) for any x ∈ X ∗, x′ /∈ X ∗. Plugging (25), (26) and (27) into (23), we get

Gap(Qh) = bGap(P ) ≥ κh(pν)h(1)

3M(M − 1)Eπ[Zh] {Mpαh(p−ν) + h(pν)}
.

Since h is a balancing function, h(pν) = pνh(p−ν) > pαh(p−ν). Hence, Mpαh(p−ν) +h(pν) < (Mpα−ν + 1)h(pν)
and the above bound simplifies to

Gap(Qh) ≥ κh(1)

3(Mpα−ν + 1)M(M − 1)Eπ[Zh]
.

To complete the proof, we bound Eπ[Zh] for each choice of h using (19). Let π0 = π(x) for any x ∈ X ∗. Note
that by letting c = 1 in (21), we can show that π̄(x∗) = Mπ0 ≥ 1− pα−ν .

Case 1: h(u) = 1 + u. The same bound Eπ[Zh] ≤ 2pα holds.

Case 2: h(u) = 1 ∧ u. Observe that Ih(x, y) = π0 only when both x, y ∈ X ∗, which happens at most M(M − 1)
times in the summation in (19). Hence,

Eπ[Zh] ≤ 2
∑
x/∈X∗

|N (x)|π(x) +M(M − 1)π0 ≤ 2p2α−ν +M − 1.

Case 3: h(u) =
√
u. To bound Ih(x, y) =

√
π(x)π(y), we consider three subcases according to whether x and y

are in X ∗. First, using
√
π(x)π(y) ≤ (π(x) + π(y))/2, we find that∑

(x,y)∈(X\X∗)2 : y∈N (x)

√
π(x)π(y) ≤

∑
x∈X\X∗

|N (x)|π(x) ≤ p2α−ν .

If x ∈ X ∗ and y /∈ X ∗, we have π(y) ≤ p−νπ(x). Hence,∑
x∈X∗, y /∈X∗

√
π(x)π(y) ≤

∑
x∈X∗, y∈N (x)

π(x)p−ν/2 ≤ pα−ν/2.

Using π0 ≤ 1/M , we finally obtain that

Eπ[Zh] ≤ p2α−ν + 2pα−ν/2 +M − 1,

which completes the proof.

G.6 Proof of Theorem 3

Proof of Theorem 3. Define a transition matrix K0 with state space X by

K0(x, x′) =

{
Qh(x,x′)∑
y 6=xQh(x,y) , if x 6= x′,

0 if x = x′.

Let K0|X∗ be the trace of K0 on X ∗. Fix an arbitrary b ≥ 2 maxx∈X |Qh(x, x)|, and let P b = b−1Qh + I be the
transition matrix of a discrete-time Markov chain with P b(x, x) ≥ 1/2 for each x. If x, x′ ∈ X ∗ and x 6= x′, then

P b|X∗(x, x′) = (1− P b(x, x))K0|X∗(x, x′) = −Qh(x, x)

b
K0|X∗(x, x′).

This shows that if P b(x, x′) ≥ δ/b for b = 2 maxx∈X |Qh(x, x)|, then we have P b(x, x′) ≥ δ/b for any b ≥
2 maxx∈X |Qh(x, x)|. Hence, we can assume b is chosen sufficiently large, and then Levin et al. (2017, Theorem
20.3) implies that there exists a universal constant C ′ such that τmix(Qh) ≤ C ′b−1τmix(P b). In the rest of the
proof, we simply use P to denote P b.
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To bound τmix(P ), we apply Lemma 4 along with the bounds appearing in the proof of Theorem 2. We must first
choose our decomposition X = tMi=1Xi. Let X ∗ = {x∗1, . . . , x∗M}. For each x /∈ X ∗, let d(x) = min{k : Tk(x) ∈
X ∗}, which is finite by Assumption 2. For each k ∈ {1, . . . ,M}, define Xk = {x∗k} ∪ {x /∈ X ∗ : Td(x)(x) = x∗k}.
Then, by construction, X1, . . . ,XM are disjoint, and ∪Mk=1Xk = X . Let Pk be the restriction of P to Xk, and
P |Xk

be the trace of P on Xk. Both are reversible with respect to the measure πk defined by πk(x) = π(x)/π(Xk)
for each x ∈ Xk. Hence, by Peskun’s theorem, Gap(P |Xk

) ≥ Gap(Pk). Let Nk be the restriction of N to Xk such
that Nk(x) = N (x) ∩ Xk for each x ∈ Xk. Observe that for any x ∈ Xk \ {x∗k}, we have T(x) ∈ Xk. Thus, the
quadruple (Xk,Nk, πk,T) satisfies Assumption 1 with the same constants ν, α. Hence, by Theorem 1, we have

Gap(P |Xk
) ≥ Gap(Pk) ≥ κ min

x∈Xk\{x∗k}
Pk(x,T(x)) = κ min

x∈Xk\{x∗k}
P (x,T(x)),

where κ = κ(p, α, ν) is as given in Lemma 3. It follows that

Gapmin = min
1≤k≤M

Gap(P |Xk
) ≥ κ min

x∈X\X∗
P (x,T(x)) ≥ h(pν)

bEπ[Zh]
. (28)

By a calculation analogous to (21), one can show that π(x∗i )/π(Xi) → 1 as pν−α → ∞, and thus the condition
min1≤i≤M π(x∗i )/π(Xi) ≥ 0.65 in Lemma 4 is satisfied if pν−α is sufficiently large. The bound on Gap(P ∗)
appearing in the proof of Theorem 2 applies to P |X∗ with only two modifications. First, the lower bound
on P |X∗(x, x′) ≥ δ/b is obtained directly from the assumption. Second, the stationary probability of P |X∗ is
bounded by π|X∗(x) ≥ 1/(BM) (in Theorem 2 we assume B = 1). This gives:

Gap(P |X∗) ≥
δ/b

BM(M − 1)
.

Thus, by Levin et al. (2017, Theorem 20.6),

τmix(P |X∗) ≤ (b/δ)BM(M − 1) log(4BM). (29)

Combining inequalities (28), (29), and applying Lemma 4, we obtain the bound for τmix(Qh). By Aldous and
Fill (2002, Lemma 4.23), Gap(Qh)−1 ≤ τmix(Qh), which concludes the proof.

G.7 Proof of Theorem 4

Proof. The proof is similar to that of Theorem 2. Let b = maxx∈X |Qh(x, x)| and P = b−1Qh+ I. Let PG denote
the Markov chain induced by G on Y, which is defined by

PG(y, y′) = πG(y)−1
∑
x∈Xy

∑
x′∈Xy′

π(x)P (x, x′), ∀ y, y′ ∈ Y,

It is easy to verify that PG is irreducible and reversible with respect to πG. Since πG on Y satisfies Assumption 1,
we can apply Lemma 3 to obtain that2

Gap(PG) ≥ κ(p, α, ν) min
y 6=y∗

PG(y,T(y)) =: λ̄.

For each y ∈ Y, let Py be the restricted Markov chain on Xy defined by

Py(x, x′) =

{
P (x, x′) if x, x′ ∈ Xy and x 6= x′

1−
∑
w∈Xy\{x} P (x,w) if x = x′ ∈ Xy.

Let λmin = miny∈Y Gap(Py). By Theorem 1 of Jerrum et al. (2004), we have

Gap(P ) ≥ min

{
λ̄

3
,
λ̄λmin

3γ̄ + λ̄

}
, (30)

2Though in Assumption 1 we require |N (x)| ≤ pα, the proof of Lemma 3 only uses |{x′ : T(x′) = x}| ≤ pα.
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where γ̄ = maxx∈X
∑
x′ : G(x′) 6=G(x) P (x, x′). By (24), we can bound γ̄ by

γ̄ ≤ max
x∈X

(1− P (x, x)) = max
x∈X

πh(x)

b π(x)
=

maxx∈X Zh(x)

bEπ[Zh]
. (31)

Observe that for any y 6= y∗ and x ∈ Xy(T(y), ν̃), there exists x′ ∈ XT(y) ∩ N (x) such that π(x′) ≥ pν̃π(x). It
then follows from condition (iii) that for any y 6= y∗,

PG(y,T(y)) ≥ πG(y)−1
∑

x∈Xy(T(y),ν̃)

∑
x′∈XT(y)

π(x)P (x, x′)

≥ πG(y)−1
∑

x∈Xy(T(y),ν̃)

π(x)
h(pν̃)

bEπ[Zh]

≥ εh(pν̃)

bEπ[Zh]
.

Hence, we obtain the following bound on λ̄.

λ̄ ≥ κεh(pν̃)

bEπ[Zh]
, (32)

where κ = κ(p, α, ν). Plugging (31) and (32) into (30) and using Gap(Py) = b−1Gap(Qy), we obtain that

Gap(Qh) = bGap(P ) ≥ min

{
κεh(pν̃)

3Eπ[Zh]
,
κεh(pν̃) miny∈Y Gap(Qy)

κεh(pν̃) + 3 maxx∈X Zh(x)

}
,

which proves the result.


