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Abstract

This paper studies regret minimization in a
multi-armed bandit. It is well known that
side information, such as the prior distribu-
tion of arm means in Thompson sampling,
can improve the statistical efficiency of the
bandit algorithm. While the prior is a bless-
ing when correctly specified, it is a curse
when misspecified. To address this issue, we
introduce the assumption of a random-effect
model to bandits. In this model, the mean
arm rewards are drawn independently from
an unknown distribution, which we estimate.
We derive a random-effect estimator of the
arm means, analyze its uncertainty, and de-
sign a UCB algorithm ReUCB that uses it. We
analyze ReUCB and derive an upper bound
on its n-round Bayes regret, which improves
upon not using the random-effect structure.
Our experiments show that ReUCB can out-
perform Thompson sampling, without know-
ing the prior distribution of arm means.

1 INTRODUCTION

We study stochastic multi-armed bandits (Lai and
Robbins, 1985; Auer et al., 2002; Lattimore and
Szepesvari, 2019), where the learning agent sequen-
tially takes actions in order to maximize its cumula-
tive reward. As the agent learns through experience, it
faces a trade-off between exploration and exploitation:
exploiting actions that maximize immediate rewards,
as estimated by its current model; or improving its fu-
ture rewards by exploring and learning a better model.
Side information, such as the prior distribution of arm
means in Thompson sampling (TS) (Thompson, 1933;
Chapelle and Li, 2011; Agrawal and Goyal, 2012, 2013;
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Russo and Van Roy, 2014; Abeille and Lazaric, 2017),
can improve the statistical efficiency of the bandit al-
gorithm and make it more practical.

While the prior is a blessing when correctly specified,
a misspecified prior is a curse. Take online advertising
as an example. It is well known that click probabil-
ities of ads are low. Therefore, when estimating the
click probability of a cold-start ad, it is important to
model this structure. One approach would be Bayesian
modeling, where the prior distribution is beta with a
low mean. The shortcoming of this approach is that
the prior needs to be specified, and is potentially mis-
specified. Therefore, design of bandit algorithms that
depend less on exact priors is an important direction.

To address this issue, we study random-effect models
(Henderson, 1975; Robinson, 1991) in the bandit set-
ting, and refer to the setting as a random-effect ban-
dit. Random-effect models were developed in statis-
tics and econometrics (Diggle et al., 2013; Wooldridge,
2001), and are frequentist counterparts of hierarchi-
cal Bayesian models (Carlin and Louis, 2000). In our
model, the arm means are sampled i.i.d. from a fixed
unknown distribution. The estimator of arm means is
a weighted sum of two terms. The first term is the
average of observed rewards of the arm. The second
term estimates the common mean from all observa-
tions. The weights are chosen adaptively based on
data, and balance the common mean estimate with
that of the specific arm. Due to this structure, the
resulting estimator of arm means is more statistically
efficient than in the classical setting.

Our proposed bandit algorithm uses upper confidence
bounds (UCBs), which is a popular approach to explo-
ration with guarantees (Lai and Robbins, 1985; Auer
et al., 2002; Audibert et al., 2009; Garivier and Cappe,
2011). In round t ∈ [n], it pulls the arm with the
highest UCB, observes its reward, and then updates
its estimated arm means and their high-probability
confidence intervals. The main difference from the
classical algorithms is that all estimates are based on
the random-effect model. Our method is essentially a
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random-effect UCB1 (Auer et al., 2002), and thus we
call it ReUCB.

Since our arm means are stochastic, ReUCB is related
to both TS and Bayes-UCB (Kaufmann et al., 2012),
which rely on posterior distributions. TS is popular
in practice, but the assumption of knowing the prior
exactly is rarely satisfied. In ReUCB, we do not require
that the prior is fully specified, and thus we relax this
assumption.

We make the following contributions. First, we intro-
duce the assumption of random-effect models to multi-
armed bandits, and properly formulate the corre-
sponding bandit problem. Second, we propose a UCB-
like algorithm for this problem, which we call ReUCB.
ReUCB estimates arm means using the best linear un-
biased predictor (BLUP) (Henderson, 1975; Robinson,
1991), a method of estimating random effects without
assumptions on distributions. The BLUP estimates
leverage the structure of our problem and yield tighter
confidence intervals than those of UCB1. Third, we an-
alyze ReUCB and derive an upper bound on its n-round
Bayes regret (Russo and Van Roy, 2014) that reflects
the structure of our problem. The main challenge in
our regret analysis is the underspecified prior. Specif-
ically, ReUCB estimates the distribution of arm means
from all observations and then uses it to estimate the
mean of each arm. As a result, the estimated arm
means are correlated, unlike in a typical multi-armed
bandit. Finally, we evaluate ReUCB empirically on a
range of problems, such as Gaussian and Bernoulli
bandits, and a movie recommendation problem. We
observe that ReUCB outperforms or is comparable to
TS while using less prior knowledge.

2 RANDOM-EFFECT BANDITS

We study a stochastic K-armed bandit (Lai and Rob-
bins, 1985; Auer et al., 2002; Lattimore and Szepes-
vari, 2019) where the number of arms can be large but
finite. Because the mean rewards of some arms may
not be reliably estimated due to many arms, it is chal-
lenging to explore all suboptimal arms efficiently. To
overcome this challenge, we introduce a novel model-
ing assumption to multi-armed bandits.

We assume that the mean reward of arm k ∈ [K] fol-
lows a random-effect model

µk = µ0 + δk , (1)

where µ0 is a common mean, δk ∼ P (µ)(0, σ2
0) is a

random offset from that mean, and P (µ)(0, σ2
0) is a

distribution with zero mean and variance σ2
0 . Thus µk

is a random variable with mean µ0 and variance σ2
0 .

With a lower variance, the differences among the arms

are smaller. We improve over traditional bandit de-
signs (Auer et al., 2002) by using the stochasticity of
µk. Unlike in Thompson sampling (Thompson, 1933;
Chapelle and Li, 2011; Russo and Van Roy, 2014) or
Bayes-UCB (Kaufmann et al., 2012), we do not assume
that the prior of arm means is conjugate or fully spec-
ified. We only require that P (µ)(0, σ2

0) has a finite
second-order moment.

The reward of arm k after the j-th pull is denoted by
rk,j and we assume that it is generated i.i.d. as

rk,j ∼ P (r)(µk, σ
2) , (2)

where P (r)(µk, σ
2) is a distribution with mean µk and

variance σ2. Similarly to P (µ)(0, σ2
0) in (1), we only

require that its second-order moment is finite.

Our bandit has K arms and a horizon of n rounds.
Before the first round, the mean reward of each arm
is generated according to (1). In round t ∈ [n], the
agent pulls arm It ∈ [K] and observes its stochastic
reward, drawn according to (2). For any arm k and
round t, we denote by nk,t the number of pulls of arm
k up to round t, and by rk,1, . . . , rk,nk,t

the sequence
of associated rewards. We call this problem a random-
effect bandit.

3 MODEL ESTIMATION

This section describes our estimators of arms. In Sec-
tion 3.1, we estimate µk under the assumption that
µ0 is known. In Section 3.2, we provide an estimator
for µk when µ0 is unknown. Additionally, we show
how to estimate the variance parameters σ2

0 and σ2 in
Appendix D. Because this section is devoted to esti-
mating means and their variances at a fixed round t,
we drop subindexing by t to reduce clutter.

3.1 Estimating µk When µ0 Is Known

We estimate µk using the best linear unbiased pre-
diction (BLUP), which is a common method for es-
timating random effects (Henderson, 1975; Robinson,
1991). The BLUP estimator of µk minimizes the mean
squared error among the class of linear unbiased es-
timators that do not depend on the distribution of
model error.

We call the sample mean of arm k its direct estima-
tor, and define it as r̄k = n−1k

∑nk

j=1 rk,j . From (2),

we get that Var(r̄k) = n−1k σ2. We improve upon this
estimator with a class of linear unbiased estimators of
form

µ̆k := µ0 + a(r̄k − µ0) ,

where a ∈ R is a to-be-optimized coefficient. Since
µk is random rather than fixed, BLUP minimizes the
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mean squared error of µ̆k with respect to µk, which is
mina E

[
(µ̆k − µk)2

]
. Note that

E
[
(µ̆k − µk)2

]
= E

[
[a(r̄k − µk) + (1− a)(µ0 − µk)]2

]
= a2n−1k σ2 + (1− a)2σ2

0 , (3)

where the last equality is from (1) and (2), and that
the reward noise is independent of δk. When (3) is
minimized with respect to a, the optimal value of a is

wk = σ2
0/(σ

2
0 + n−1k σ2) = 1/(1 + n−1k σ2/σ2

0) . (4)

Thus, if µ0, σ2
0 , and σ2 were known; and we plugged

our derived wk into the definition of µ̆k, we would get
the following BLUP estimator of µk

µ̃k = µ0 + wk(r̄k − µ0) = (1− wk)µ0 + wkr̄k . (5)

From (4), we have that σ−2σ2
0 ≤ wk < 1 for nk ≥ 1,

and that wk → 1 as nk increases. We also have

wkn
−1
k σ2 = (1− wk)σ2

µ . (6)

These properties are important in our analysis.

The estimator µ̃k in (5) is biased. The degree of this
bias depends on both nk and σ2/σ2

0 in (4). If the arm
has not been pulled enough, wk is low and µ̃k is biased
towards µ0. So we are not as aggressive in exploring
as if wk = 1. As the arm is pulled more, wk → 1
and the bias reduces to zero. When σ2

0 decreases, the
gaps among the arms decrease, and the effect of µ0

increases. Similarly, as σ2 increases, the uncertainty
in the direct estimator r̄k increases, and so does the
effect of µ0.

Now we set a = wk in (3) and get

E
[
(µ̃k − µk)2

]
= w2

kn
−1
k σ2 + (1− wk)2σ2

0 = wkn
−1
k σ2

=: τ̃2k , (7)

where the last step is from (6). As Var(r̄k) = n−1k σ2,
(7) shows that µ̃k is a better estimator of µk than r̄k,
since wk < 1.

3.2 Estimating µk When µ0 Is Unknown

When σ2
0 and σ2 are known, the mean of arm means

µ0 can be estimated by the generalized least squares
estimator (Rao, 2001). That estimator is

r̄0 =

[∑K

k=1
(1− wk)nk

]−1∑K

k=1
(1− wk)nkr̄k (8)

and we derive it in Appendix A. The estimator is more
statistically efficient than the ordinary least squares
because it weights the mean estimates of individual
arms by their heteroscedasticity. Since (1 − wk)nk =

Algorithm 1 ReUCB for random-effect bandits.

1: for t = 1, . . . , n do
2: for k = 1, . . . ,K do
3: Uk,t ← µ̂k,t + ck,t
4: end for
5: if t ≤ K then It ← t
6: else It ← arg maxk∈[K] Uk,t
7: Pull arm It and observe its reward rIt,nIt,t+1

8: Update all statistics
9: end for

σ2/(σ2
0 + n−1k σ2) → σ−20 σ2 as nk → ∞, we get r̄0 −

K−1
∑K
k=1 µk → 0 as nk → ∞ for all k. This means

that r̄0 is a consistent estimator of µ0.

Now we plug the estimator r̄0 of µ0 into (5) and get a
synthetic estimator of µk,

µ̂k = (1− wk)r̄0 + wkr̄k . (9)

The key point underlying the synthetic estimator is
the weight wk, which automatically balances variation
among the arms and the uncertainty of r̄k. The vari-
ance of µ̂k is

E
[
(µ̂k − µk)2

]
= wkn

−1
k σ2 +

(1− wk)2∑K
k=1 nk(1− wk)

σ2

=: τ2k . (10)

The derivation of (10) is in Appendix B. The classical
estimator of arm means in multi-armed bandits can be
compared to that in random-effect bandits as follows.

Proposition 1. For any arm k ∈ [K], and any σ2 > 0
and nk ≥ 1, we have τ2k < σ2/nk.

The proof is in Appendix C. Proposition 1 shows that
τ2k is always lower than σ2/nk when σ2 > 0, where the
latter is the variance estimate in the classical bandit
setting. In the worst case, for σ2 = 0, we get τ2k =
σ2/nk, implying that the variance of µ̂k equals to that
of r̄k. Thus, by using the synthetic estimator µ̂k, we
can be less optimistic than UCB1.

4 ALGORITHM

We propose a UCB algorithm for random-effect ban-
dits. The key idea in UCB algorithms (Auer et al.,
2002; Audibert et al., 2009) is to pull the arm with
the highest sum of its mean reward estimate and a
weighted standard deviation of that estimate. In the
setting of Section 3.2, the estimated mean reward of
arm k is µ̂k in (9) and its variance is τ2k in (10). Due
to space constraints, we do not present the algorithm
for the setting in Section 3.1. In this case, µ̂k would
be replaced by µ̃k and τ2k would be replaced by τ̃2k .



Random Effect Bandits

Our algorithm is presented in Algorithm 1 and we call
it ReUCB, which stands for random-effect UCB. We
subindex all statistics in Section 3 with an additional
t, to make clear that we refer to round t. As an ex-
ample, µ̂k,t and τ2k,t are the respective values of (9)
and (10) at the beginning of round t. ReUCB works as
follows. It is initialized by pulling each arm once. The
upper confidence bound (UCB) of arm k in round t is

Uk,t = µ̂k,t + ck,t ,

where ck,t =
√
aτ2k,t log t is its uncertainty bonus and

a > 0 is a tunable parameter. In Section 5, we prove
regret bounds for a ≥ 1. In round t, ReUCB pulls the
arm with the highest UCB It = arg maxk∈[K] Uk,t. To
break ties, any fixed rule can be used.

4.1 Related Algorithm Designs

ReUCB extends UCB1 to a better BLUP estimator. For
wk,t = 1 and a = 1, ReUCB has a similar UCB to UCB1,

Uk,t = r̄k,t +
√
n−1k,tσ

2 log t. We call this algorithm

ReUCB∞ and evaluate it empirically in Figure 5 in Ap-
pendix I. Our results show that ReUCB∞ is comparable
to TS, but worse than ReUCB. This shows the benefit
of our model. Specifically, the estimate of µk in ReUCB

borrows information from other arms. This increases
its statistical efficiency (Proposition 1), since the con-
fidence interval of µk in ReUCB can be narrower than
in the classical setting. Note that ReUCB with a = 1
reduces to UCB1 only if all weights wk,t are one. This
could happen only if all arms were pulled infinitely
often. So ReUCB with a = 1 does not behave like UCB1.

Due to assuming random arm means, ReUCB is related
to both TS (Thompson, 1933; Chapelle and Li, 2011;
Russo and Van Roy, 2014) and Bayes-UCB (Kaufmann
et al., 2012). Both Bayes-UCB and TS maintain pos-
terior distributions. The computation of the posteri-
ors requires that the mean of the prior µ0 is known.
ReUCB employs an alternative random-effect estimator
that does not need it.

Li et al. (2011) proposed a hybrid model, where some
coefficients are shared by all arms. However, this
model is still traditional in the sense that the coeffi-
cients that are not shared are estimated separately in
each arm. Gupta et al. (2021) recently proposed cor-
related multi-armed bandits, where the learning agent
knows an upper bound on the mean reward of each
arm given the mean reward of any other single arm.
Such side information could be derived in our setting.
However, it is also clearly not as powerful as using the
observations of all arms jointly, as in (9) and (10).

5 REGRET ANALYSIS

We derive an upper bound on the n-round regret of
ReUCB. In our setting, µk are random variables. Un-
der the assumption that rk,j ∼ N (µk, σ

2) and µk ∼
N (µ0, σ

2
0), which is used in one of our analyses, µ̂k,t

is the maximum a posteriori (MAP) estimate of µk
given history, meaning that µ̂k,t can be viewed as a
Bayesian estimator. Because of that, we adopt the
Bayes regret (Russo and Van Roy, 2014) to analyze
ReUCB. The main novelty in our analysis is addressing
the unknown mean of the prior.

Let Ht = (I`, rI`,nI`,`
+1)t−1`=1 be the history at the be-

ginning of round t and It be the pulled arm in round
t. The regret is the difference between the rewards
we would have obtained by pulling the optimal arm
I∗ = arg maxi∈[K] µi and the rewards that we did ob-
tain in n rounds. Our goal is to bound the Bayes re-
gret Rn = E [

∑n
t=1 µI∗ − µIt ], where the expectation is

over stochastic rewards and random µ1, . . . , µK . Our
main result is stated below.

Theorem 2. Consider a K-armed Gaussian bandit
with rewards rk,j ∼ N (µk, σ

2) and µk ∼ N (µ0, σ
2
0).

Let ReUCB use σ2
0 and σ2. Then (1) for any a ≥ 1, the

n-round Bayes regret of ReUCB is

Rn ≤ 2

√
a log(1 + σ−2σ2

0n)

log(1 + σ−2σ2
0)

(
1 +

σ2

Kσ2
0

)
σ2
0Kn log n

+
Kσ2

0 + σ2

σ2
0

√
8nσ2

0σ
2

π(σ2
0 + σ2)

.

(2) for any a ≥ 2, the n-round Bayes regret of ReUCB
is obtained by replacing the last term above with (1 +
log n)(K + σ2σ−20 )

√
2σ2

0σ
2/(π(σ2 + σ2

0)).

5.1 Discussion

Up to logarithmic factors, Theorem 2 shows that the
n-round Bayes regret of ReUCB is O(K

√
n) for a ∈ [1, 2]

and O(
√
Kn) for a ≥ 2. So the regret is sublinear in

n for any a ≥ 1. Since both bounds increase in a, we
suggest using a = 1, which performs extremely well in
practice. Also note that the mean reward estimate in
(9) is a weighted sum of the estimate of µ0 (Term 1)
and the per-arm reward mean (Term 2). The variance
of the former is linear in σ2

0 , which gives rise to the
linear dependence on σ0 in Theorem 2. Note that this
dependence is standard in Bayes regret analyses (Lu
and Van Roy, 2019; Basu et al., 2021), and it is due
to using similar techniques in our proofs.

A Bayes regret lower bound exists for a K-armed ban-
dit (Lai, 1987). However, it has not been generalized
to structured problems yet, including in seminal works
on Bayes regret minimization (Russo and Van Roy,
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2014). Similarly, we also do not provide a matching
lower bound in this work. Instead, we argue that our
regret bound reflects the structure of our problem by
comparing it to agents that use more information or
less structure.

Theorem 2 is proved under the assumption that ReUCB
estimates µ0. Now consider a variant of ReUCB where
µ0 is known. This agent with more information can
be analyzed similarly to ReUCB. In this analysis, µ̂k,t
and τ2k,t would be replaced by µ̃k,t in (5) and τ̃2k,t in
(7), respectively. The resulting regret bound would be
the same as in Theorem 2, except for the extra factor
of 1 + σ2/(Kσ2

0). Therefore, this factor can be viewed
as the price for learning µ0. As it is O(1 + 1/K), its
impact on the Bayes regret of ReUCB is small when K
is large.

Now suppose that µ0 ∼ N (0, σ2
q ). However, the struc-

ture that µ0 is the same for all arms is not modeled.
This problem is equivalent to a Bayesian bandit with
a per-arm prior N (0, σ2

q + σ2
0) and ReUCB with known

µ0 = 0 can solve it. When analyzed, the leading term
in Theorem 2 would be

2

√
a log(1 + σ−2(σ2

q + σ2
0)n)

log(1 + σ−2(σ2
q + σ2

0))
(σ2
q + σ2

0)Kn log n .

Thus, up to logarithmic factors, our regret bound is
lower whenever (1 + σ2/(Kσ2

0))σ2
0 ≤ σ2

q + σ2
0 , and it

is beneficial to learn the common µ0 in this case. For
any σq > 0, this is guaranteed as K increases.

Theorem 2 can be extended in several ways. First, we
generalize the model in (2) to arm-dependent reward
noise. Specifically, the reward of arm k after the j-
th pull is drawn i.i.d. as rk,j ∼ N (µk, σ

2
k), where the

variance σ2
k may depend on k. In Appendix E, we

show that the Bayes regret bound in Theorem 2 still
holds for σ2 = maxk∈[K] σ

2
k. Second, the Gaussian

assumption in Theorem 2 is replaced with bounded
sub-Gaussianity in Appendix G.

Finally, we would like to point out the limitations of
our results. First, our proofs rely on well-behaved pos-
terior distributions, either Gaussian or bounded sub-
Gaussian. This is due to limitations of existing Bayes
regret analyses, which use it to bound tail events con-
ditioned on history (Russo and Van Roy, 2014). We
observe that it is not needed for good practical per-
formance and believe that better analyses will be pos-
sible in the future. Second, our proofs are under the
assumption that σ2

0 and σ2 are known. This is akin to
existing Bayes regret analyses. We experiment with
estimating σ2

0 and σ2 in Section 6.

Now we are ready to prove Theorem 2.

5.2 Proof of Theorem 2

Let the confidence interval of arm k in round t be

ck,t =
√
aτ2k,t log t =

√
2τ2k,t log(1/δt) , (11)

where δt = t−a/2. Define the events that all confidence
intervals in round t hold as

ER;t = {∀k ∈ [K] : µ̂k,t − µk ≤ ck,t} ,
EL;t = {∀k ∈ [K] : µk − µ̂k,t ≤ ck,t} .

Fix round t. The regret in round t is decomposed as

E [µI∗ − µIt ] = E [E [µI∗ − µIt |Ht]]

= E [E [µI∗ − µ̂I∗,t − cI∗,t |Ht]]

+ E [E [µ̂I∗,t + cI∗,t − µIt |Ht]]

≤ E [E [µI∗ − µ̂I∗,t − cI∗,t |Ht]]

+ E [E [µ̂It,t + cIt,t − µIt |Ht]] . (12)

The first equality is by the tower rule. The second
is from the fact µ̂k,t and ck,t are deterministic given
Ht. The inequality is from the fact that It maximizes
µ̂k,t + ck,t over k ∈ [K] given Ht. For each term in
(12), we get

E [µI∗ − µ̂I∗,t − cI∗,t |Ht]

≤ E
[
(µI∗ − µ̂I∗,t)1{ĒL;t}

∣∣Ht

]
,

E [µ̂It,t + cIt,t − µIt |Ht]

≤ 2E [cIt,t |Ht] + E
[
(µ̂It,t − µIt)1{ĒR;t}

∣∣Ht

]
,

where the inequalities are from the fact that µI∗ −
µ̂I∗,t ≤ cI∗,t on EL;t, and that µ̂It,t − µIt ≤ cIt,t
on ER;t. By chaining all inequalities, the regret is
bounded as

E
[∑n

t=1
(µI∗ − µIt)

]
≤ 2E

[∑n

t=1
cIt,t

]
+ E

[∑n

t=1
E
[
(µ̂It,t − µIt)1{ĒR;t}

∣∣Ht

]]
+ E

[∑n

t=1
E
[
(µI∗ − µ̂I∗,t)1{ĒL;t}

∣∣Ht

]]
. (13)

We start with the first term in (13). This term depends
on τ2k,t, which depends on the pulls of all arms, as
defined in (10). Therefore, it is challenging to analyze.
To do that, we use Lemma 3 of Appendix F, which
shows that

τ2k,t ≤ βτ̃2k,t = β
1

σ−20 + σ−2nk,t

for β = 1 +σ2/(Kσ2
0). This means that we can bound

τ2k,t by only considering arm k. Then

n∑
t=1

cIt,t ≤
n∑
t=1

√
aτ2It,t log n

≤
√
aβn log n

√√√√ n∑
t=1

1

σ−20 + σ−2nIt,t
,
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where the first inequality is from the definition of ck,t
and log t ≤ log n, and we used the Cauchy-Schwarz
inequality in the second one.

Note that x/ log(1+x) ≤ m/ log(1+m) for x ∈ [0,m],
because x = log(1 + x) at x = 0 and x grows faster
than log(1 + x) on [0,m]. Now we apply this bound
for x = σ−2/(σ−20 +σ−2nIt,t) and m = σ−2σ2

0 , and get

1

σ−20 + σ−2nIt,t
≤ γ log

(
1 +

σ−2

σ−20 + σ−2nIt,t

)
= γ log

σ−20 + σ−2(nIt,t + 1)

σ−20 + σ−2nIt,t
,

where γ = σ2
0/ log(1 + σ−2σ2

0). The above leads to
telescoping and
n∑
t=1

1

σ−20 + σ−2nIt,t
≤ γK

[
log(σ−20 + σ−2n)− log(σ−20 )

]
= γK log(1 + σ−2σ2

0n) ,

where we used that any arm is pulled at most n times.
Now we put everything together and get

n∑
t=1

cIt,t ≤

√
a log(1 + σ2

0n)

log(1 + σ−2σ2
0)
βσ−2σ2

0Kn log n . (14)

The next step is the second term in (13). To
bound it, we show in Lemma 4 of Appendix F that
µk|Ht ∼ N (µ̂k,t, τ

2
k,t), under the assumption of rk,j ∼

N (µk, σ
2) and µk ∼ N (µ0, σ

2
0). By using this prop-

erty,

E
[
(µ̂It,t − µIt)1{ĒR;t}

∣∣Ht

]
≤

K∑
k=1

1√
2πτ2k,t

∫
x≥ck,t

x exp

(
− x2

2τ2k,t

)
dx ≤ δt√

2π

K∑
k=1

τk,t ,

where the last inequality is from (11). It follows that
for a ≥ 1,

E

[
n∑
t=1

E
[
(µ̂It,t − µIt)1{ĒR;t}

∣∣Ht

]]

≤ 1√
2π

n∑
t=1

t−1/2βK

√
σ2

1 + σ2σ−20

≤ 1√
π
βK

√
2nσ2

1 + σ2σ−20

, (15)

where the first inequality follows from δt ≤ t−1/2 for
a ≥ 1 (Lemma 3 of Appendix F), and the last one is
from

∑n
t=1 t

−1/2 ≤ 2
√
n. Similarly, when a ≥ 2,

E

[
n∑
t=1

E
[
(µ̂It,t − µIt)1{ĒR;t}

∣∣Ht

]]

≤ βK(1 + log n)√
2π

√
σ2

1 + σ2σ−20

, (16)

where the inequality is from δt ≤ t−1 for a ≥ 2 and∑n
t=1 t

−1 ≤ 1 + log n.

At last, we study the third term in (13). The result in
(15) or (16) holds for the term. Therefore, by combing
(13), (14), (15), and (16), the theorem is proved.

6 SYNTHETIC EXPERIMENTS

We study two bandit settings: Gaussian (Section 6.1)
and Bernoulli (Section 6.2). Moreover, in Section 6.3,
we study misspecified priors. ReUCB is compared to
UCB1 (Auer et al., 2002) and TS (Thompson, 1933).
TS is chosen because it uses the same structure as
ReUCB, that arm means are random. However, it needs
more knowledge, the prior distribution of µ0. Since
ReUCB is a UCB algorithm, it is natural to compare
it to other UCB algorithms. We focus on UCB1 due
to its simplicity and popularity, but also compare to
Bayes-UCB (Kaufmann et al., 2012) and KL-UCB (Gariv-
ier and Cappe, 2011) in Figure 5 of Appendix I. Both
Bayes-UCB and KL-UCB improve over UCB1, but are not
better than TS. This is consistent with other reported
results in the literature (Kveton et al., 2019). There
are many other potential baselines, such as Giro (Kve-
ton et al., 2018) and PHE (Kveton et al., 2019). Our
ReUCB is fundamentally different from these methods,
since our arm means are random. Also, when com-
pared to these methods, TS is typically a strong base-
line (Kveton et al., 2019). Therefore, to make our em-
pirical studies clean and focused, we compare to UCB1

and TS.

We evaluate two variants of ReUCB: (1) ReUCB∗, where
µ0 is estimated, and σ2

0 and σ2 are known; and (2)
ReUCB, where all of µ0, σ2

0 , and σ2 are estimated. The
variance estimators σ̂2

0,t and σ̂2
t are provided in (22)

and (23), respectively, of Appendix D. Unless speci-
fied, the default priors in Gaussian and Bernoulli TS
are N (µ0, σ

2
0) and Beta(1, 1), respectively. The up-

per confidence bound in UCB1 is r̄k,t +
√

8n−1k,tσ
2 log t.

This is a generalization of the original algorithm to
σ2-sub-Gaussian rewards. In the original algorithm,
σ2 = 1/4. In Gaussian bandits, we set σ to Gaussian
noise. In Bernoulli bandits, this reduces to the UCB1

index since σ2 = 1/4. All simulations are averaged
over 1000 independent runs.

6.1 Gaussian Bandits

Our first experiment is on K-armed Gaussian bandits.
The reward distribution of arm k is N (µk, σ

2) where
σ = 0.5. We generate µk in two ways. First, µk are
drawn independently from Gaussian prior N (µ0, σ

2
0),

where we study two settings of (µ0, σ
2
0): (1, 0.04) (low

coefficient of variation 0.2) and (1, 1) (high coefficient
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(a) µk ∼ N (1, 0.04)
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(b) µk ∼ N (1, 1)
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(c) µk ∼ U [1, 2]

Figure 1: K-armed Gaussian bandits with µk from N (µ0, σ
2
0) and U [1, 2]. Upper row: Regret as a function of

round n. Lower row: Distribution of the regret at the final round.

of variation 1). Second, µk are drawn from uniform
distribution U [1, 2]. The number of arms is K = 50.
The horizon is n = 104 rounds.

Figures 1(a) and 1(b) report results for Gaussian pri-
ors, while Figure 1(c) shows results for the uniform
prior. We observe that TS works well and outperforms
UCB1. ReUCB has a much lower regret than both UCB1

and TS. Besides good average performance, the distri-
bution of the regret in the final round (lower row in
Figure 1) shows good stability. The good performance
of ReUCB in Figure 1(c) indicates that ReUCB works
for various priors. ReUCB performs well empirically
because our high-probability confidence intervals are
narrower than in the classical setting (Proposition 1).
It outperforms TS with more information in Gaussian
bandits because its confidence interval widths τk,t are
narrower than the posterior widths of TS.

Now we compare the regret of ReUCB∗ and ReUCB in
Figure 1. Clearly the estimation of σ2 and σ2

0 does
not have a major impact on the regret of ReUCB. In
fact, the regret slightly decreases. We believe that this
is due to the additional randomness in our method-
of-moments estimators of σ2 and σ2

0 . These results
suggest that one limitation of our analysis, that σ2

and σ2
0 are known, is not a limitation in practice.

Finally, we report the run times of all algorithms. All
experiments are conducted in R, on a PC with 3GHz
Intel i7 CPU, 8GB RAM, and OS X operating system.
In Figure 1(a), a single run of ReUCB, UCB1, and TS

takes on average 1.27s, 1.16s, and 3.19s, respectively.
So ReUCB is slightly slower than UCB1 but much faster
than TS, which is slower due to posterior sampling.

6.2 Bernoulli Bandits

The second experiment is conducted on K-armed
Bernoulli bandits, where the reward distribution of
arm k is Bern(µk). The arm means µk are drawn
i.i.d. from uniform distribution U [0.2, 0.5]. We ex-
periment with three settings for the number of arms
K ∈ {20, 50, 100}, to show that ReUCB performs well
across all of them. The horizon is n = 104 rounds.

As in Figure 1, we observe in Figure 2 that ReUCB has
a much lower regret than UCB1 and TS, and performs
similarly to ReUCB∗. To implement ReUCB∗, we set the
maximum variance to σ2 = 1/4, as suggested in Ap-
pendix G. Different from Figure 1, Figure 2 shows the
regret for various K. As the number of arms K in-
creases, the gap between our approaches and the base-
lines increases.

6.3 Model Misspecification

Now we study what happens when TS and ReUCB∗ are
applied to misspecified models. Note that ReUCB is also
misspecified in Section 6.2, where the reward noise in
Bernoulli bandits depends on the mean of the arm,
meaning that it is not identical across the arms.

In the first experiment, we have a 50-armed Gaussian
bandit with µk ∼ N (1, 0.04), as in Figure 1(a). We im-
plement two variants of Thompson sampling with mis-
specified priors: TSm1 with prior N (1, 1) (misspecified
σ2
0) and TSm2 with prior N (0, 0.04) (misspecified µ0).

In ReUCB∗, σ2
0 = 1 and thus is also misspecified. Our

results are reported in Figure 3(a), where TSm2 fails
and has linear regret. The reason is that the misspec-
ified prior has low variance and is downwards biased.
Therefore, any initially pulled suboptimal arm is likely
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(c) K = 100

Figure 2: K-armed Bernoulli bandits with µk ∼ U [0.2, 0.5]. Upper row: Regret as a function of round n. Lower
row: Distribution of the regret at the final round.
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(a) Gaussian µk ∼ N (1, 0.04).
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(b) Bernoulli µk ∼ Beta(1, 9).
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(c) Truncated Gaussian

Figure 3: Model misspecification experiments. Upper row: Regret as a function of round n. Lower row: Regret
at the final round.

to be pulled again. TSm1 also performs much worse
than TS with the correct prior. In contrast, ReUCB

estimates the unknown mean µ0 and outperforms TS

that knows µ0. Even ReUCB∗ with misspecified σ2
0 is

comparable to TS with the correct prior.

In the second experiment, we have a Bernoulli bandit
with K = 20 arms and µk ∼ Beta(1, 9). We study
two variants of Thompson sampling: TS with a cor-
rect prior and TSm with misspecified prior Beta(9, 1).
In ReUCB∗, we set σ2

0 = 0.00818 to match the vari-
ance of Beta(9, 1) and σ2 = 0.25 because this is the
maximum reward variance. This makes ReUCB∗ mis-
specified. Our results are reported in Figure 3(b) and
are similar to Figure 3(a). We observe that TSm per-
forms worse than ReUCB∗, and that TS has much higher

regret than ReUCB.

In the last experiment, we study reward-model mis-
specification. We have a 20-armed Gaussian bandit
where the rewards are truncated to [0, 1] as rk,j =
min{max{r′k,j , 0}, 1} for r′k,j ∼ N (µk, 0.04). The
mean arm rewards are generated as µk ∼ N (0.3, 0.01).
We implement Bernoulli TS with prior Beta(6, 14) to
match the moments of N (0.3, 0.01) and Gaussian TS

with the correct prior N (0.3, 0.01). Our results are
reported in Figure 3(c). ReUCB performs robustly and
outperforms Thompson sampling.
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Figure 4: MovieLens ex-
periment. Left: Regret
as a function of round
n. Right: Distribution
of the regret at the final
round.

7 EXPERIMENTS ON REAL DATA

In the last experiment, we evaluate ReUCB on a rec-
ommendation problem. The goal is to identify the
movie that has the highest expected rating. We ex-
periment with the MovieLens dataset (Lam and Her-
locker, 2016), where we used a subset of K = 128 user
groups and L = 128 movies randomly chosen from the
full dataset, as described in Katariya et al. (2017). For
each user group and movie, we average the ratings of
all users in the group that rated the movie, and ob-
tain the expected rating matrix M of rank 5, which is
learned by a low-rank approximation on the underly-
ing rating matrix of the user groups and movies. See
details of the pre-processing in Katariya et al. (2017).

Our results are averaged over 200 runs. In each run,
user j is chosen uniformly at random from [128] and it
represents a bandit instance in that run. The goal is
to learn the most rewarding movie for user j. We treat
this problem as a random-effect bandit with K = 128
arms, one per movie, where the mean reward of movie
k by user j is Mj,k. The rewards are generated from
N (Mj,k, 0.7962), where the variance 0.7962 is esti-
mated from data.

Our approach is compared to UCB1 and TS. We im-
plement Gaussian TS with a prior N (µ0, σ

2
0) that is

estimated from the empirical mean rewards of all 128
arms. That is, for each user j, µ0 and σ2

0 are the empir-
ical mean and variance of Mj,1, . . . ,Mj,128. We imple-
ment UCB1 by taking the upper confidence bound with
σ = 0.796. Our results are reported in Figure 4. We
observe that ReUCB has a much lower regret than both
UCB1 and TS. This indicates that ReUCB can learn the
biases of different bandit instances, which represent
individual users.

8 CONCLUSIONS

We propose a random-effect bandit, a novel setting
where the arm means are sampled i.i.d. from an un-
known distribution. Using this model, we obtain an
improved estimator of arm means and design an ef-
ficient UCB-like algorithm ReUCB. ReUCB is prior-
free and we show empirically that it can outperform
Thompson sampling. We analyze ReUCB and prove a

Bayes regret bound on its n-round regret, which im-
proves over not using the random-effect structure.

Our initial results with random-effect models are en-
couraging. One limitation of our current approach is
that ReUCB is not contextual. In the future work, we
plan to propose random-effect contextual bandits and
provide an algorithm for them. Another limitation is
that our regret analysis is under the assumption that
ReUCB knows σ2

0 and σ2. While this seems limiting,
it is a weaker assumption than knowing the common
mean µ0, which would be a standard assumption in
the analysis of TS and Bayes-UCB.
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A Derivation of (8)

Let rk = (rk,1, rk,2, . . . , rk,nk
)> be a column vector of rewards obtained by pulling arm k. From modeling

assumptions (1) and (2), we get
rk = µk1k + ek ,

where ek = (ek,1, ek,2, . . . , ek,nk
)> and ek,j ∼ Pr(0, σ

2). The covariance matrix for vector rk is Vk = σ2
01k1

>
k +

σ2Ik, where 1k is an all-ones vector of length nk and Ik is a nk × nk identity matrix. The generalized least
squares estimator of µ0 minimizes the following loss

L(µ0) =

K∑
k=1

(rk − µ01k)>V−1k (rk − µ01k)

with respect to µ0. Using the Sherman-Morrison formula,

V−1k = σ−2Ik − σ−4(σ−20 + nkσ
−2)−11k1

>
k = σ−2Ik − σ−2σ2

0(σ2 + nkσ
2
0)−11k1

>
k

= σ−2Ik − n−1k σ−2wk1k1
>
k .

Inserting the above formula into L(µ0) yields

L(µ0) = σ−2
K∑
k=1

[
‖rk − µ01k‖2 − nkwk(r̄k − µ0)2

]
.

The first-order derivative of L(µ0) with respect to µ0 is

∂L(µ0)

∂µ0
= 2σ−2

K∑
k=1

(1− wk)nk(r̄k − µ0) .

Thus we get that µ0 is estimated by

r̄0 =

K∑
k=1

(1− wk)nkr̄k

K∑
k=1

(1− wk)nk

. (17)

B Derivation of (10)

Now we derive the variance of µ̂k. We have

E[(µ̂k − µk)2] = E[(µ̃k − µk + µ̂k − µ̃k)2] = E[(µ̃k − µk)2] + E[(µ̂k − µ̃k)2] , (18)

where, we recall, µ̃k in (5) and µ̂k in (9) differ only in that µ0 is estimated by r̄0, and the first step follows from
E[(µ̃k − µk)(µ̂k − µ̃k)] = 0 (Kachar and Harville, 1984). Now we derive the two terms of the right-hand of (18).
Note that the first term is shown in (7). For the other term,

E[(µ̂k − µ̃k)2] = (1− wk)2E[(r̄0 − µ0)2] . (19)

From r̄0 in (8),

Var(r̄0) =

[
K∑
k=1

(1− wk)nk

]−2 K∑
k=1

(1− wk)2n2kVar(r̄k)

=

[
K∑
k=1

(1− wk)nk

]−2 K∑
k=1

(1− wk)2n2k(σ2
0 + σ2/nk)

= σ2

[
K∑
k=1

(1− wk)nk

]−1
,
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where the last step is from σ2 + nkσ
2
0 = (1− wk)−1σ2. Inserting the result above into (19), we have

E[(µ̂k − µ̃k)2] =
(1− wk)2σ2

K∑
k=1

nk(1− wk)

. (20)

Therefore, inserting (7) & (20) into (18),

E[(µ̂k − µk)2] = wkn
−1
k σ2 +

(1− wk)2σ2

K∑
k=1

nk(1− wk)

=: τ2k , (21)

where the reason that we use the squares notation in τ2k is because τ2k is a mean squared error not smaller than
0.

C Proofs of Proposition 1

Note that

σ2/nk − τ2k = (1− wk)n−1k σ2 − (1− wk)2σ2

K∑
i=1

ni(1− wi)
= (1− wk)n−1k σ2

1− nk(1− wk)
K∑
i=1

ni(1− wi)

 .

Obviously, nk(1−wk) <
K∑
i=1

ni(1−wi) as long as ni ≥ 1 for all i ∈ [K]. Thus, when σ2 > 0, we get τ2k < σ2/nk.

D Estimation of σ2
0 and σ2

Our BLUP estimators depend on σ2
0 and σ2, which may be unknown. We can estimate these quantities, and

replace σ2
0 and σ2 in wk with these estimates. Various methods for obtaining consistent estimators of σ̂2

0 and σ̂2

are available, including the method of moments, maximum likelihood, and restricted maximum likelihood. See
Robinson (1991) for details.

We use the method of moments, which does not rely on the assumption of distributions. Unbiased quadratic
estimates of σ2 and σ2

0 are given by

σ̂2 =

[
K∑
k=1

(nk − 1)

]−1 K∑
k=1

nk∑
j=1

(rk,j − r̄k)2 (22)

and

σ̂2
0 = n−1∗

K∑
k=1

nku
2
k , (23)

where n∗ =
K∑
k=1

nk −
(

K∑
k=1

nk

)−1 K∑
k=1

n2k and uk = r̄k −
(

K∑
k=1

nk

)−1 K∑
k=1

nk∑
j=1

rk,j .

E Varying Reward Noise

We can generalize the standard random effect model in (2) by eliminating the assumption of identical observation
noise across all arms. Instead, we allow the noise vary across arms. Specifically, the reward of arm k after the
j-th pull is assumed to be generated i.i.d. as

rk,j ∼ N (µk, σ
2
k) ,
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where, compared to model (2), variance σ2
k is allowed to depend on k. Accordingly, we have the estimate

µ̂hk = (1−whk )r̄0 +whk r̄k and µ̂hk −µk | Ht ∼ N (0, τ2h;k,t), where the superscript “h” means the heteroscedasticity
of reward noise among arms,

whk = σ2
0/(σ

2
0 + σ2

k/nk) and τ2h;k,t = whkn
−1
k σ2

k + (1− whk )2σ2
k/

K∑
k=1

nk(1− whk ).

We consider an upper bound of these σ2
k, e.g., maxk σ

2
k, denoted by σ2. Notice

τ2h;k,t = n−1k σ2
kσ

2
0/(σ

2
0 + n−1k σ2

k) + (1− whk )2σ2
0/(

K∑
k=1

whk ).

Because n−1k σ2
kσ

2
0/(σ

2
0 + n−1k σ2

k) is increasing of σ2
k and whk is decreasing of σ2

k, we have that

τ2h;k,t ≤ τ2k,t.

Therefore, we uniformly use the upper variance σ2 across arms replacing of σ2
k. By this way, the Bayes regret

bound in Theorem 2 still holds.

F Lemmas

Lemma 3. We have that

τ2k ≤
σ2
0σ

2

nkσ2
0 + σ2

(1 +K−1σ2σ−20 ) .

Proof. Now we provide an upper bound on τ2k . By using nk(1− wk)σ2
0 = wkσ

2, we have

τ2k = wkn
−1
k σ2 +

(1− wk)2σ2∑K
k=1 nk(1− wk)

= wkn
−1
k σ2 +

(1− wk)2σ2
0∑K

k=1 wk

≤ wkn−1k σ2 +K−1(1− wk)2(σ2
0 + σ2)

= wkn
−1
k σ2 +K−1n−1k (1− wk)wkσ

2σ−20 (σ2
0 + σ2)

≤ wkn−1k σ2(1 +K−1σ2σ−20 )

=
σ2
0σ

2

nkσ2
0 + σ2

(1 +K−1σ2σ−20 ) ,

where the first inequality is from wk ≥ σ2
0/(σ

2
0 + σ2) and the last inequality is from 1− wk ≤ σ2/(σ2

0 + σ2) due
to nk ≥ 1 for all k ∈ [K].

Lemma 4. Let rk,j ∼ N (µk, σ
2) and µk ∼ N (µ0, σ

2
0). Assuming that σ2 and σ2

0 are known, and µ0 is an
improper flat prior, i.e., p(µ0) ∝ 1, we have that µk | Ht ∼ N (µ̂k,t, τ

2
k,t).

Proof. Recall the following well-known identity. Let Y |X = x ∼ N (ax+ b, σ2) and X ∼ N (µ, σ2
x). Then

Y ∼ N (aµ+ b, a2σ2
x + σ2).

Obviously, if we set X to µ0 | Ht and Y to µk | Ht, we can apply this result to obtain the distribution of µk | Ht

from the distributions of µk | µ0, Ht and µ0 | Ht. The distribution of µk | µ0, Ht is studied in Section 3.1. Under
the assumptions of Lemma 4, µk | µ0, Ht is a Gaussian with mean in (5) and variance in (7).

Now we derive the distribution of µ0 | Ht. Note that p(µ0) ∝ 1 is the extreme case of µ0 ∼ N (0, λ) as λ → ∞.
Assuming µ0 ∼ N (0, λ), r̄k can be considered to be generated from the following Bayesian model:

r̄k | µ0 ∼ N (µ0, σ
2
0 + σ2/nk), µ0 ∼ N (0, λ).
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Thus, the distribution of µ0 | Ht is easily obtained as

µ0 | Ht ∼ N (r̄0, σ
2
0),

where

r̄0 = σ2
0 [σ−2

K∑
k=1

(1− wk)nkr̄k] and σ2
0 = [λ−1 + σ−2

K∑
k=1

(1− wk)nk]−1.

Taking λ→∞, we have that

µ0 | Ht ∼ N (r̄0, σ
2[

K∑
k=1

(1− wk)nk]−1).

Using the above results, we obtain the distribution of µk | Ht from the distributions of µk | µ0, Ht and µ0 | Ht.
That distribution is a Gaussian with mean in (9) and variance in (10). This completes the proof.

G Extension to sub-Gaussian

Our analysis can be extended to bounded sub-Gaussian random variables. Without loss of generality, we consider
the support of [0, 1] below.

Theorem 5. Consider ReUCB in a K-armed bandit with sub-Gaussian rewards rk,j−µk ∼ subG(σ2) and µk−µ0 ∼
subG(σ2

0) with support in [0, 1]. Let σ2
0 and σ2 be known and used by ReUCB. Define m = [1 + K−1σ2

0/(σ
2
0 +

σ2)]−1[1 +K−1/2σ/σ0]2. Then (1) for any a ≥ m, the n-round Bayes regret of ReUCB is

Rn ≤ 2

(
1 +

σ2

Kσ2
0

)√
aσ2

0 log(1 + σ−2σ2
0n)

log(1 + σ−2σ2
0)

Kn log n+
Kσ2

0 + σ2

σ2
0

√
8nσ2

0σ
2

π(σ2
0 + σ2)

.

(2) for any a ≥ 2m, the n-round Bayes regret of ReUCB is obtained by replacing the last term above with
2K(1 + log n).

Proof. Under the sub-Gaussian assumptions that µk − µ0 ∼ subG(σ2
0) and r̄k,t − µk ∼ subG(σ2/nk), Lemma 6

shows that µk − µ̂k,t ∼ subG(τ∗2k,t) for k ∈ [K], where

τ∗2k,t = σ2

[√
wk
nk

+

√
(1− wk)2∑K

k=1(1− wk)nk

]2
. (24)

Lemma 7 of the Appendix shows that

τ∗2k,t ≤
σ2
0σ

2

nkσ2
0 + σ2

(
1 +

√
K−1σ2σ−20

)2

. (25)

Note that ck,t =
√

2τ2k,t log(1/δt), ER;t, and EL;t. We have that

E
[
(µ̂It,t − µIt)1{ĒR;t}

∣∣Ht

]
≤ E

[
1{ĒR;t}

∣∣Ht

]
, (26)

where the inequality is from (µ̂It,t − µIt) ∈ [0, 1] on ĒR;t due to the support [0, 1]. It follows that when a ≥ m,

E

[
n∑
t=1

E
[
(µ̂It,t − µIt)1{ĒR;t}

∣∣Ht

]]
≤ E

[
n∑
t=1

E
[
1{ĒR;t}

∣∣Ht

]]
=

n∑
t=1

E
[
1{ĒR;t}

]
≤ K

n∑
t=1

δ
1/m
t ≤ K

n∑
t=1

t−1/2 ≤ 2K
√
n,

where the second inequality is from τ2k,t/τ
∗2
k,t ≥ 1/m shown in Lemma 9, and the third inequality is from the

a ≥ m. Similarly we have E
[
n∑
t=1

E
[
(µI∗ − µ̂I∗,t)1{ĒL;t}

∣∣Ht

]]
≤ 2K

√
n.
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Similarly to (14), we have that

E

[
n∑
t=1

√
2τ2It,t log(1/δt)

]
≤
(

1 +
σ2

Kσ2
0

)√
aσ2

0 log(1 + σ−2σ2
0n)

log(1 + σ−2σ2
0)

Kn log n.

Therefore, when a ≥ m, the regret is bounded as

E [Rn] ≤ 2

(
1 +

σ2

Kσ2
0

)√
aσ2

0 log(1 + σ−2σ2
0n)

log(1 + σ−2σ2
0)

Kn log n+ 4K
√
n.

Similarly, when a ≥ 2m, the regret is bounded as

E [Rn] ≤ 2

(
1 +

σ2

Kσ2
0

)√
aσ2

0 log(1 + σ−2σ2
0n)

log(1 + σ−2σ2
0)

Kn log n+ 4K(1 + log n).

When comparing Theorems 2 and 5, the regret is of the same order. Since the assumption of rk,j−µk ∼ subG(σ2)
allows for modeling arm-dependent reward noise, such as σ2 = 1/4 in Bernoulli bandits, Theorem 5 holds for
Bernoulli bandits. In Section 6, we experiment with Bernoulli bandits. Unlike Theorem 2, Theorem 5 requires
that a ≥ m or a ≥ 2m. We note that m in Theorem 5 is typically small, and approaches 1 as K and σ2

0/σ
2

increase.

Lemma 6. We have that for k ∈ [K]
µk − µ̂k,t ∼ subG(τ∗2k,t),

where

τ∗2k,t = σ2

[√
wk
nk

+

√
(1− wk)2∑K

k=1(1− wk)nk

]2
.

Notice

µ̂k,t − µk = µ̃k,t − µk + µ̂k,t − µ̃k,t,

where µ̃k,t − µk = wk(r̄k,t − µk) + (1− wk)(µk − µ0) and µ̂k,t − µ̃k,t = (1− wk)(r̄0,t − µ0). From the properties
of sub-Gaussian (Fact 2) and the independence between µ0 − µk and r̄k,t − µk, we have

µ̃k,t − µk ∼ subG
(
wkσ

2/nk
)

;

r̄0,t − µ0 ∼ subG

(
σ2[

K∑
k=1

(1− wk)nk]−1

)
.

Thus, the properties of sub-Gaussian (Fact 2) tell us that

τ∗2k,t = σ2


√
wk
nk

+
1− wk√

K∑
k=1

(1− wk)nk


2

,

i.e., µ̂k,t − µk is sub-Gaussian with variance proxy τ∗2k,t.

Lemma 7.

τ∗2k,t ≤
σ2
0σ

2

nkσ2
0 + σ2

(
1 +

√
K−1σ2σ−20

)2

.
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Proof. Now we provide an upper bound on τ∗2k . By making using of nk(1− wk)σ2
0 = wkσ

2, we have that

τ∗2k,t = σ2

[√
wkn

−1
k +

√
(1− wk)2∑K

k=1 nk(1− wk)

]2

=

[√
σ2wkn

−1
k +

√
(1− wk)2σ2

0∑K
k=1 wk

]2

≤
[√

σ2wkn
−1
k +

√
K−1(1− wk)2(σ2

0 + σ2)

]2
=

[√
σ2wkn

−1
k +

√
K−1n−1k (1− wk)wkσ2σ−20 (σ2

0 + σ2)

]2
≤
[√

σ2wkn
−1
k (1 +

√
K−1σ2σ−20 )

]2
=

σ2
0σ

2

nkσ2
0 + σ2

(
1 +

√
K−1σ2σ−20

)2

,

where the first inequality is from wk ≥ σ2
0/(σ

2
0 + σ2), and the last inequality is from 1− wk ≤ σ2/(σ2

0 + σ2).

Lemma 8.

τ2k,t ≥
σ2
0σ

2

nkσ2
0 + σ2

(1 +K−1σ2
0/(σ

2
0 + σ2)).

Proof. Now we provide a lower bound on τ2k . Similarly, we have that

τ2k,t = wkn
−1
k σ2 +

(1− wk)2σ2
0∑K

k=1 wk

≥ wkn−1k σ2 +K−1(1− wk)2σ2
0

= wkn
−1
k σ2 +K−1n−1k (1− wk)wkσ

2

≥ wkn−1k σ2(1 +K−1σ2
0/(σ

2
0 + σ2))

=
σ2
0σ

2

nkσ2
0 + σ2

(1 +K−1σ2
0/(σ

2
0 + σ2)),

where the first inequality is from wk ≤ 1, and the last inequality is from 1− wk ≥ σ2
0/(σ

2
0 + σ2).

Lemma 9.

τ2k,t
τ∗2k
≥ 1 + σ2

0/(K(σ2
0 + σ2))

(1 +K−1/2σ/σ0)2
.

Proof. From Lemmas 8 & 7, we use the upper bound of τ∗2k,t and the lower bound of τ2k,t. Then the result is
proved.

H Some Facts

Let X and Y be sub-Gaussian with variance proxies σ2 and τ2, respectively. Then (1) aX is sub-Gaussian with
variance proxy a2σ2; (2) X+Y is sub-Gaussian with variance proxy (σ+τ)2; and (3) if X and Y are independent,
X + Y is sub-Gaussian with variance proxy σ2 + τ2.

I Additional Experiments
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Figure 5: Performance of UCB algorithms on the 50-armed Gaussian bandit with µk ∼ N (1, 0.04), as in Fig-
ure 1(a). Left column: Regret performance as a function of round n. Right column: Distribution of the regret
at the final round. “UCB(0)” denotes the extreme case of ReUCB, i.e., ReUCB∞ by taking wk = 1 that behaves as
UCB1 with a = 1. “B-UCB” in the right figure denotes BayesUCB. The results are summarized over 1000 runs.


