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Abstract

Motivated by practical needs in online exper-
imentation and off-policy learning, we study
the problem of safe optimal design, where
we develop a data logging policy that effi-
ciently explores while achieving competitive
rewards with a baseline production policy.
We first show, perhaps surprisingly, that a
common practice of mixing the production
policy with uniform exploration, despite be-
ing safe, is sub-optimal in maximizing infor-
mation gain. Then we propose a safe optimal
logging policy for the case when no side infor-
mation about the actions’ expected rewards
is available. We improve upon this design by
considering side information and also extend
both approaches to a large number of actions
with a linear reward model. We analyze how
our data logging policies impact errors in off-
policy learning. Finally, we empirically vali-
date the benefit of our designs by conducting
extensive experiments.

1 INTRODUCTION

Experimentation is used widely to test the effective-
ness of new actions and develop policies that effi-
ciently allocate traffic to different actions. For in-
stance, online platforms constantly conduct large-scale
experiments for market mechanism design, webpage
layout, and product recommendation. With ever-
increasing demand for experiments, several companies
have developed infrastructure to carry them out at
scale (see, e.g., Optimizely (2021a); Google Optimize
(2021)). Two popular types of experimentation tech-
niques are non-adaptive A/B testing (e.g., random-
ized controlled experiments (Gallo, 2017; Optimizely,
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2021Db)) for fixed policies and adaptive online learning
(e.g., multi-armed bandit (Auer et al., 2002; Even-Dar
et al., 2002)) for a dynamically updated policy. The
policies in A/B testing are typically learned offline
from data collected by some exploratory data logging
policy. In contrast, online learning allocates more traf-
fic to better-performing actions in a real time fashion.

At a first glance, online learning seems to be more
efficient than A/B testing due to lower experimen-
tation cost (Li et al., 2010; Schwartz et al., 2017).
Nevertheless, despite a major progress in designing
near-optimal online learning algorithms over the past
decades (Valko et al., 2013; Jamieson and Nowalk,
2014; Chen et al., 2014; Soare et al., 2014; Abernethy
et al., 2016; Qin et al., 2017; Besbes et al., 2018; Che-
ung et al., 2019), many challenges hinder their wide
adoption in practice:

e Infrastructure: To implement online learning al-
gorithms in real world, it is necessary to collect re-
sponses and update traffic allocation in near real
time, which poses significant challenges to the com-
putational infrastructure (Chen et al., 2020; Simchi-
Levi and Xu, 2021; Ruan et al., 2021).

e Logged-Data Estimation Error and Bias: Due
to the reward maximizing nature, online learning
algorithms allocate less traffic to actions with poor
historical performance. Therefore, it is common to
encounter a major estimation error when estimat-
ing their expected rewards from the logged data.
In many applications (e.g., ads design and web-
page layout), it is important to understand the per-
formance of such actions (Danilchik, 2020). Even
worse, existing works (see, e.g., Nie et al. (2017);
Shin et al. (2019)) showed that a direct application
of maximum likelihood estimation to adaptively col-
lected data can result in a significant bias. The de-
biasing is challenging because the logging policy is
adapted over time to the collected data.

e Excessive Initial Exploration: Non-Bayesian
bandit algorithms tend to explore extensively in the
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initial rounds. This can have a major impact on
user experience and lead to early termination of the
experiment in online marketplaces and clinical trials
(Wu et al., 2016; Bastani et al., 2021a), for instance.

For these reasons, the most common practice in the
industry is to learn policies offline and A/B test them
before they are deployed. The process of learning the
policies offline is known as off-policy evaluation and op-
timization (Li et al., 2011; Dudik et al., 2014; Swami-
nathan and Joachims, 2015).

Off-policy evaluation and optimization crucially rely
on sufficiently explored logged data to drawn conclu-
sions about alternative policies. When the data are
collected, it is typically necessary to satisfy safety con-
straints, which prohibit too costly experimentation.
To strike the balance, a common practice in the in-
dustry is to mix a baseline production policy with ran-
domized actions. This results in a logging policy that
explores, as it allocates traffic to all actions; but is also
safe, since the production policy is followed frequently.
As an example, if the logging policy has to perform as
well as 95% of the production policy, then 95% of the
traffic is allocated to the production policy, while the
rest is randomly allocated to all actions.

After the logged data are collected, they are used to es-
timate the performance of candidate policies (Li et al.,
2011; Dudik et al., 2014; Swaminathan and Joachims,
2015). Whether the logging policy is statistically ef-
ficient and suitable for the goal is rarely questioned.
Ironically, the estimation errors in off-policy learning
critically depend on the quality of the logged data.
This raises an important question of how to design a
logging policy that is both safe and collects high-quality
data. In this work, we study this question through the
lens of the G-optimal design (i.e., globally-optimal de-
sign (Kiefer and Wolfowitz, 1960)). In the G-optimal
design, the goal is to design a data logging policy that
minimizes (a proxy of) the maximal variance in esti-
mating the actions’ expected rewards. Motivated by
practical safety considerations in experimentation (Wu
et al., 2016), we instantiate the safety constraint as fol-
lows: the expected reward of the logging policy is at
least an « fraction of that of the production policy.

We make the following contributions: We first show,
perhaps surprisingly, that following the production
policy for an « fraction of the time and uniformly ex-
ploring otherwise is sub-optimal. Next we propose a
water-filling algorithm that solves our problem opti-
mally when no side information about the actions’ ex-
pected rewards is available. We improve upon this de-
sign by considering side information, and also extend
both approaches to a large number of actions with a
linear reward model. We apply our results to off-policy

evaluation and optimization, and demonstrate how our
logging policy can provide performance guarantees for
this setting. Finally, we conduct extensive numerical
experiments to demonstrate the performance of our
approaches.

1.1 Additional Related Works

Safe exploration has been a topic of many papers, some
of which we review below. In summary, all prior for-
mulations of this problem differ from our work and are
not directly comparable.

Wu et al. (2016) proposed a bandit algorithm that con-
servatively improves upon a default action. The key
idea is to take the default action « fraction of time
and improve it over time, with provably better actions
with a high probability. This work was generalized to
linear bandits by Kazerouni et al. (2017) and to com-
binatorial action spaces, such as in online learning to
rank, by Li et al. (2019). Our work is similar to these
works only by a similar safety constraint. We learn the
most exploratory policy under a safety constraint that
collects useful data for future off-policy estimation and
optimization, rather than continuously improve an on-
line policy.

Another related problem is off-policy optimization
with a safety constraint, where the learned policy im-
proves over a logging policy with a high probability
(Thomas et al., 2015; Laroche et al., 2019). In a sense,
these works solve an opposite problem to ours. They
learn policies with enough support to improve over the
logging policy, while we explore to improve the support
for future off-policy estimation and optimization.

G-optimal design and its variants have also been ap-
plied to regret minimization and best-arm identifi-
cation in multi-armed bandit (Audibert et al., 2010;
Bubeck et al., 2010; Karnin et al., 2013; Azizi et al.,
2021; Yang and Tan, 2021), but safety was not consid-
ered in these works.

2 PROBLEM FORMULATION

Notations: Let A = [K]:= {1,...,K} be a tabular
action set. When action a € A is taken, we observe
its stochastic reward with (initially) unknown mean
7(a) € [0,1]. A policy = : A — [0,1] is a probability
distribution on A and we denote by II the set of all pos-
sible policies. To simplify notation, we use 7 and 7 to
denote the vectorized expected rewards and the policy,
ie, 7= (F(1),...,7(K))T and 7 = (7(1),...,7(K))T.
The expected reward of policy 7 is thus V(7)) = 7' 7.
For any p > 0, we define || - ||, as the p-norm and
Ay = {z € RF : 2 > 0,]|z|y < 1} as the k-
dimensional simplex. For any ¢ € R, we use ¢ to
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denote the k-dimensional vector with all entries equal
to c.

Tabular Safe Optimal Design Setup: To over-
come the challenges posed by online learning-based
experimentation (see Section 1), we deploy a static
exploratory data logging policy m. for a certain time
interval to carry out experimentation. For each time
step of this interval, we randomly select an action
according to m. and observe the corresponding real-
ized random reward. We seek to leverage the col-
lected data to estimate each action’s expected reward
7(-) and to further compute the near-optimal policy
T, = argmax oy V() offline (see Section 3.3 for more
details). Before formally introducing our objective, we
first describe our criteria in developing ., :

e Information Gain: The quality of our logging pol-
icy 7. is measured by g(m) = maxge 4 1/m(a). Intu-
itively, g(m) is proportional to the maximum width
of a high-probability confidence interval over a € A
(see e.g., Section 21.1 of Lattimore and Szepesvari
(2018)). Thus it measures how well we can esti-
mate the unknown expected rewards and compute a
near-optimal policy. A sensible objective is to find
me that minimizes g(m.). Note that g(m) is a spe-
cial case of the G-optimal design objective (Kiefer
and Wolfowitz, 1960) and without any constraint,
we can set m.(a) = 1/K for all a € A to maximize
information gain.

e Safety: To avoid a potentially high cost in deploy-
ing m., we demand that m.’s expected reward is at
least o € [0, 1] of that of a baseline production policy
o for any instance of expected rewards 7. Specifi-
cally, V(m.) > oV (m), where a € [0,1] is a safety
parameter. We remark that the safety constraint
could be defined alternatively as that w.’s expected
reward is at most « less than that of my’s. Our
forthcoming results would apply to this case as well.

Objective: Formally, we want to design m. that si-
multaneously collects high-quality data for off-policy
optimization and ensures safety. Therefore, our prob-
lem is

min g(r,)
s.t. Te € Ag_1,minV(m.) — aV(mp) > 0. (1)

To instantiate the second constraint of (1), we distin-
guish two cases based on prior information about 7:

e No Side Information: When a brand new experi-
ment is carried out, we have no information about 7.
In this case, we assume no extra information about
7 except for being bounded, i.e., 7 € [0, 1]¥.

e Side Information: Thanks to historical data from
past experiments, prior information about 7 is often
available in the form of probabilistic prior (Bastani
et al., 2021b; Kveton et al., 2021; Simchowitz et al.,
2021) or confidence intervals (Zhang et al., 2020).
In this case, we assume that side information about
7 is given as confidence intervals (as this can also
be constructed with a given prior), i.e., Va € A,
7(a) € [L(a),U(a)] C [0,1].

2.1 Mixing with Uniform is Sub-Optimal

We first show that even a simple variant of our prob-
lem has an interesting structure. Specifically, we take
the no side information case as an example, and show
that mixing of uniform exploration with the produc-
tion policy is sub-optimal.

Mixing with Uniform Exploration: As indicated
by its name, this heuristic would follow 7y for (1 — 5)
fraction of the time while uniformly sample all the ac-
tions otherwise. Formally, the policy can be defined
as mg = (1 — B)my + Blg /K. This is a commonly
used strategy for multi-armed bandit (see e.g., Sec-
tion 1.2.1 of Slivkins (2019)), reinforcement learning
(see e.g., Section 2.2 of Sutton and Barto (2018)), and
conservative online exploration (Wu et al., 2016; Yang
et al., 2021).

Balance the Amount of Exploration: Suppose
w.lo.g. that mo(1) < ... < mo(K). It is easy to verify
that m5(1) < ... < ms(K) and g(mg) = ms(1)~ L. Since
mo(1) < 1/K, it is evident that a larger 8 would lead
to a smaller g(mg). However, we may not be able to
set B = 1 due to the safety constraint. To satisfy the
safety constraint, we need to enforce that

7g(a) > amg(a) Va € A. (2)

This is because if there exists an action a € A such
that mg(a) < amg(a), then the safety constraint can be
violated by setting 7(a’) = 0 for all @’ € A\ {a}. By
solving the inequalities (1 — 8)mo(a) + 8/ K > amy(a)
for all a, we get

11—«
< B4 := min ;1.
< 0. min{ e
Intuitively, this is because as we decrease [, the
safety constraint is violated first for the most fre-
quently played action. At that point, we know that

amo(K) = (1— Bo)mo(K) + B/ K.

Nevertheless, the following example shows that g, is
not always optimal.

Example 1. Let K = 3, the production policy be
7o = (0.1,0.3,0.6) T, and the safety parameter be o =
0.8. Then B, = 0.45 and s, = (0.205,0.315,0.48)T.
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Now consider the policy m = (0.26,0.26,0.48)T. We
can verify that the safety constraint is satisfied as
m(a) > am(a) for all a € A. But we have g(mg,) =
020571 > 0.267" = g(7), and thus 7, is sub-optimal.

The above example shows that mixing of the produc-
tion policy with a uniform distribution yields a sub-
optimal logging policy. In Appendix A of the full ver-
sion (Zhu and Kveton, 2021), we show that 7z would
be sub-optimal if K > 3 and « is above a certain
threshold (i.e., when the safety constraint is not too
loose) while it would be optimal otherwise.

3 TABULAR SAFE OPTIMAL
DESIGN

Motivated by our discussions in Section 2.1, we intro-
duce safe optimal designs with and without side infor-
mation. We start with the so-called tabular case.

3.1 Safe Optimal Design Without Side
Information

We note that 7g in Section 2.1 is sub-optimal because
the peeled-off probability mass from 7 is added uni-
formly to all actions instead of those with the lowest
probabilities, so as to reduce g maximally.

(1 — a) fraction D a fraction /| water filling
o T
1 2 3 4 1 2 3 4

Figure 1: Water-filling method.

This motivates our water-filling method, which first
takes (1 — «) portion of the mass from all my(a) to
form 7/(a) without violating the safety constraint, i.e.,
7w = amp, and then re-allocates the peeled-off mass to
7’ in a greedy manner. That is, as shown in Figure 1,
it successively increases the probability mass of the
actions with the lowest probabilities in mg until all the
(1 — ) probability mass is exhausted.

Water-Filling Method: Formally, assuming w.l.o.g.
that #'(1) < 7#'(2) < < 7'(K), the algo-
rithm searches for the largest ¥ € [K] such that
k-n'(k) + ZiK:kH /(i) < 1, and then sets 7 (i) =
(1=K, (i))/k for all i < k and 7.(i) = 7'(i) for
all i > k + 1. Now we establish that the water-filling
method is optimal.

Theorem 1. For any policy 7 that satisfies the safety

constraint, we have min, m.(a) > ming 7(a) in the no
side information case.

The complete proof of this theorem is provided in Ap-
pendix B of Zhu and Kveton (2021).

3.2 Safe Optimal Design With Side
Information

Now we turn to the case with side information. The
side information gives us more flexibility in satisfying
the safety constraint. Notably, now m.(a) < amy(a)
can happen for some actions a as long as m. allocates
enough probability to actions with high expected re-
wards to compensate for this deficit. The water-filling
method in Section 3.1 does not solve this problem op-
timally anymore. Instead, we formulate the problem
of finding the optimal policy 7. as

P1(L,U,m) : max vy

s.t. me > Y1k, me € AKfl,

min (7, — am) 7> 0.

re[L,U]
Here, L, U, and 7y are given input parameters of Py.
is a tight lower bound for min, 7. and by maximizing
~, we equivalently minimize g(7.). The last constraint
enforces that V(m.) > aV(my) holds for all possible
7 € [L,U] C [0,1]%. Note that when [L,U] = [0, 1]¥,
we can recover the solution of the water-filling method
for the no side information case.

One challenge posed by Py(L,U,m) is that its last
constraint implicitly contains infinitely many con-
straints. These constraints can be satisfied incremen-
tally using the cutting-plane method (see, e.g., Chap-
ter 6.3 of Bertsimas and Tsitsiklis (1997)). More
elegantly though, motivated by robust optimization
(Ben-Tal et al., 2009), we consider the following sub-
optimization problem based on the last constraint

PQ(Lv U7 71-077(6) :

min (7, — am) ' 7
st. L<r<U

and its dual

Dy(L,U,mo,m) :max L zy — U 2z,

S.t. 21 — 29 = M — amg, 21,22 >0,

where z; and 25 are K-dimensional vectors serving as
dual variables. Since Po(L, U, g, ) has a finite opti-
mal value, by strong duality (see e.g., Section 4 of Bert-
simas and Tsitsiklis (1997)), we have that the optimal
objective values of Py (L, U, g, 7. ) and Do (L, U, 7o, 7.)
are the same. Thus Py(L,U, ) can be equivalently
written as

P3(La U7 71-0) :

max 7y
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s.t. me > vl , W € AK,17
LTzl — UTZQ Z 0,

Z1 — k9 = Te — QT , 2172220.

Intuitively, using the duality between Po(L, U, 7, 7¢)
and Do(L,U,mg, ), we translate the minimization
problem in the last constraint of Py(L,U,m) to a
maximization problem. As a consequence, instead of
checking whether 7. satisfies (7w, — onro)—rf > 0 for
all possible 7 € [L, U], one only needs to find a single
pair z1, zo that satisfies the last three constraints in
P3(L,U,m). Therefore, P3(L,U, ) is a linear pro-
gram that can be solved directly.

Following the duality argument above, the equivalence
of Py(L,U,my) and P3(L,U,mp) can be established.
For completeness, we include the proof of the following
theorem in Appendix C of Zhu and Kveton (2021).

Theorem 2. The optimal value of Py(L,U,m) is
equal to the optimal value of Ps(L,U, ).

Remark 1. An alternative way of solving Py (L, U, m)
follows from the observation that, in the last con-
straint of P1(L,U, ), the minimum is attained at ei-
ther 7(a) = L(a) (if me(a) — amg(a) > 0) or U(a) (if
me(a) — amp(a) < 0). We can thus introduce a vari-
able z € RE to serve as a coordinate-wise lower bound
for (me —amo) "L and (7. —amg) " U, and mandate that
2T1x >0 to ensure minge(z, ) (me —amg) T > 0. Con-
sequently, we can rewrite P1(L,U, o) as Py(L,U, ) :

max -y
St e > Yl , me € Ag_1, 2 15 >0,

(me —amg) "L >z, (7 —am) U > z.

The equivalence of P1(L,U, o) and Py(L,U, ) is es-
tablished in Appendiz D of Zhu and Kveton (2021).

3.3 Off-Policy Evaluation and Optimization

Now we apply our results to off-policy evaluation
where we use data collected by our logging policy to
estimate the expected reward of some policy m with-
out deploying it. Previously, to ease presentation, we
omitted the dependence on context in the reward func-
tions. In this section, we consider a more practical
contextual setting (Li et al., 2011; Dudik et al., 2014).

Additional Notations and Setup: Following Sec-
tion 2, we consider the tabular action set. To model
the contextual information, we assume that there is a
finite set of contexts X. A policy m: X — Ag_1 is a
mapping from a context to a probability distribution
over actions, i.e., m(a | ) is the probability of taking
action a € A given context x € X. We assume that
the random reward of choosing action a under context
x is a [0, 1]-valued random variable with mean 7(z, a).

We collectively denote 7(z,-) = (7(z,1),...,7(z, K))T
and 7 = (F(z,"))zex. We let C be the distribution
of the context. Let V(m) = > ., C(x)V(n(- | x))
and V(n(- | 2)) = Y ,cam(a | z)7(z,a) be the ex-
pected and conditional expected rewards, respectively,
of policy w. With some abuse of notation, we let
(- | ) = (z(1 | x),...,7(K | ))7 be a vector-
ized policy 7 conditioned on context z and g(w) =
maxzecx qea 1/m(a | ). Here, g(m) is proportional to
the maximum width of a high-probability confidence
interval over a € A and z € X if we use 7 to collect
data. We use it to measure the quality of our logging
policy .

Our logging policy 7., whose expected reward is at
least « of that of the production policy 7y, sam-
ples actions for n times and collects a dataset D =
{(z¢,ar,m)}}_, of size n. Here r, € [0,1] is a stochas-
tic reward of action a; under context x; in round ¢,
with mean 7(z¢, a;).

Inverse Propensity Score (IPS) Estimator: To
estimate the expected reward of any policy w from D,
we use the asymptotically optimal and unbiased IPS
estimator (Rosenbaum and Rubin, 1983; Wang et al.,
2017) as an example. Our IPS estimator is

Vir) = % 3 LICTE ) (3)

Since 7, € [0,1], we know that each individ-
ual term in the IPS estimator is g(m.)?/4-sub-
Gaussian. Therefore, by Hoeffding’s inequality (Ho-
effding, 1963), for any fixed policy , |V (7) — V()| <

log(2/9)/(8n) holds with probability at least
1 — 4. Intuitively, this means that we get a better es-
timator of V(7) by minimizing g(m.). In what follows,
we show how our prior results can help here.

No Side Information: Even if we have full ac-
cess to the context distribution C, we need to enforce
V(me(- | £)) > aV(mo(- | x)) across all x € X to en-
sure V() > aV(m), Otherwise, suppose that there
exists € X such that V(7 (- | ) < aV(mo(- | z)).
Then one could set 7(z',a) = 0 for all 2’ # z and a to
violate the safety constraint. In this case, we imple-
ment the water-filling method for each context z € X
separately to minimize maxge 4 1/7.(a | ), which sub-
sequently minimizes g(m.) without violating the safety
constraint.

Side Information: In this case, we have access to
side information 7 € [L,U]. To further incorporate
the distribution of X', we notice that V(m.(- | z)) <
aV (mo(- | ) could possibly occur for some x as long
as 7, performs better in other contexts. To this end,
we formulate the optimization jointly over all z € X,
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i.e.,
max -y
s.b. e > 71K><|X|a 7Te(' ‘ $) € A(K—l) Ve e X,

min C(z)(me(- | @) — amo(- | 2)) "7 (x,-) > 0.

Fe[L,U] mex

This optimization problem can be solved using the
same duality trick as in Section 3.2. We remark that
if L = Ogy x| and U = 1 x|, this recovers the no
side information case and we get the same solution as
water-filling applied separately to each context.

Performance Guarantee: Recall that g(r.) is ex-
actly the minimized objective in the above optimiza-
tion problem. We are now ready to show that our re-
sults for safe optimal experimental design can provide
universal improvement in off-policy evaluation that
further benefits the downstream optimization task.
Lemma 3. Let V() be the IPS estimate for the value
of policy w in (3). Then with probability at least 1 —
8, max, |V (m) — V(n)| < 3g(m.)/K|[X[log(n/d)/(4n).
Also let # = argmax . V(w) and 7, = argmax . V().
Then V (m.) — V(7) < 3g(me)\/K|X|log(n/d)/n holds
with probability at least 1 — 9.

The complete proof of Lemma 3 is provided in Ap-
pendix E of Zhu and Kveton (2021).

4 LINEAR SAFE OPTIMAL
DESIGN

So far we assumed a tabular action set A, where
the expected rewards of actions are unrelated. While
this setting is suitable for a small number of actions,
the performance (i.e., the objective function g) would
quickly deteriorate if | 4| was large. The reason is that,
if no correlations exist among the expected rewards,
minge 4 7(a) < 1/[A] as 3, 47(a) = 1, and hence
g(m) > |A| even without any safety constraints. This
essentially implies that if we apply our tabular meth-
ods to a large action set, the off-policy evaluation and
optimization errors in Lemma 3 would be Q(|.A|)! Even
worse, in practice, |A| is expected to be large in many
popular applications, such as the large pool of ads in
online advertising (Li et al., 2010; Chu et al., 2011)
or the combinatorial action space in online recommen-
dations (Swaminathan et al., 2017; Mclnerney et al.,
2020; Vlassis et al., 2021).

To address this challenge, prior works used features.
In the linear function approximation (Dani et al.,
2008; Abbasi-Yadkori et al., 2011; Swaminathan et al.,
2017), the assumption is that the expected reward of
each action is linear in the action’s features and an un-
derlying shared reward parameter. We adopt this ap-
proach and generalize our results to the linear function

approximation. Let A C R? be the action set that con-
tains a collection of d-dimensional feature vectors with
llall2 < 1Va € A. For any logging policy 7 : A — [0, 1],
we generalize g(m) € R in Section 2 to
T -1
= G , 4

g(m) = maxa G(m)""a (4)
where G(m) = >, .4 m(a)aa”. We note that the tab-
ular case is a special case where A is the standard
FEuclidean basis.

Similarly to the tabular case, g(7) is proportional to
the maximum width of a high-probability confidence
interval over a € A (see e.g., Section 21.1 of Lat-
timore and Szepesvari (2018)). Our goal is to de-
sign a logging policy 7. that minimizes g(m.), so as
to minimize our estimation error. In absence of the
safety constraint, this is the general form of the G-
optimal design (Kiefer and Wolfowitz, 1960), which
is a convex optimization problem that can be solved
efficiently by the Frank-Wolfe algorithm (see e.g., Fe-
dorov (1972)). To describe the safety constraint, we
let 0, € Sg—1 = {0 € R%: ||f]|2 < 1} be an unknown
parameter vector and 7(a) = a' 6, (€ [0,1]) be the ex-
pected reward of action a. Then the safety constraint
would require that V' (m.) > aV(mg) for all 6, € Sg_.

Remark 2. We point out that if we consider no side
information (Section 3.1) or the coordinate-wise side
information (Section 3.2), we can apply the results
from Section 3 to compute the optimal designs.

Side Information: In linear models, confidence re-
gions on 6, are often given in the form of ellipsoids (see,
e.g., Dani et al. (2008); Abbasi-Yadkori et al. (2011);
Ban and Keskin (2020) or Chapter 20 of Lattimore and
Szepesvari (2018)). We consider this generalization
here, by assuming that the unknown parameter 6, falls
in a confidence ellipsoid (possibly with high proba-
bility) © := {# € R?: (§ — ) TS71(§ — §) <1} . Here
6 € R% is the center of the ellipsoid and =1 € R4*? ig
a positive definite matrix whose eigenvectors are the
principal axes of the ellipsoid and whose eigenvalues
are the reciprocals of the squares of the semi-axes.

To ease exposition, we make an assumption that © C
Sy—1 and define d x K matrix A = (), ..., a(5)),
where a(?) is the i-th action in A. Then the safety con-
straint can be written as W;FATQ* > aﬂJATQ* Vo, €
O, and the problem of finding the optimal logging pol-
icy that satisfies the safety constraint is

P4(©,m) :

min g(r.)
s.t. me € Ag_1,

T AT
max(amg —m) A' 6, <O0.
9*69( 0 e) *

As in the tabular case, the last constraint of P4(0, m)
also requires the inequality to hold for a continuum of
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0., and hence implicitly consists of infinitely many con-
straints. We could follow the duality approach in Sec-
tion 3.2, to convert P4(©, m) to a convex optimization
problem with a quadratic constraint. However, solving
it directly via conventional iterative convex optimiza-
tion algorithm (e.g., gradient descent) would still be
computationally challenging. This is because we would
need a computationally expensive projection step upon
each iteration of update.

4.1 Frank-Wolfe with a Cutting Plane
Method

We solve problem P4(0, mp) without projections by us-
ing a Frank-Wolfe algorithm (Frank and Wolfe, 1956)
with the cutting-plane method (see, e.g., Chapter 6.3
of Bertsimas and Tsitsiklis (1997)).

The algorithm is iterative and we denote its output af-
ter iteration i by 7() (7(%) is initialized to 7). In each
iteration, the Frank-Wolfe algorithm proceeds by mini-
mizing a linear approximation of the objective function
and sets 701 to its minimizer.

More formally, we denote H(7w) as the gradient of
a'G(m)"'a at m. Then, at the beginning of each it-
eration 4, the Frank-Wolfe algorithm considers the fol-
lowing linear program

Ps(O,m): min +TH (ﬂ-(i—l))

s.t. e AKfl,

max (amy — 7°r)TAT0* <0.
9,€0

Let 7Y be the optimal solution to the above lin-
ear program. Then we set n() = 70-D 4

n(7® — F(i_l)), where n € [0, 1] is chosen such that
maxgc4 a' G(7") 1 is minimized. The final output
of this algorithm is 7.

Computing the Gradient H(7): To work out H(7),
we compute the partial derivative of objective function
w.r.t. m as

8maxaeA aTG(m) ta

O (a )

aﬂvf)G()

= —a(n)TG(m)~!
:fwwfmm*@?

where a(r) = argmax ,c4a' G(m)"ta is the action
that achieves the maximum for a given policy 7. The
first equality follows from the fact that a(m) is the
maximizer under 7. The second equality combines the
derivative of matrix inverse with the fact that G(r) is

a()
" G(m) " a(m)

linear in w. Consequently,

c (a(ﬂ')TG(W)*laK)2 )T.
Dealing with Infinitely Many Constraints: As
before, the last constraint of Pg(©,my) implicitly in-
cludes infinitely many constraints. To address this,
we generate the constraints incrementally using the
cutting-plane method in each iteration i. Specifically,
we start with S as the empty set and denote by %S)
the corresponding optimal solution to Pg(S, 7). For
a given S, we find the most violated constraint in O,
parameterized by

fs = arg max (amy — ﬁg))TATG*

0.€0

\/(cwro -

This closed-form solution follows from the fact that
this problem is equivalent to maximizing a linear func-
tion on an ellipsoid; and we prove this in Appendix
G of Zhu and Kveton (2021). Then S is updated to
S U{fs}, and we repeat this until no constraint is vi-

olated, i.e., maxg, co(amg — 7)) TATH, < 0.

SA(amg — #1)
#NTATS A(amo — wgn

=0 +

4.2 Off-Policy Evaluation and Optimization

Similarly to Section 3.3, we apply our results to con-
textual off-policy evaluation and optimization.

Additional Notations: We follow most of the nota-
tions in Section 3.3, except now the reward param-
eter conditioned on context z is 0.(x) and g(7) =
maxzcx acaa G(r(- | ) ta. Again, g(r) is propor-
tional to the maximum width of a high-probability con-
fidence interval over a € A and z € X if we use 7 to
collect data. We use it to measure the quality of our
logging policy m.. The side information is defined as
follows: for every x € X, 0,, € O, = {§ € R? :
(0 —0,)TE;50 — 0,) < 1}. We collectively denote
0. = (9*,1’)1’6){ and © = (@x)x€X~

Pseudo-Inverse (PI) Estimator: To leverage the
linear structure in the reward function, Swaminathan
et al. (2017) proposed the PI estimator, which gen-
eralizes the IPS estimator, to estimate the expected
reward of a policy w. Specifically, let G(n(- | z)) =
> aeam(a] z)aa’, the PI estimator is

*%anrm> Glre(- | 2) ar. (5)

where An(- | x) is the average action feature vector
under 7(- | ). Here we slightly overload our notation
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and use G~ as the pseudo-inverse of G. Swaminathan
et al. (2017) showed in Proposition 1 that V() is an
unbiased estimator of V(x). From the triangle and
Cauchy-Schwarz inequalities, we have that

(Am(- [20)T Gl | 21) ey

Z m(a | zy)a G(me(- | 2)) Ly

acA
<D mlal@) o’ Glre(- | 20)
acA
<3 w(a|z)y/aT Gl )t
acA

x\Jal Gl | a0) s < ().

Therefore, each of the terms in the summand of (5) is
g(m.)?-sub-Gaussian.

Side Information: To incorporate the distribution of
X and the side information, we consider the following
optimization problem

min g(r.)
st me(- | ) € Ag—1) Vo € X,
T AT
_r)TATe, ., <0.
gggzexcm)(aﬂ'g Te) Ou <0

This optimization problem can be solved analogously
to that in Section 4.1.

Performance Guarantee: As in the tabular case,
g(me) is exactly the minimized objective in the above
optimization problem. We are now ready to link it to
off-policy evaluation and optimization guarantees.

Lemma 4. Let A\.(z) be the minimum non-zero eigen-
value of G(me(- | x)), A = mingex A\ (z), and V() be
the PI estimate for the value of policy 7 in (5). Then

with probability at least 1 — 0, max, |V (7) — V(W)’ <
3g(me)v/d|X[log(n/ (6 min{1,vA.}}))/(4n). Further,
let # = argmax . V() and 7, = argmax . V(w). Then
with probability at least 1 — §, we have that V(m,) —
V(#) < 3g(me)\/d| X log(n/(§ min{1, VX.}}))/n.

The complete proof of Lemma 4 is provided in Ap-
pendix F of Zhu and Kveton (2021).

5 EXPERIMENTS

We conduct two experiments. In Section 5.1, we illus-
trate the basic properties of our approach on a simple
example. We evaluate it on a diverse set of problems
in Section 5.2.

Our approach is implemented as described in Sec-
tion 4.1 and we call it Safe0D, which is an abbrevi-
ation for safe optimal design. We compare it with two

baselines. The first baseline is the G-optimal design
mg. The G-optimal design can be viewed as an unsafe
variant of SafeOD, i.e., « = 0. The second baseline is a
mixture policy mmix = amg+(1—a)lg /K. This policy
is guaranteed to satisfy the safety constraint but may
not maximize information gain.

All logging policies 7 are evaluated by three criteria.
The first is the design width \/g(7), which is defined in
(4) and reflects how well 7 minimizes uncertainty over
all actions. Lower values are better. The second cri-
terion is the safety violation maxg, co(amy—m) " AT,
(Section 4), which measures how much 7 violates the
safety constraint for being close to the production pol-
icy mp. Lower values are better. The last metric is
off-policy gap, which measures the suboptimality of
the best off-policy estimated action on data collected
by m. This metric is computed as follows. First, we
drawn 6, € O, uniformly at random, and find the best
action a, under #,. Second, we collect a dataset D
of size n = 10d, were the noisy observation of action
ais a'f, + ¢ for e ~ N(0,1). Finally, we compute
the MLE of 6, from D, which we denote by é, and
find the best action a under 6. The off-policy gap is
(asx— d)TG* and we estimate it from 1000 random runs
for any given logging policy, as described above.

5.1 Illustrative Example

We start with A = {(1,0), (0,1)}, mo = (0.2,0.8), and
a = 0.9; and O is given by § = (1,2) and ¥ = 0.115.
In this case, my takes the most rewarding action with
a high probability of 0.8. Therefore, SafeOD cannot
differ much from 7y and is 7. = (0.330,0.670). This
design satisfies the safety constraint and its width is
1.74. In comparison, the G-optimal design is 7, =
(0.5,0.5) and obviously violates the safety constraint.
For instance, even at 6, the constraint violation is 0.9 -
(02-140.8-2)—0.5-3 = 0.12. However, its width
is only 1.414. The mixture policy mmix satisfies the
safety constraint but its width is 2.085, about 15%
higher than in Safe0D.

Next we set § = (2,1). In this case, 7y takes the
least rewarding action with a high probability of 0.8.
Therefore, Safe0D can depart significantly from 7y and
is me = (0.5,0.5). This design satisfies the safety con-
straint and its width is 1.141. The G-optimal design
coincides with Safe0D (7, = 7). The mixture policy
Tmix also satisfies the safety constraint but its width
is 2.085.

In conclusion, Safe0D combines the best properties
of g and myix. When the safety constraint is strict,
Safe0D satisfies it. When it is not, SafeOD has a low
width, similarly to the G-optimal design.



Ruihao Zhu, Branislav Kveton

d=4,a=0.900

35F T T T T : 7
000 G-optimal
< 3.0 Mixture
2207 AAA SafeOD
&
o5t
4
: |
2.0 |

-0.2 0.0 0.2 0.4 0.6
Safety violation

Off-policy gap

d =4, a=0.900
0.22 T T T T
0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06

0.04 L
-0.2

Safety violation

Figure 2: Comparison of Safe0OD to the G-optimal optimal design and the mixture policy.
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Figure 3: Comparison of SafeOD to the G-optimal optimal design and the mixture policy. We fix the safety
parameter at a = 0.9 and vary d. Each safety violation is the fraction of violated safety constraints in 50 runs.
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Figure 4: Comparison of Safe0D to the G-optimal optimal design and the mixture policy. We fix d = 4 and vary
the safety parameter a. Each safety violation is the fraction of violated safety constraints in 50 runs.

5.2 Synthetic Problems

We also experiment with the following randomly gen-
erated problems. The number of actions is K = 100
and their feature vectors are drawn uniformly from a
d-dimensional unit sphere. The production policy 7 is
drawn uniformly from a (K — 1)-dimensional simplex.
The set © is defined by ¥ = I; and #, which is drawn
uniformly from a d-dimensional hypercube [1,2]?. We
vary d and «, and generate 50 random problems for
each setting.

In Figure 2, we report results for d = 4 and a =
0.9. We observe that the G-optimal designs have low
widths but violate the safety constraint. The mixture
policy always satisfies the safety constraint but leads
to high design widths. Safe0D strikes the balance be-
tween the two objectives, by minimizing the design
width under the safety constraint. In all cases, design
widths correlate with off-policy gaps.

In Figure 3, we fix a = 0.9 and vary d; while in Fig-
ure 4, we fix d = 4 and vary «. In general, we observe
that Safe0D performs similarly to the G-optimal de-

sign whenever the safety constraint is easy to satisfy,
when the number of features d is large or the safety
parameter « is small. In all other cases, Safe0D pro-
duces designs of higher widths and off-policy gaps in
return for satisfying the safety constraint. The mix-
ture policy always satisfies the safety constraint but
leads to high design widths and off-policy gaps.

6 CONCLUSIONS

In this work, we design safe optimal logging policies
that simultaneously collect high-quality data for off-
policy learning and achieve competitive expected re-
wards to a production policy. We first show that the
policy induced by mixing the production policy and
uniform exploration is safe but sub-optimal in gen-
eral. Then we develop optimal solutions for various
setting, and relate them to off-policy evaluation and
optimization. Finally, we conduct extensive numerical
experiments to demonstrate the performance of our
proposed designs.
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