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Abstract

Characterizing the privacy degradation over
compositions, i.e., privacy accounting, is
a fundamental topic in differential privacy
(DP) with many applications to differen-
tially private machine learning and feder-
ated learning. We propose a unification
of recent advances (Renyi DP, privacy pro-
files, f -DP and the PLD formalism) via
the characteristic function (φ-function) of
a certain dominating privacy loss random
variable. We show that our approach allows
natural adaptive composition like Renyi DP,
provides exactly tight privacy accounting
like PLD, and can be (often losslessly) con-
verted to privacy profile and f -DP, thus
providing (ε, δ)-DP guarantees and inter-
pretable tradeoff functions. Algorithmically,
we propose an analytical Fourier accountant
that represents the complex logarithm of φ-
functions symbolically and uses Gaussian
quadrature for numerical computation. On
several popular DP mechanisms and their
subsampled counterparts, we demonstrate
the flexibility and tightness of our approach
in theory and experiments.

1 Introduction

Differential privacy (DP) [Dwork et al., 2006] is one
of the most promising approaches towards addressing
the privacy challenges in the era of artificial intelli-
gence and big data. Recently, DP is going through an
exciting transformation from a theoretical construct
into a practical technology [see, e.g., Apple, Differ-
ential Privacy Team, 2017, Erlingsson et al., 2014,
Dajani et al., 2017], which demands constant-tight

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

privacy accounting tools that use the privacy budget
with optimal efficiency.

Much of the progress in the recent theory and prac-
tice of DP has been driven by Renyi Differential
Privacy (RDP) [Mironov, 2017], e.g., it is the ma-
jor technical component behind the first practical
method for deep learning with differential privacy
[Abadi et al., 2016]. More broadly, RDP is among
several recent work in differential privacy that con-
ducts fine-grained mechanism specific analysis [Bun
and Steinke, 2016, Abadi et al., 2016, Mironov, 2017,
Balle and Wang, 2018, Wang et al., 2019, Dong et al.,
2021, Sommer et al., 2019, Koskela et al., 2020]. At
the heart of these breakthroughs is the idea of using
a function to describe the privacy guarantee of a ran-
domized procedure, thus produces significantly more
favorable privacy-utility tradeoff and tighter bounds
under composition. (See Table 1 for a summary their
pros and cons).

Note that no single approach dominates others in all
dimensions. Renyi DP could be undefined for certain
privacy loss distributions, and cannot be used to
provide the optimal (ε, δ)-DP computation in general
(discussed in Section 3). Privacy profiles and f -DP
are unwieldy under composition; and the method of
[Koskela et al., 2020] is limited to mechanisms with
univariate output where log(p/q) admits a density;
or those with discrete outputs. Usually, for a new
mechanism, we would be lucky to have any one of
these functional descriptions. The need to derive
these manually for each new mechanism is clearly
limiting the creativity of researchers and practitioners
in DP.

In addition, there are some unresolved foundational
issues related to the PLD formalism. As is repeatedly
articulated by the authors, the PLD formalism is de-
fined for each pair of neighboring datasets separately,
thus, strictly speaking, does not imply DP unless we
can certify that the pair of neighboring datasets is
the worst-case. This is challenging because such a
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Functional view Pros Cons
Renyi DP [Mironov, 2017] Dα(P‖Q) ≤ ε(α),∀α ≥ 1 Natural composition lossy conversion to (ε, δ)-DP.

Privacy profile [Balle and Wang, 2018] Eq[(pq − e
ε)+] ≤ δ(eε),∀ε ≥ 0 Interpretable. messy composition.

f -DP[Dong et al., 2021] Trade-off function f Interpretable, CLT messy composition.
PLD [Sommer et al., 2019, Koskela et al., 2020] Probability density of log(p/q) Natural composition via FFT Limited applicability.

Table 1: Modern functional views of DP guarantees and their pros and cons.

pair of datasets might not exist and it is unclear how
we can define a partial ordering of two privacy loss
distributions.

In this paper, we provide a unified treatment to these
functional representations and resolve the aforemen-
tioned subtle issues related to the PLD formalism.
Our contributions are summarized below.

1. We formalize and generalize the notion of “worst-
case” pair distributions discussed in [Sommer et al.,
2019] to a “dominating pair” and prove several ba-
sic properties of the dominating pairs including
finding such pairs from any privacy-profiles, adap-
tive composition and amplification by sampling.
These results substantially broaden the applica-
bility of PLD formalism [Sommer et al., 2019] in
deriving worst-case DP guarantees.

2. We propose a lossless representation of the pri-
vacy loss RV by its characteristic function (φ-
function) and derive optimal conversion formula
to (and from) privacy-profile, tradeoff-function (f -
DP) and the distribution function of the privacy
loss RV. Many of these conversion rules corre-
spond naturally to the classical Fourier / Laplace
transforms (and their inverses) from the signal
processing literature.

3. We design an Analytical Fourier Accountant (AFA,
extending the Fourier accountant of [Koskela et al.,
2020, 2021]) which represents the complex loga-
rithm of the φ function symbolically. AFA can
be viewed as an extension of the (analytical)
moments-accountant [Abadi et al., 2016, Wang
et al., 2019] to complex α, thus allowing straight-
forward composition. Computing δ as a function
of ε for (ε, δ)-DP boils down to a numerical inte-
gral which we use a Gaussian quadrature-based
method to solve efficiently and accurately.

4. Experimentally, we demonstrate that our ap-
proach provides substantially tighter privacy guar-
antees over compositions than RDP on both basic
mechanisms and their subsampled counterparts.
Our results essentially match the results from
[Dong et al., 2021] and [Koskela et al., 2021] but
neither rely on central-limit-theorem type asymp-
totic approximation nor require choosing appro-

priate discretization a priori as in the FFT-based
Fourier Accountant.

Related work: The paper builds upon the exist-
ing work on RDP-based privacy accounting [Abadi
et al., 2016, Mironov, 2017, Wang et al., 2019] as
well as f -DP [Dong et al., 2021]. Our main theo-
retical contribution is to substantially broaden the
applicability of the PLD formalism [Sommer et al.,
2019] by proposing the notion of dominating pairs
and providing general recipes for constructing these
dominating pairs. The closest to algorithmic con-
tribution is the work of Koskela et al. [2020, 2021],
who propose Fourier accountant and an FFT-based
approximation scheme, the characteristic function
view can be seen as an analytical version of their
Fourier accountant (hence the name AFA). AFA is
more generally applicable, and allows more flexible
use of existing methods for numerical integral. The
recent work of Gopi et al. [2021] improves the FFT
accountant substantially. It is complementary to us
in that it does not address the foundational issues of
the PLD formalism, nor do they propose an analyti-
cal representation that allows a more modular design
of the privacy accountant. Notably, we can use any
blackbox numerical integration tool, e.g., Gaussian
quadrature, and set the desired error bound on-the-
fly, while an FFT-accountant requires setting the
parameters at initialization. Finally, Canonne et al.
[2020] considered φ function and its numerical / com-
putational properties but the discussion is restricted
to the discrete Gaussian mechanism.

Privacy accounting is closely related to the classi-
cal advanced composition of (ε, δ)-DP [Dwork et al.,
2010]; Kairouz et al. [2015] provides the optimal
k-fold composition of an (ε, δ)-DP mechanism and
Murtagh and Vadhan [2016] shows that computing
the tightest possible bound for the composition of
k heterogeneous mechanisms is #P -hard. The re-
cent line of work (that we are building upon) chal-
lenges the basic primitive of composing (εi, δi)-DP
by composing certain functional descriptions of the
mechanisms themselves, which sometimes avoids the
computational hardness (but not always) and results
in even stronger composition than the best (ε, δ)-
DP type composition would allow [Bun and Steinke,
2016].



Yuqing Zhu, Jinshuo Dong, Yu-Xiang Wang

2 Notations and preliminary
In this section, we review the standard definition of
differential privacy, its RDP relaxation, introduce the
characteristic function and draw connections with
RDP.

Symbols and notations. Throughout the paper,
we will use standard notations for probability unless
otherwise stated, e.g., Pr[·] for probability, p[·] for
density, E[·] for expectation, F [·] for CDF. ε, δ are
reserved for privacy budget/loss parameters as in
(ε, δ)-DP, except in the cases when we write ε(·) or
δ(·), where they become functions of certain argu-
ments. We will use D,D′ ∈ D∗ := ∪n∈NZn to de-
note two datasets with an unspecified size. D,D′ are
neighboring (denoted by D ' D′) if we can construct
D′ by adding or removing one data point from Z.
M : D∗ → PO is a randomized mechanism which re-
turns an output o ∈ O by sampling from distribution
M(D). Sometimes for convenience and clarity we
define P,Q and p, q to be the distribution and density
functions ofM(D) andM(D′) respectively.

Differential privacy and its equivalent defini-
tions. With these notations clarified, we can now
formally define differential privacy.

Definition 1 (Differential Privacy). A randomized
algorithmM is (ε, δ)-DP if for every pair of neigh-
boring datasets D,D′, and every possible output set
S ⊆ O the following inequality holds:

Pr[M(D) ∈ S] ≤ eεPr[M(D′ ∈ S)] + δ.

We can alternatively interpret DP from the views of
a divergence metric of two probability distributions,
a hypothesis testing view of a binary-classifier, as
well as the distribution of the log-odds ratio. Let us
first define these quantities formally.

Definition 2 (Hockey-stick divergence). For α > 0,
the Hockey-stick divergence is defined as Hα(P‖Q) :=
Eo∼Q[( dP

dQ (o)− α)+], where (x)+ := x1(x ≥ 0) and
dP
dQ is the Radon-Nikodym-derivative (or simply the
density ratio when density exists for P and Q).

Definition 3 (Trade-off function). Let φ be a clas-
sifier to distinguish two distributions P and Q using
a sample. αφ be its Type I error (false positive rate)
and βφ be its Type II error (false negative rate). The
tradeoff function TP,Q(α) : [0, 1]→ [0, 1] is defined to
be TP,Q(α) := infφ{βφ | αφ ≤ α}.

Definition 4 (Privacy loss R.V.). The privacy loss
random variable of for a pair of neighboring dataset
D,D′ under mechanism M is defined as LP,Q :=

log M(D)(o)
M(D′)(o) where o ∼ M(D); similarly, we have

LQ,P := log M(D′)(o)
M(D)(o) where o ∼M(D′).

These quantities can be used to equivalently de-
fine differential privacy [Wasserman and Zhou, 2010,
Barthe and Olmedo, 2013, Kairouz et al., 2015, Balle
and Wang, 2018, Balle et al., 2018, Dong et al.,
2021].

Lemma 5. The following statements about a ran-
domized algorithmM are equivalent to Definition 1
1. supD'D′ Heε (M(D)‖M(D′)) ≤ δ.

2. supD'D′ TM(D),M(D′)(α) ≥ max{0, 1− δ− eεα, e−ε(1− δ−
α).

3. Pro∼M(D)[LP,Q > ε] − eε Pro∼M(D′)[LQ,P < −ε] ≤ δ for
all neighboring D,D′.

We highlight that in all these definitions, it is re-
quired for the bound to cover all pairs of neighboring
datasets D,D′.

Mechanism-specific analysis / Functional rep-
resentation of DP guarantee. Each of these
equivalent interpretations could be used to provide
more-fine-grained description of a differential privacy
mechanism M. For instance, the privacy profile
δM(ε) upper bounds the HS-divergence for all ε and
the f -DP lowerbounds the tradeoff function for all
Type I error α (see Table 1). In addition, Sommer
et al. [2019] proposes the PLD formalism, which
represents the privacy loss RV by its density func-
tion. The PLD formalism can be viewed as another
functional representation, but it is qualitatively dif-
ferent from privacy profile and f -DP. We will expand
further on PLD in Section 3.

Renyi Differential Privacy and Moments
Accountant. Renyi differenital privacy (RDP)
[Mironov, 2017] is another generalization of pure-DP
via Renyi divergence (denoted by Dα(P ||Q)).

Definition 6 (Renyi Differential Privacy [Mironov,
2017]). We say a randomized algorithm M is
(α, ε(α))-RDP with order α ≥ 1 if for neighboring
datasets D,D′,

Dα(M(D)||M(D′)) ≤ ε(α).

(ε, α)-RDP implies (ε(α) + log(1/δ)
α−1 , δ)-DP, thus by

viewing RDP as a function εM(·), we can find the
best ε parameter by optimizing over α. Tighter
conversion formula had been proposed recently [Balle
et al., 2020, Asoodeh et al., 2021], which we discuss
in Appendix.

The main advantage of RDP is that it composes nat-
urally over multiple adaptively chosen mechanisms
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via a straightforward rule εM1×M2 ≤ εM1 + εM2 .
It recovers the advanced composition when convert-
ing to (ε, δ)-DP and yields substantial additional
savings. These properties, together with the privacy-
amplification by sampling, makes RDP the natural
choice for privacy accounting in various algorithms
of differentially private deep learning. The related
algorithm that keeps track of the moment generating
function of LP,Q(o) is called “moments accountant”
[Abadi et al., 2016, Wang et al., 2019].

3 Motivation of our research

In this section, we discuss a number of limitations
of Renyi DP and PLD formalism that, in part, moti-
vated our research.

The limits of RDP. Let us first ask “is the RDP
function a lossless description?” In particular, does
it capture all information in the privacy-profile? Be-
cause if it is the case, then we could use RDP for
composition, and then find the exact optimal (ε, δ)-
DP by converting from RDP.

The answer is unfortunately “no”. The reasons are
twofolds. First, there are mechanisms with non-
trivial (ε, δ)-DP where RDP parameters partially or
entirely do not exist. We give two concrete examples
in Appendix A.

The second, and a more troubling issue is that even in
the cases when RDP parameters exist everywhere and
hence appears to be characterizing, it does not lead to
a tight conversion to (ε, δ)-DP. Gaussian mechanism
is such a candidate where its PLD is completely cap-
tured by its Renyi divergences. However, in Figure 1
we demonstrate that we cannot, in general, convert
the RDP of Gaussian mechanism into an (ε, δ)-DP
that matches the optimal accounting one can achieve
through either the privacy profile or f -DP directly.
Specifically, by an example due to [Dong et al., 2021,
Proposition B.7], we know that a randomized re-
sponse mechanism (RR) satisfies 1-zCDP, thus the
same RDP as that of a Gaussian mechanism (GM)
with σ = 1. If the RDP conversion is tight, then
it will have to apply to RR too, but that will lead
to a contradiction with the tradeoff function of RR.
More explicitly, when we further convert the f -DP in
Figure 1 to (ε, δ)-DP, this example shows that while
both RR and GM satisfy an RDP with ε(α) = α

2 ,
GM obeys (0.277, 0.3)-DP but RR does not satisfy
(ε, 0.3)-DP with ε < 0.471.

This example certifies that the conversion rule we
used (based on an extension of [Balle et al., 2020])

cannot be improved and that RDP is a lossy repre-
sentation even for the Gaussian mechanism.

Trouble with Worst-Cases in the PLD formal-
ism. Recent developments in the PLD formalism
show great promises in computing tight (ε, δ)-DP
with stable numerical algorithms and provable error
bounds [Koskela et al., 2020, 2021]. However, as we
discussed earlier, PLD is specified for each pair of
input datasets separately. To use PLD, the original
authors (quoting verbatim) “require the privacy ana-
lyst interested in applying our results (PLD formal-
ism) to provide worst-case distributions.” [Sommer
et al., 2019, Section 2]. In a subsequent work [Meiser
and Mohammadi, 2018], a subset of the authors
further derive the worst-case pair of distributions
for basic mechanisms such as Gaussian mechanism
and Laplace mechanism [Meiser and Mohammadi,
2018].

While these are valid arguments, the line of work on
PLD formalism does not formally define the worst-
case pair of distributions, nor do they provide general
recipes for “privacy analysts” to determine which pair
of inputs is the worst-case. The issue is more promi-
nent when we consider mechanism-specific analysis,
because the pairs of datasets that attain the argmax
might be different in different regions of the privacy
profile (see an example in Appendix A).

Moreover, in most typical use cases of the privacy
accounting tools, the mechanism under consideration
is constructed through the composition of a sequence
of simpler mechanisms. Even if for each mechanism,
we know the worst-case pair distributions, the com-
position of the individual PLDs may not correspond
to the worst-case PLD of the composed mechanism
1. For this reason, it is unclear how to use PLD
for deriving worst-case DP bound under composi-
tion except in highly specialized cases (e.g., Gaussian
mechanisms and their compositions).

Summary. To reiterate, RDP is lossy when con-
verting to (ε, δ)-DP and the PLD formalism cannot
be used to handle the composition generically due
to issues regarding worst-case distributions. The re-
mainder of the paper will be dedicated to addressing
this dilemma.

4 Main results

In this section, we develop a comprehensive solution
towards tighter and more flexible mechanism-specific

1This is an issue we will address later, which shows
that it is OK even if it does not.
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(a) RDP of RR and GM (b) f -DP of RR and GM (c) (ε, δ)-DP of RR and GM

Figure 1: The figure illustrates the RDP and f -DP of a Gaussian mechanism with (normalized) σ = 1, and a
randomized response mechanism with p = e

1+e . Pane (a) shows the RDP function of RR and GM, clearly,
RR also satisfies the same RDP of the Gaussian mechanism for all α. Pane (b) in the middle compares the
f -DP of the two mechanisms, as well as the f -DP implied by the optimal conversion from RDP. Pane (c)
shows the privacy profile of the two mechanisms, together with Pane (a), it demonstrates that the optimal
f -DP and (ε, δ)-DP of GM cannot be achieved by a conversion from RDP.

privacy accounting for (ε, δ)-DP with a data-structure
that allows natural composition.

4.1 Dominating pair of distributions,
composition and subsampling

We first patch the PLD formalism by generalizing
the idea of worst-case pair (which may not exist) to a
dominating pair of distributions and prove a number
of useful properties.

Definition 7 (Dominating pair of distributions). We
say that (P,Q) is a dominating pair of distributions
forM (under neighboring relation ') if for all α ≥
02

sup
D'D′

Hα(M(D)‖M(D′)) ≤ Hα(P‖Q). (1)

When P,Q is chosen such that (1) takes “=” for
all α, we say that (P,Q) is a tight dominating pair
of distributions or simply, tightly dominating. If
in addition, there exists a neighboring (D̃, D̃′) such
that (M(D̃),M(D̃′)) is tightly dominating, and then
we say (D̃, D̃′) is the worst-case pair of datasets for
mechanismM.

Unless otherwise specified, all subsequent results we
present hold for any definitions of neighbors (includ-
ing asymmetric ones such as add-only and remove-
only, which will be useful later).

A dominating pair of distributions always exists: one
2Note that α ≥ 1 corresponds to the typical range of

(ε, δ)-DP, but the region for α < 1 is important for com-
position and lossless conversions to other representations.

can trivially take P and Q that have disjoint supports.
What is somewhat surprising is the following

Proposition 8. Any mechanism has a tightly dom-
inating pair of distributions.

For example, the domintating pair for discrete Gaus-
sian mechanism (DGM) [Canonne et al., 2020] will
be two discrete Gaussian, e.g., P = NZ(0, σ2), Q =
NZ(∆, σ2),∆ ∈ Z+ is the sensitivity of the integer-
valued query. This follows because the probability
mass of the discrete Gaussian is a log-concave se-
quence. The proof would look very similar to Propo-
sition A.3 of Dong et al. [2021]. On the other hand,
worst-case pair of datasets do not always exist, as is
shown by Example 16.

Proposition 8 is the direct consequence of the follow-
ing result which fully characterizes what hockey-stick
divergences and privacy profiles look like.

Lemma 9. For a given H : R>0 → R, there exists
P,Q such that H(α) = Hα(P‖Q) if and only if H ∈
H where

H :=

{
H : R>0 → R

∣∣∣∣H is convex, decreasing,
H(0) = 1 and H(x) > (1− x)+

}
.

Moreover, one can explicitly construct such P and
Q: P has CDF 1 + H∗(x − 1) in [0, 1) and Q =
Uniform([0, 1]).

The proof, presented in Appendix C, makes use of
the Fenchel duality of the privacy profile with respect
to a tradeoff function and a characterization of the
tradeoff function due to Dong et al. [2021, Proposition
2.2].
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What makes the specific construction in Lemma 9
(hence Proposition 8) appealing is that even if the
output space is complex, the resulting dominating
pair of distributions are of univariate random vari-
ables defined on [0, 1]. This resolves a limitation of
Koskela et al. [2020] that requires the mechanism to
have either univariate or discrete outputs.

So far, we have shown the existence of a tightly dom-
inating pairs for all mechanisms (Proposition 8), and
provided a recipe for constructing such a dominating
pair for any valid upper bounds of the privacy profile
(Lemma 9 and Corollary 26 in Appendix C). Next
we will provide two general primitives on how to
construct dominating pairs for more complex mecha-
nisms created by composition and privacy amplifica-
tion by sampling.

Theorem 10 (Adaptive composition of dominating
pairs). If (P,Q) dominates M and (P ′, Q′) dom-
inates M′3, then (P × P ′, Q × Q′) dominates the
composed mechanism (M,M′).

By induction, this theorem implies that if we con-
struct the PLD using a dominating pair of distribu-
tions for each individual mechanism, then the com-
posed PLD can be used to obtain a valid worst-case
DP of the composed mechanism.

Next we present how we can construct a dominating
pair of distributions (and datasets) for mechanisms
under “privacy-amplification by sampling”. This is a
powerful primitive that is used widely in differentially
private ERM [Bassily et al., 2014], Bayesian learning
[Wang et al., 2015] and deep learning [Abadi et al.,
2016]. We consider the following two schemes.

Poisson Sampling Denoted by SγPoisson. S
γ
Poisson

takes a dataset of arbitrary size and return a dataset
by including each data point with probability 0 ≤
γ ≤ 1 i.i.d. at random.

Subset Sampling Denoted by SγSubset. SγSubset
takes a dataset with size n or n − 1 and return a
subset of size m < n uniformly at random. We define
γ := m/n as a short-hand. 4

Somewhat unconventionally, the following theorem
not only considers add/remove neighboring relation
but also treat them separately, which turns out to
be crucial in retaining a tight dominating pair with

3M′ can be adaptively chosen in that it could
depend on the output of M, which requires
supo∈Range(M)Hα(M′(D, o)‖M′(D′, o)) ≤ Hα(P

′‖Q′)
for any value of o.

4Note that here n,m are public and γ := m/n even if
(n− 1) is the sample size.

a closed-form expression5. Our choice of choosing
α ≥ 0 in Definition 7 ensures that for any mecha-
nism (P,Q) dominates for add neighbors iff (Q,P )
dominates for removal neighbors.

Theorem 11. LetM be a randomized algorithm.

(1) If (P,Q) dominatesM for add neighbors then
(P, (1−γ)P +γQ) dominatesM◦SPoisson for
add neighbors and ((1−γ)Q+γP,Q) dominates
M◦ SPoisson for removal neighbors.

(2) If (P,Q) dominatesM for replacing neighbors,
then (P, (1−γ)P+γQ) dominatesM◦SSubset
for add neighbors and ((1−γ)P +γQ,P ) dom-
inatesM◦ SSubset for removal neighbors.

We can obtain the results for the standard
"add/remove" for a k-fold composition of subsam-
pled mechanism by a pointwise maximum of the
two:

max{Heε(P
k
1 ||Qk1), Heε(P

k
2 ||Qk2))}

where (P1, Q1) is the “remove only” version of dom-
inating pair and (P2, Q2) is the “add only” version
of dominating pair. Existing literature that uses
PLD for Poisson-sampled mechanisms while taking
(γP + (1 − γ)Q,Q) as an input are essentially pro-
viding privacy guarantees only for the “remove only”
neighboring relationship. To the best of our knowl-
edge, this is the first time a dominating pair of distri-
butions under privacy-amplification by sampling is
proven generically with an arbitrary base-mechanism
M under the privacy-profile. The result, together
with Theorem 10, allows PLD formalism to be ap-
plied to a broader family of mechanisms as well as
their subsampled versions under adaptive composi-
tion.

4.2 Characteristic function
representation

Having strengthened the foundation of the PLD for-
malism with “dominating distribution pairs” and
two of its basic primitives, we can now put away
RDP and its lossy (ε, δ)-DP conversion, then conduct
mechanism-specific accounting under (ε, δ)-DP di-
rectly. Existing computational tools however, either
require asymptotic approximation [Dong et al., 2021,
Sommer et al., 2019], repeated convolution [Dong
et al., 2021] or an a priori discretization of the out-
put space [Koskela et al., 2021]. This prompts us to
ask:

5See the appendix for a construction of dominating
pairs of subsampled mechanisms under “Add/Remove” or
“Replace” neighbors and more detailed discussion on the
advantage of treating “Add” and “Remove” separately.
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“Can we compose mechanisms (with known
dominating pairs) naturally just like in RDP? ”

To achieve this goal, we propose using the character-
istic function of the privacy loss RV.

Definition 12 (characteristic function of the privacy
loss RV). Let (P,Q) be a dominating pair ofM, and
p, q be the probability density (or mass) function of
P,Q. The two characteristic functions that describes
the PLD are

φM(α) : = EP [eiα log(p/q)], φ′M(α) := EQ[eiα log(q/p)],

where i denotes the imaginary unit satisfying i2 = −1
and α ∈ R.

PLDs are probability measures on the real line, and
these φ-functions are Fourier transforms of these
measures. We provide φ-functions for basic mech-
anisms (see Table 2) and the discrete mechanisms
with closed-form expression. For other intricate and
continuous mechanisms (e.g., subsample variants),
we provide efficient discretization methods with error
analysis in Section E.

Advantages over MGF Comparing to the moment
generating function used by the RDP, the charac-
teristic function differs only in that we are taking
the expectation of the complex exponential. At the
price of bringing in complex arithmetics, it is now a
complex-valued function supported on α ∈ R rather
than the real-valued Renyi Divergence with order
α > 1 as was defined in RDP. Unlike MGF, the char-
acteristic function always exists and it characterizes
the distribution of the privacy loss R.V., therefore
it is always a lossless representation. MGF is also
characteristic when it exists, but the conversion of
MGF to the distribution function is numerically prob-
lematic [Epstein and Schotland, 2008].

Moreover, the adaptive composition over multiple
heterogeneous mechanisms remains as straightfor-
ward as that of the RDP.

Proposition 13. LetM1 andM2 be two random-
ized algorithms. We have the φ-function of the
composition (M1,M2) with order α ∈ R satisfies:
φ(M1,M2)(α) = φM1

(α) · φM2
(α)

Lossless conversion rules. The φ-function can
be losslessly converted back and forth with other
representation such as the privacy-profile, tradeoff
function, moment-generating function as well as the
distribution function of the privacy loss RV. The con-
version rule with prominent interest is the conversion
to (ε, δ)-DP. Specifically, for finding δ as a function

of ε (i.e., privacy profile), we invoke the fourth equiv-
alent definition of (ε, δ)-DP in Lemma 5, which de-
pends on the cumulative distribution function (CDF)
of the privacy loss random variables LP,Q and LQ,P .
In Appendix B, we establish that these CDFs can
be evaluated through an integration of φ-functions
via Levy’s formula. The lossless conversions to other
quantities are summarized in Figure 2 and we pro-
vide more details in Appendix B. Moreover, most
of the conversion formula correspond to well-known
transforms such as the Fourier transform, Laplace
transform and its double-sided variant. Except for
those involve RDP and hence Laplace transform, nu-
merical algorithms for implementing these transforms
are often available.

4.3 Analytical Fourier Accountant and
numerical algorithms

We now propose our analytical Fourier Accoutant
(AFA) in Algorithm 1, which is a combination of
the lossless conversion rules and the analytical com-
position rule (Proposition 13). Given a sequence
of mechanisms (can be varied) applied to the same
dataset, the data structure tracks the log character-
istic function of each mechanism in a symbolic form.
When there is a δ(ε) query, the accountant first con-
structs two analytical CDFs (with respect to the
privacy loss RV LP,Q and LQ,P ) using Theorem 18
in Appendix B. Then the conversion to (ε, δ)-DP is
obtained using Lemma 5. For computing ε given δ,
we use bisection to solve δM(ε) = δ.

Algorithm 1 Analytical Fourier Accountant
1: Input MechanismsM1, ...,MK and δ .
2: for i = 1, ...,K do
3: Maintain the symbolic accountant
4: log φ(M)(α)← log φ(M)(α) + log φ(Mi)(α)
5: log φ′(M)(α)← log φ′(M)(α) + log φ′(Mi)

(α)

6: if query (ε, δ)-DP then
7: Compute the CDF FLP,Q(·) and FLQ,P (·) by

integrating log φ(M)(α) and log φ′(M)(α) using
Theorem 18.

8: Return δ by Lemma 5.
9: end if
10: end for

AFA vs FFT. Comparing to the FFT-accountant
approach [Koskela et al., 2020, 2021, Koskela and
Honkela, 2021], our approach decouples representa-
tion and numerical computation. We do not make
any approximation when tracking the mechanisms,
and use numerical computation only when converting
to (ε, δ)-DP. This avoids the need for setting appro-
priate discretization parameters of FFT ahead of
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Mechanism Dominating Pair φ function
Randomized Response P : PrP [0] = p;Q : PrQ[1] = p φM(α) = φ′M(α) = peαi log( p

1−p ) + (1− p)eαi log( 1−p
p )

Laplace Mechanism P : p(x) = 1
2λe
−|x|/λ;Q : q(x) = 1

2λe
−|x−1|/λ φM(α) = φ′M(α) = 1

2

(
e
αi
λ + e

−αi−1
λ + 1

2αi+1 (e
αi
λ − e−αi−1

λ )

)
Gaussian Mechanism P : N (1, σ2);Q : N (0, σ2) φM(α) = φ′M(α) = e

−1

2σ2
(α2−iα)

Table 2: φ functions and dominating pairs for basic mechanisms.
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No numerical 
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“Natural Composition”

Figure 2: Summary of the various functional descriptions and their conversion rules.

time before knowing which sequenceM1, ...,MK we
will receive.

Gaussian quadrature For fast and numerically sta-
ble evaluation of the CDF, we propose to use Gaus-
sian quadrature which adaptively selects the intervals
between interpolation points, rather than the FFT
approach which requires equally spaced discretiza-
tion. When we apply this approach to efficiently
evaluate integral in computing CDFs, where the nu-
merical error is often negligible, i.e., O(10−13) for
CDFs in our experiments, even if we only sample a
few hundreds points. We defer a more detailed error
analysis to Section E.

5 Experiments

In this section, we conduct numerical experiments
to illustrate the behaviors of our analytical Fourier
Accountant. We will have three sets of experi-
ments.

Exp. 1 (Gaussian mechanism) We compare the pri-
vacy cost over compositions between RDP ac-
countant and AFA accountant on Gaussian
mechanism.

Exp. 2 (Compositions of discrete and continuous
mechanisms) We evaluate the Fourier accoun-
tant variants and RDP accountant on hetero-
geneous mechanisms.

Exp. 3 (Compositions over Poisson Subsample mech-
anisms) Comparison of our AFA with
discretization-based φ-function to the Fourier

accountant (FA) and the RDP accountant.

In Exp1, we compare our AFA method to the RDP-
based accoutant[Mironov, 2017] and the exact accoun-
tant from the analytical Gaussian mechanism [Balle
and Wang, 2018]. In Figure 3(a), we evaluate ε with
a fixed δ = 10−4 and use σ ∈ {50, 100}.

Observation: In Figure 3(a), our φ function-based
AFA exactly matches the result from the analytical
Gaussian mechanism and strictly outperforms the
RDP accountant in different privacy regimes.

In Exp2, motivated by [Koskela and
Honkela, 2021], we consider an adap-
tive composition of the form M(X) =(
M1(X),M̃2(X), ...,Mk−1(X),M̃k(X)

)
, where

eachMi is a Gaussian mechanism with sensitivity
1, and each M̃i is a randomized mechanism with
probability p. We consider σ = 5.0, p = 0.52, ε = 2.0
and compare δ(ε) between the RDP accountant,
Fourier Accountant [Koskela and Honkela, 2021] and
our AFA.

Unlike the FA, our AFA allows an analytical compo-
sition over discrete and continuous mechanisms with-
out sampling discretisation points over the privacy
loss distribution, therefore achieves an exact privacy
accountant. In Figure 3(b), we plot the δ(ε) over k
compositions given by FA and the moments accoun-
tant with RDP. We use n = 105 discretisations points
and L = 10 for FA. Our numerical result matches
FA as n = 105 is already a very accurate estimation
as stated in [Koskela and Honkela, 2021].
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(a) Exp1 Gaussian mechanism (b) Exp2 heterogeneous mechanisms (c) Exp3 Poisson Subsample

Figure 3: Pane 3(a) compares privacy cost over compositions in Exp 1. Pane 3(b) is for the heterogeneous
composition in Exp 2. Pane 3(c) is for Poisson subsampled Gaussian mechanism in Exp 3.

There are cases when the closed-form φ-functions do
not exist. In Exp 3, we consider this problem by
analyzing the Poisson Subsample Gaussian mecha-
nism using our discretization-based approach (Algo-
rithm 2) and “Double quadrature” in Appendix E. We
discuss the dominating distribution, the construction
on φ-function, and its discretization in Appendix E.
Figure 3(c) shows a comparsion of our AFA to the
Fourier accountant method [Koskela et al., 2021] and
the moments accountant method [Zhu and Wang,
2019]. The sampling probability is γ = 0.01, the noise
scale is σ = 2.0 and we evaluate ε with δ = 10−5.
We use the tighter conversion rule from Balle et al.
[2020] to convert the RDP back to (ε, δ)-DP. The nu-
merical issues induced by Gaussian quadrature are at
most O(10−14). Our lower and upper bounds of δ(ε)
shown in Figure 3(c) already incorporate the error
induced by discretization and ignoring the tail inte-
gral. We emphasize that the lower and upper bounds
can match the bounds from FA by increasing sample
points n. Moreover, “Double quadrature” is our pro-
posed efficient approximation method. We only un-
evenly sample 700 points for each φ-function and the
result of the “Double quadrature” lines between our
lower and upper bounds and matches the result from
FA. Lastly, all Fourier accountant-based approaches
improve over the RDP-based accountant.

Runtime and space analysis of AFA We first
compare the time complexity and memory when we
have analytical expressions of φ-functions. In Exp 2,
each mechanism admits an analytical φ-function and
can be represented in O(1) memory and evaluated
in O(1) time. Therefore, the memory cost is O(#
unique mechanisms). We analyze the runtime by de-
composing it into the “composition” and “conversion
to δ(ε)” separately.

Let k denote the number of compositions. Regarding
the runtime in the conversion to δ(ε) query, we apply

Gaussian quadrature to compute the CDF, which re-
quires O( 1

δ
1/α
err

) runtime complexity for the αth order
differentiable functions. The following composition
runtime for Koskela and Honkela [2021] and Gopi
et al. [2021] denote the runtime for discretization and
convolution via FFT for a homogeneous composition
of a mechanism for k rounds. We use n to denote the
size of grid discretization in the FFT approximation.

Of course, this is by no means a fair discussion be-
cause the FFT approach computes the entire (dis-
cretized) PLD of the composed mechanisms together
while AFA computes just one point. In terms of
the approximation error, our method is the only
approach that adapts to the structures of the φ func-
tions being integrated and achieves a faster conver-
gence rate.

For the cases when the analytical expressions of φ-
functions do not exist (see EXP3), we need to ap-
proximate the φ function too. Thus one single eval-
uation calls require O(n), and our method is slower
than Koskela and Honkela [2021], Gopi et al. [2021],
because we do not use FFT. The space and time
complexity of the adaptive discretization approach
via double quadrature is unclear, though very fast in
practice.

6 Conclusion

In this paper, we studied the problem of privacy
accounting with mechanism-specific analysis. We
introduced the notion of dominating pair distribu-
tions, showed that each mechanism’s privacy profile
is characterized by a tight dominating pair, and de-
rived a number of useful algebra of dominating pairs
including adaptive composition and amplification by
sampling. These results strengthen the foundation
of the PLD formalism and make it more widely ap-
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Privacy accountant Composition runtime δ(ε) conversion runtime Memory Choice of n
Our AFA O(1) O( 1

δ
1/α
err

) O(1) Not applicable
Koskela and Honkela [2021] O(n log n) O(n log n) O(n) n = O(k/δerr)

Gopi et al. [2021] O(n log n) O(n log n) O(n) n = O(
√
k log(1/δerr)/εerr)

Table 3: The runtime/space complexity comparisons of different algoirthms

plicable. Algorithmically, we proposed an analytical
Fourier accountant that represents the characteristic
functions of a dominating pair symbolically, which
features RDP-like natural composition and allows us
to leverage off-the-shelf numerical tools. Our experi-
ments demonstrate the merits of AFA and suggest
that it can flexibly and efficiently fit into every DP
application.

This work also leaves several open questions. Among
those

• As Lemma 9 demonstrates, the construction
of the domaining pair is severely constrained
when trade-off functions are not clear. For ex-
ample, characterizing high-dimension discrete
Gaussian mechanism remains a tricky open
problem.

• Moreover, there are cases where our approach
requires much more quadrature points: We ap-
ply Gaussian quadrature to compute the CDF
of the privacy loss RV through integration over
φ-functions. If the composed φ functions have
large values at the tail of integral (e.g., near
∞), we need to sample more quadrature points.
We hope to solve this issue using numerical
tools in the next step.
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A Limits of RDP and the PLD formalism

In Section 3 we omitted a few examples when we talk about the limitation of Renyi Differential Privacy
(RDP) in describing common mechanisms. Specifically, we commented that there are mechanisms where RDP
either does not exist or does not exist for most order α that implies stronger privacy guarantees.

We give two concrete examples below.

Example 14 (Distance-to-Instability). The stability-based argument of query release first add noise to a
special integer-valued function distq(D) which measures the number of data points to add / remove before the
local sensitivity of query q(D) becomes non-zero. No matter that q is, distq always has a global sensitivity of
at most 1. The stability-based query release outputs ⊥ (nothing) if distq(D) + Lap(1/ε) ≤ log(1/δ)/ε otherwise
outputs the answer q(D) without adding noise. This algorithm is satisfies (ε, δ)-DP [Thakurta and Smith,
2013], but since there is a probability mass at the +∞ for the case when q(D) 6= q(D′), RDP is +∞ for all α.
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Example 15 (Gaussian-noise adding with data-dependent variance). In smooth sensitivity-based query
release [Nissim et al., 2007], one perturbs the output with a noise with a data-dependent variance. Consider,
for example, P = N (0, σ2

1), Q = N (0, σ2
2), then the Renyi-divergence Dα(P‖Q) is undefined for all α such

that ασ2
2 + (1− α)σ2

1 < 0. Specifically, if σ2
1 = 2, σ2

2 = 1, then Dα(P‖Q) = +∞ for all α ≥ 2.

These examples demonstrate the deficiency of RDP in analyzing flexible algorithm design tools such as
the proposed-test-release [Dwork and Lei, 2009]), which typically introduces a heavier-tailed privacy-loss
distributions for which the moment generating function is not defined.

On the contrary, the privacy-profile is well-defined in both examples and imply nontrivial (ε, δ)-DP. The
characteristic function exists no matter how heavy-tailed the distribution of the privacy loss random variable
is so it naturally handles the second example. In Section D.2, we describe how we can handle a probability
mass at + inf in our approach.

We also omitted an example for which there are no single pair of neighboring datasets that attain the argmax
might be different in different regions of the privacy profile.

Example 16 (Distance to Instability). Distance to instability distq(D) is a special function that measures
the number of data points to add / remove before the local sensitivity of query q(D) becomes non-zero. The
stability-based query release outputs ⊥ (nothing) if distq(D) + Lap(1/ε) ≤ log(1/δ)/ε otherwise outputs the
answer q(D) without adding noise. In this algorithm, the privacy loss distribution has exactly two modes.

Mode 1 When distq(D) > 0, then for all D′ neighboring to D, q(D) = q(D′), which implies that the PLD is
from the post-processing of a Laplace mechanism (for releasing the perturbed distq(D)), i.e., (ε, 0)-DP.

Mode 2 When distq(D) = 0, then for those neighboring D′ such that q(D) 6= q(D′), it must hold that
distq(D

′) = 0, thus the privacy loss distribution is a point mass of 1− δ at 0 (for outputting ⊥) and a
point mass of δ at +∞, i.e., (0, δ)-DP.

Clearly, there is no single pair of datasets that attains the privacy-profile of this mechanism for all input
parameter ε̃. When ε̃ > ε, δM(ε̃) = δ and is attained by the second mode. On the other hand, if we choose ε̃
such that δLap. Mech.(1/ε)(ε̃) > δ, then δM(ε̃) = δLap. Mech.(1/ε)(ε̃) and the equal sign is attained by a pair of
distributions in the first mode.

B Conversion rules between functional representations
In this section we give the details of conversions between various functional representations of the privacy
loss distribution (of a dominating pair of distributions). These conversions are summarized in Figure 2 and
repeated here.

Moments 
generating function
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“Natural Composition”

Before we proceed to the details of all these arrows, we would like to emphasize a important distinction:

These conversions rules are not about converting between different DP definitions, but rather converting
between different representations of the privacy loss r.v. under the same DP definition — in our case,
(ε, δ)-DP.

More precisely, we mean that the conversion from RDP to DP (leftmost grey arrow in the figure, which we
will talk about in details in Section F) is qualitatively different from the conversion from Renyi divergence to
Hockey-Stick divergence (red arrow labeled “Post’s inversion formula”).
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Modulo some details6, a conversion from RDP to DP is about finding function δ(·) that upper bounds the
Hockey-stick divergence for all pairs of neighboring datasets using an RDP function ε(·).

If supD'D′ Dα(M(D)‖M(D′)) 6 ε(α), then supD'D′ Heε(M(D)‖M(D′)) 6 δ(ε).

In contrast, a conversion from Renyi divergence to hockey-stick divergence is about a given pair of P,Q,
and the input function ε(α) is expected to be the exact Renyi-divergence of order α. The goal of the
divergence-to-divergence conversion rule is to find a different divergence of the same pair of distribuiton P,Q,
i.e.

If Dα(P‖Q) = ε(α), then Heε(P‖Q) = δ(ε).

Both conversions aim to compute a function δ from a function ε. The seemingly harmless distinction of
inequalities and identities is actually the devil in the details. It has two major consequences

1. When applied to privacy, divergence conversion requires a dominating pair of distributions as a
prerequisite, which may or may not be a tight dominating pair. In the figure, results that require
a dominating pair are enclosed in the light yellow region labeled “When a dominating pair (P,Q) is
available”.

2. DP conversion is lossy even when converting the statement “standard randomized response is 1-zCDP”
to (ε, δ)-DP, as demonstrated by Figure 1. On the other hand, divergence conversion is generically
lossless (under some regularity condition), though numerical issues often arise since the inverse Laplace
transform is involved Epstein and Schotland [2008].

In alignment with the focus of this paper, in this section we focus on the light yellow region assuming (P,Q)
is a dominating pair. DP conversion is discussed in more detail in Appendix F.

From To Result
φ, φ′ F,G Lemma 18, a direct consequence of Levy’s formula
F,G φ, φ′ Fourier transform, by definition
F,G Hα Lemma 19
Hα F,G Lemma 23
F,G f Lemma 22
f F,G Lemma 23

Hα f
Proposition 2.12 of Dong et al. [2021], restated as
Lemma 21

f Hα
Proposition 2.12 of Dong et al. [2021], restated as
Lemma 20

Hα Dα Theorem 8 of Balle et al. [2018], restated as Lemma 24

Dα Hα
Post’s formula. In fact, any inverse Laplace transform
works.

Dα φ
take pure imaginary input. Need analytic extension in
general and not always possible.

φ, φ′ Dα
take pure imaginary input. Need analytic extension in
general and not always possible.

f φ, φ′ Lemma 25

φ, φ′ f
first use Levy’s formula to compute F and G, then use
Lemma 22

Table 4: References for conversion results declared in Figure 2. Notations: ch.f. of PLD are denoted by φ, φ′.
CDFs of PLD are denoted by F,G. The trade-off function is denoted by f (note that f is not the derivative
of F ). Hockey-stick divergences are denoted by Hα. Renyi divergences are denoted by Dα.

We recall some definitions. Let P,Q be two probability distributions on the same measurable space. For
6such as the symmetry of P =M(D) and Q =M(D′) and the domains of α and ε.
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α > 0, their hockey-stick divergence is defined as

Hα(P‖Q) = Eω∼Q[( dP
dQ (ω)− α)+].

For α > 1, their Renyi divergence is defined as

Dα(P‖Q) := 1
α−1 logEP

(
dP
dQ

)α
.

Let F and G be the CDFs of the privacy loss random variables. Namely,

F (x) : = P [log dQ
dP 6 x]

G(x) : = Q[log dQ
dP 6 x]

The corresponding densities (if exist) will be F ′ and G′. The corresponding characteristic functions (ch.f.)
are the Fourier transforms of the two measures, i.e.

φ(t) =

∫
eitx dF (x)

φ′(t) =

∫
eitx dG(x)

Trade-off functions are T [P,Q] and T [Q,P ], which map the type I error to the corresponding minimal type
II error in testing problems P vs Q and Q vs P respectively.

From these definitions we see that all five functional representations actually require two functions for each
pair of distributions. Below we summarize how one determines the other.

• Hα(Q‖P ) = αHα−1(P‖Q)− α+ 1, which is stated as Lemma 46 in Appendix G.

• For α ∈ (0, 1), Dα(Q‖P ) = α
1−αD1−α(P‖Q). See Proposition 2 of Van Erven and Harremos [2014].

• G′(x) = exF ′(x), which is stated as Lemma 47 in Appendix G.

• Using the above formula, φ′ can be obtained by the following process: φ Levy’s formula−−−−−−−−−→ F → G→ φ′.

• If T [P,Q] = f then T [Q,P ] = f−1. See Lemma A.2 of Dong et al. [2021]

We now consider the conversion from the φ-function to CDFs using the following Levy’s theorem.

Theorem 17 (Levy). Let φ be the ch.f. of the distribution function F and a < b, then

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
· φ(t) dt.

Note that limT→∞,α→∞
∫∞
−∞

e−iαa

iα φ(α)dα = π. To compute the CDF of the privacy loss RV LP,Q at b, we
can substitude a with −∞ and obtain the following result.

Lemma 18.

F (x) =
1

2
+ lim
T→∞

1

2π

∫ T

−T

ie−itx

t
φ(t) dt

G(x) =
1

2
+ lim
T→∞

1

2π

∫ T

−T

ie−itx

t
φ′(t) dt

Lemma 19.

Hα(P‖Q) = F (− logα)− αG(− logα)

Hα(Q‖P ) = 1−G(logα)− α(1− F (logα))
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Lemma 20. Heε(Q‖P ) = 1 + f∗(−eε)

Lemma 21.
f(x) = sup

ε>0
max{0, 1−Heε(P‖Q)− eεx, e−ε(1−Heε(P‖Q)− x)}.

Lemma 22. f(α) = G(F−1(1− α)).

Lemma 23.

F (x) = 1− (f∗)′(−ex)

= 1 + e−x · d

dx
Hex(Q‖P )

G(x) = f
(
(f∗)′(−ex)

)
= 1−Hex(Q‖P ) +

d

dx
Hex(Q‖P )

Lemma 24 (Theorem 6 of Balle et al. [2018]).

Dα(P‖Q) = 1
α−1 log

(
1 + α(α+ 1)

∫ ∞
0

(
eαεHeε(P‖Q) + e−(α+1)εHeε(Q‖P )

)
dε

)
.

Lemma 25. The characteristic functions are determined by the trade-off function f via the following formula:

φ(t) =

∫ 1

0

e−it log |f ′(x)| dx

φ′(t) =

∫ 1

0

eit log |f ′(x)| · |f ′(x)|dx

C Omitted proofs in the main body

C.1 Characterization of privacy profiles

Proof of Proposition 9. Let

H := {h : R>0 → R>0 | ∃P,Q s.t. h(α) = Hα(P‖Q)},
F := {f : [0, 1]→ [0, 1] | ∃P,Q s.t. f = T [P,Q]}.

By Lemma 20, Hα(P‖Q) can be related to f = T [Q,P ] as follows:

Heε(P‖Q) = 1 + f∗(−eε)

where ε ranges over the whole real line. By a simple change of variable, we see that h ∈ H iff there exists
f ∈ F such that h(α) = 1 + f∗(−α), or equivalently,

H = {h : R>0 → R>0 | ∃f ∈ F , h(α) = 1 + f∗(−α)}.

By Proposition 2.2 of Dong et al. [2021], we know

F = {f : [0, 1]→ [0, 1] | f is convex, decreasing, continuous and f(x) 6 1− x}.

Let G := {g : (−∞, 0]→ R | g(0) = 0, g is convex, increasing, continuous and g(x) > max{x,−1}}.

Claim: Convex conjugacy is a bijection between F and G.
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Proof of the claim. Since both F and G consist of convex functions, double convex conjugacy brings back
the function, it suffices to show that f ∈ F =⇒ f∗ ∈ G and g ∈ G =⇒ g∗ ∈ F . Now suppose f ∈ F . f
is extended to be +∞ in (−∞, 0) and 0 in (1,+∞). Thus f is a convex function on R. By definition f∗ is
convex, and we can calculate

f∗(y) = sup
x∈R

yx− f(x) = sup
x>0

yx− f(x) =

{
+∞, if y > 0

0, if y = 0

With y1 < y2, we have y1x − f(x) 6 y2x − f(x). Taking supremum over x > 0, we have f∗(y1) 6 f∗(y2).
This shows f∗ is monotone and finite on (−∞, 0]. Let

I(x) =

{
+∞, if x < 0

max{1− x, 0}, if x > 0

It is straightforward to compute that

I∗(y) =

{
max{y,−1}, if y 6 0

+∞, if y > 0

Since f 6 I, we conclude that f∗(x) > I∗(x) = max{x,−1}.

Now suppose g ∈ G. Similarly, g is extended to be +∞ in (0,+∞). g∗(y) = supx60 yx−g(x) and g∗(y) = +∞
if y < 0. By a similar argument, g∗ is increasing. Since g > I∗, we have g∗ 6 I∗∗ = I. That is, g∗(x) 6 1− x.
Let J be zero on (−∞, 0] and infinity otherwise. We have J∗ is zero on [0,+∞) and infinity otherwise. We
know that g(0) = 0 and g is increasing so g 6 J . Hence g∗ > J∗, i.e. g∗(y) > 0 if y > 0. This justifies that
g∗(y) ∈ [0, 1] if y ∈ [0, 1] and g∗(y) = 0 if y > 1.

Now with the help of this claim, H and G are simply related: h ∈ H iff α 7→ h(−α)− 1 is in G. Therefore we
can get the description of H. The proof of the first statement is complete.

Explicit construction. Next we derive the specific choice of P,Q as stated works using the result from
Dong et al. [2021].

Continuing with the notations in the proof above, when H satisfies the conditions, i.e. H ∈ H, we know there
is a f ∈ F such that H(α) = 1 + f∗(−α). Let g(α) = H(−α)− 1 and we will have g = f∗ and hence f = g∗

as f is convex. Therefore,

f(x) = g∗(x) = sup
y
yx−H(−y) + 1 = sup

z
−zx−H(z) + 1 = 1 +H∗(−x).

From Dong et al. [2021, Proposition 2.2], we know that f = T [Q,P ] where Q = U [0, 1] is the uniform
distribution over [0, 1] and P has CDF

FP (x) =


0, if x < 0,

f(1− x), if x ∈ [0, 1),

1, if x > 1.

Plugging in f(x) = 1 +H∗(−x), we have the CDF of P being

FP (x) =


0, if x < 0,

1 +H∗(1− x), if x ∈ [0, 1),

1, if x > 1.

Note that when the infimum of H is positive, H∗(1− x) < 0 and P has an atom at 1. This completes the
proof.
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Another interesting consequence of Lemma 9 is one can often get a stronger bound on the hockey-stick
divergence or privacy profile for free. Recall that for a function g, its convex hull conv(g) (a.k.a., the lower
convex envelope) is defined as the greatest convex lower bound of g and satisfies conv(g) = g∗∗ where the
double star means taking Fenchel conjugate twice.

For a function h : R+ → R, let g(x) = infy∈[0,x] h(y) and HS(h) = (min{1, g})∗∗. It turns out that HS(h) is
the greatest lower bound of h that lies in H, and we have

Corollary 26 (Dominating pairs from any privacy profile upper bounds). If the privacy profile of a mechanism
M is bounded by h : R+ → R, i.e. δM(α) 6 h(α),∀α > 0, then δM is also bounded by HS(h).

Note that HS(h) can be significantly smaller than the original bound h, and it admits a dominating pair by
Proposition 9, even if h does not.

Proof. We know that δM ∈ H. It suffices to show that

f ∈ H, f 6 h =⇒ f 6 HS(h).

Recall that we let g(x) = infy∈[0,x] h(y) and HS(h) = (min{1, g})∗∗. Since f ∈ H is decreasing, f(x) =
infy∈[0,x] f(y) 6 infy∈[0,x] h(y) = g(x). Furthermore, f(x) 6 f(0) = 1, so f 6 min{1, g}. Since f is convex, it
also holds that f 6 min{1, g}∗∗ = HS(h).

C.2 Composition theorem of dominating pairs

Theorem 27 (Restatement of Theorem 10 Adaptive composition of dominating pairs). Let P,Q be a
dominating pair distributions forM and P ′, Q′ be a dominating pair distributions forM′7, then (P×P ′, Q×Q′)
is a dominating pair distributions for the composed mechanism (M,M′).

Proof.

Hα(P‖P ′) =

∫
Ω

[p(ω)− αp′(ω)]+ dω.

Integration with respect to a dominating measure of both P and Q and p, q are the densities (Radon-Nikodym
derivatives) for the probability measures P,Q respectively.

Our goal is to show Hα

(
M(D),M(D′)

)
6 Hα

(
P ×R,Q× S

)
. We break it into the following two parts.

Hα

(
M(D),M(D′)

)
6 Hα

(
M1(D)×R,M1(D′)× S

)
6 Hα

(
P ×R,Q× S

)
.

Starting from the first part, we have

Hα

(
M(D),M(D′)

)
=

∫∫
X×Y

[p1(x)p2(x, y)− αp′1(x)p′2(x, y)]+ dx dy

=

∫
X

p1(x) ·

(∫
Y

[
p2(x, y)− α · p

′
1(x)

p1(x)
· p′2(x, y)

]
+

dy

)
dx

=

∫
X

p1(x) ·
(
H
α· p
′
1(x)

p1(x)

(
M2(D,x)‖M2(D′, x)

))
dx

6
∫
X

p1(x) ·
(
H
α· p
′
1(x)

p1(x)

(
R‖S

))
dx

=

∫
X

p1(x) ·

(∫
Ω2

[
r(ω2)− α · p

′
1(x)

p1(x)
· s(ω2)

]
+

dω2

)
dx

=

∫∫
X×Ω2

[p1(x)r(ω2)− αp′1(x)s(ω2)]+ dx dω2

= Hα

(
M1(D)×R,M1(D′)× S

)
.

7M′ can be adaptively chosen in that it could depend on the output of M, which requires
supo∈Range(M)Heε(M′(D, o)‖M′(D′, o)) ≤ Heε(P ′‖Q′) for any value of o.
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Continuing this argument, we have

Hα

(
M1(D)×R,M1(D′)× S

)
=

∫∫
X×Ω2

[p1(x)r(ω2)− αp′1(x)s(ω2)]+ dx dω2

=

∫
Ω2

r(ω2) ·

(∫
X

[
p1(x)− α · s(ω2)

r(ω2)
· p′1(x)

]
+

dx

)
dω2

=

∫
Ω2

r(ω2) ·
(
H
α· s(ω2)

r(ω2)

(
M1(D)‖M1(D′)

))
dω2

6
∫

Ω2

r(ω2) ·
(
H
α· s(ω2)

r(ω2)

(
P‖Q

))
dω2

=

∫
Ω2

r(ω2) ·

(∫
X

[
p(ω1)− α · s(ω2)

r(ω2)
· q(ω1)

]
+

dω1

)
dω2

=

∫∫
Ω1×Ω2

[p(ω1)r(ω2)− αq(ω1)s(ω2)]+ dω1 dω2

= Hα

(
P ×R,Q× S

)
.

The proof is complete.

C.3 Privacy-amplification for dominating pairs
Recall we stated the following theorem in the main body:

Theorem 11. LetM be a randomized algorithm.

(1) If (P,Q) dominates M for add neighbors then (P, (1 − γ)P + γQ) dominates M◦ SPoisson for add
neighbors and ((1− γ)Q+ γP,Q) dominatesM◦ SPoisson for removal neighbors.

(2) If (P,Q) dominatesM for replacing neighbors, then (P, (1− γ)P + γQ) dominatesM◦ SSubset for
add neighbors and ((1− γ)P + γQ,P ) dominatesM◦ SSubset for removal neighbors.

The proof we present here is written in the language of trade-off functions [Dong et al., 2021]. However, with
Lemma 20, everything can be conveniently translated to the language of (ε, δ). We made the choice because
some parameters have slightly easier forms in the language of trade-off functions.

We begin with a lemma that cut our workload in half — dominance for removal neighbors is actually equivalent
to the dominance of add neighbors, so it suffices to show either one of them.

Lemma 28. The followings are equivalent

1. (P,Q) dominates mechanismM for add neighbors.

2. (Q,P ) dominates mechanismM for removal neighbors.

3. T [M(S),M(S ∪ {x})] > T [P,Q] for any dataset S and data entry x.

Proof of Lemma 28. Recall that Lemma 20 says for any α > 0,

Hα(P‖Q) = 1 + T [P,Q]∗(−α).

condition 1⇔ Hα(M(S)‖M(S ∪ {x})) 6 Hα(P‖Q)

⇔ T [M(S ∪ {x}),M(S)] > T [Q,P ] (Lemma 20)

⇔ T [M(S),M(S ∪ {x})] > T [P,Q]⇔ condition 3 (∗)
⇔ Hα(M(S ∪ {x}),M(S)) 6 Hα(Q‖P )⇔ condition 2

Here (∗) uses the fact that T [P,Q] and T [Q,P ] are inverse functions of each other.
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The next lemma plays the central role in both parts of Theorem 11. Suppose we have probability distributions
P1, . . . , Pn and Q1, . . . , Qn, all on the same domain and let P̄ =

∑n
i=1 piPi and Q̄ =

∑n
i=1 piQi be the

corresponding mixture distributions with the same coefficients p1, . . . , pn where
∑n
i=1 pi = 1 and all pi > 0.

Then we have

Lemma 29. If T [Pi, Qi] > T [P,Q] for all i ∈ [n], then for any γ ∈ [0, 1], we have

T
[
P̄ , (1− γ)P̄ + γQ̄

]
> T [P, (1− γ)P + γQ].

Proof of Lemma 29. Let f = T [P,Q]. First we claim that

T [P, (1− γ)P + γQ](x) = (1− γ)(1− x) + γf(x). (2)

To see this, consider any testing rule φ such that EP [φ] = x. We need to show that

inf
φ:EP [φ]=x

E(1−γ)P+γQ[1− φ] = (1− γ)(1− x) + γf(x).

By definition of f = T [P,Q], we have infφ:EP [φ]=x EQ[1− φ] = f(x). Therefore,

E(1−γ)P+γQ[1− φ] = (1− γ)EP [1− φ] + γEQ[1− φ]

= (1− γ)(1− x) + γEQ[1− φ]

inf
φ:EP [φ]=x

E(1−γ)P+γQ[1− φ] = (1− γ)(1− x) + γ inf
φ:EP [φ]=x

EQ[1− φ]

= (1− γ)(1− x) + γf(x).

This verifies (2). Next we proceed to the proof of the lemma. Similarly, it suffices to consider arbitrary testing
rules φ with EP̄ [φ] 6 x and show

E(1−γ)P̄+γQ̄[1− φ] > T [P, (1− γ)P + γQ](x) = (1− γ)(1− x) + γf(x). (3)

Expanding the convex combination, we have

E(1−γ)P̄+γQ̄[1− φ] = (1− γ)EP̄ [1− φ] + γ
∑

piEQi [1− φ]

> (1− γ)(1− x) + γ
∑

piEQi [1− φ]

Comparing to (3), it suffices to show ∑
piEQi [1− φ] > f(x)

We know that T [Pi, Qi] > f . Hence EQi [1− φ] > f(EPi [φ]). By convexity of f ,∑
piEQi [1− φ] >

∑
pif(EPi [φ]) > f

(∑
piEPi [φ]

)
= f(EP̄ [φ]) > f(x).

The last inequality follows from the monotonicity of trade-off functions. Hence (3) is verified and the proof is
complete.

Proof of Theorem 11 (1). By Lemma 28, it suffices to prove

T
[
M(SPoisson),M(S′Poisson)

]
> T [P, (1− γ)P + γQ] (4)

where S = {x1, . . . , xn−1} and S′ = S ∪ {xn}. The outcome of repeated coin flips can be labeled as
~b ∈ {0, 1}n−1. We use S~b to denote the corresponding subset of S and S′~b0 or S′~b1 for that of S′, depending on
whether xn is included. Note that S′~b0 = S~b. Furthermore, let p~b be the probability of the outcome ~b (recall
that each coin is a Bernoulli γ random variable). In fact, p~b =

∏n−1
i=1 γ

bi(1− γ)1−bi but we will not use it.
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Both M(SPoisson) and M(S′Poisson) are mixtures. We have the following decompositions

M(SPoisson) =
∑

~b∈{0,1}n−1

p~bM(S~b)

M(S′Poisson) =
∑

~b∈{0,1}n−1

(1− γ)p~bM(S′~b0) + γp~bM(S′~b1)

= (1− γ)M(SPoisson) + γ
∑

~b∈{0,1}n−1

p~bM(S′~b1)

Now we are ready to use Lemma 29, with the family of Pi beingM(S~b) and the family of Qi beingM(S′~b1). By
the calculation above, M(SPoisson) will be the P̄ in Lemma 29 and M(S′Poisson) is exactly the (1− γ)P̄ + γQ̄
in Lemma 29. We still need to verify the condition in Lemma 29: since (P,Q) dominates M for add neighbors,
for each ~b ∈ {0, 1}n−1 we have

T
[
M(S~b),M(S′~b1)

]
> T [P,Q].

Therefore, Lemma 29 gives us (4), which is exactly what we want.

Proof of Theorem 11 (2). By Lemma 28, it suffices to prove

T
[
M(SSubset),M(S′Subset)

]
> T [P, (1− γ)P + γQ] (5)

where S = {x1, . . . , xn−1} and S′ = S ∪ {xn}.

Below we use notations such as SI , SJ∪{n} to denote the (obvious) subsets of S where I, J ⊆ [n − 1] and
|I| = m, |J | = m− 1 consistently. Both M(SSubset) and M(S′Subset) are mixtures. We have the following
decompositions, where the latter is further decomposed into two parts depending on whether n is selected.

M(SSubset) =
∑
|I|=m

1(
n−1
m

)M(SI) (6)

M(S′Subset) =
∑

|J|=m−1

1(
n
m

)M(SJ∪{n}) +
∑
|I|=m

1(
n
m

)M(SI) (7)

It’s not in a ready shape to use Lemma 29. We need to further break the summands by carefully creating
copies of the components. Let

I := {I(k) : I ⊆ [n− 1], |I| = m, 1 6 k 6 m}
J := {J (l) ∪ {n} : J ⊆ [n− 1], |J | = m− 1, 1 6 l 6 n−m}.

That is, we create m copies of each subset of [n− 1] of cardinality m and collect as I; create n−m copies of
each subset of [n] of cardinality m that includes n and collect as J . Now we claim two things

1. There is a bijection F : I → J such that F (I) differs from I by one element for all I ∈ I.

2. Let pI = 1

(n−1
m )m

for all I ∈ I and γ = m
n . Then

M(SSubset) =
∑
I∈I

pIM(SI) (8)

M(S′Subset) = γ
∑
I∈I

pIM(SF (I)) + (1− γ)
∑
I∈I

pIM(SI) (9)

Now we are ready to use Lemma 29: the collection {Pi} is {M(SI)} and {Qi} is {M(SF (I)). The conclusion
is exactly (5).

Next we turn our attention to the proofs of the two claims.
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For claim 1, let’s first construct a (n −m)-to-one surjective map F̃ : I → J̃ where J̃ = {J ∪ {n} : J ⊆
[n− 1], |J | = m− 1}. F̃ (I(k)) is obtained by replacing the k-th element in I by n. We see that F̃ (I(k)) is
indeed in J̃ . For any J ∪ {n} ∈ J̃ , it is hit by F̃ exactly n−m times since the n could have been any of the
(n− 1)− (m− 1) = n−m indices not already in J .

Since J contains n−m copies of J̃ , the (n−m)-to-one mapping F̃ : I → J̃ can be “redirected” in an obvious
way and become a bijection between I and J . By construction, F (I) and I differ in exactly one element.

For claim 2, (8) is easier and we only show (9). Since we have created copies, by splitting the summands of
(7), we have

M(S′Subset) =
∑

|J|=m−1

1(
n
m

)M(SJ∪{n}) +
∑
|I|=m

1(
n
m

)M(SI)

=
∑
J∈J

1(
n
m

)
· (n−m)

M(SJ) +
∑
I∈I

1(
n
m

)
m
M(SI)

=
∑
I∈I

1(
n
m

)
· (n−m)

M(SF (I)) +
∑
I∈I

1(
n
m

)
m
M(SI)

Comparing to (9), it suffices to show

γpI =
1(

n
m

)
· (n−m)

and (1− γ)pI =
1(
n
m

)
m

which are elementary combination identities.

Remark (Exact optimality of the bounds). If (P,Q) is a tightly dominating pair forM, for both “Removal”-
neighboring relation or “Add”-neighboring relation, then under some mild regularity conditions on M and
the space of the input datasets, Theorem 11 can be strengthened to show that that ((1− γ)Q+ γP,Q) and
(P, (1− γ)P + γQ) are tight dominating pairs for the “Removal”-neighboring relation and “Add”-neighboring
relation respectively — i.e., the dominating pair is realized by some concrete datasets. For example, considerM
to be Gaussian mechanism or Laplace mechanism that releases the total number of 1s in a dataset. Then two
neighboring datasets D = [0, ..., 0, 0, 1] ∈ Rn+1, D′ = [0, 0, ..., 0] ∈ Rn for “removal” and D = [0, ..., 0] ∈ Rn,
D′ = [0, 0, ..., 0, 1] ∈ Rn+1 for “addition” attains the upper bound for all α > 0 in each category.

Remark (Renyi DP and Optimal Moments Accountant for subsampled mechanisms). Renyi-DP and moments
accountant are closely related concepts that are often considered identical. However, our results suggest that
there is a distinction. The above pair of P,Q we constructed are not necessarily attaining the Renyi-DP
bounds (see a concrete example from Zhu and Wang [2019], but as moments accountant focuses only on
computing (ε, δ)-DP, it suffices use the Renyi-divergence functions Rα(P‖Q). Specifically, this closes the
constant gap between the moments accountant for subsampled mechanisms and Poisson sampled mechanisms.

C.4 Other schemes in privacy-amplification for dominating pairs

Theorem 11 provides new results and a novel composition algorithm for the popular Poisson sampling under
“add/remove” neighboring relations by treating “add” and “remove” separately. It also shows that the same
result hold in a not-so-typical but practically relevant scheme of the random-subset sampled mechanism under
the “add / remove” neighboring relation for the case when the base mechanism’s privacy is defined by the
“replace” neighboring relation.

What we left unspecified is whether there is a clean dominating pair under the two alternative schemes: (a)
Poisson-sampling + “Add/remove” without treating “Add” or “Remove” separately; (b) Subset sampling +
“Replace” neighboring relation for bothM◦ Sampleγ andM.

It turns out that while we can construct these dominating pairs of M◦ Sampleγ explicitly based on the
dominating pair (P,Q) ofM, but the expression is not simple. We present these results in this section.
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(a) HS divergence

Figure 4: We consider Poisson subsample Gaussian mechanism with σ = 1.0 and γ = 0.5. The red line
denotes the pointwise maximum over two HS curves. Figure shows that Hα((1− γ)Q+ γP,Q) dominates the
region α ≥ 1 and Hα(P, (1− γ)P + γQ) dominates the region α < 1.

To avoid any confusion, for all practical purposes, the result in Theorem 11 suffices because we can always
compose “Add” or “Remove” separately and only take the pointwise maximum in the end, while only incurring
twice as much computation, but the results in this section are interesting from a purely scientific perspective
and they are included for the completeness in our understanding of the problem.

Proposition 30. If (P,Q) is a dominating pair ofM under “Add/remove” Relation, then

δM◦SPoisson(α) ≤

{
Hα((1− γ)Q+ γP,Q) for α ≥ 1;

Hα(P, (1− γ)P + γQ) for 0 < α < 1.

under the “Add/Remove” relation. Similarly, if (P,Q) is a dominating pair ofM under “Replace” relation
for dataset of size γn, then

δM◦SSubset(α) ≤

{
Hα((1− γ)Q+ γP,Q) for α ≥ 1;

Hα(P, (1− γ)P + γQ) for 0 < α < 1.

under “Replace” relation for dataset of size n.

We plot Hα((1− γ)Q+ γP,Q) and Hα(P, (1− γ)P + γQ) for δM◦SPoisson(α) in Figure 4(a).

The proof of the above result requires the use of the following general result that establishes the relationship
between pairs that dominate only one half of the range for α and those that dominate the other half.

Lemma 31 (Properties for “symmetric neighbors”). LetM be a mechanism and ' be a symmetric neighboring
relationships , i.e., D ' D′ ⇔ D ' D′. Then

1. If (P,Q) is a dominating pair ofM, then (Q,P ) is also a dominating pair ofM,

2. If supD'D′ Hα(M(D)‖M(D′)) ≤ min{Hα(P‖Q), Hα(Q‖P )} for all α ≥ 1, then (P,Q) and (Q,P )
are both dominating pairs ofM.

3. The following two statements are equivalent.

(a) supD'D′ Hα(M(D)‖M(D′)) ≤ Hα(P‖Q) for all α ≥ 1.

(b) supD'D′ Hα(M(D)‖M(D′)) ≤ Hα(Q‖P ) for all 0 < α ≤ 1.
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Proof. First notice that the first and second statements are both implied by the third. For the first statement,
notice that by the definition of the dominating pair, the upper bound applies for all α > 0. Thus by applying
(a)⇒ (b) and (b)⇒ (a) for (P,Q), we get that (Q,P ) is also a dominating pair. For the second statement,
we apply (a)⇒ (b) for both (P,Q) and (Q,P ), then the result extends the bound to the full range.

It remains to prove the third statement. For any pair of neighboring D,D′ and 0 < α ≤ 1, by Lemma 46.

Hα(M(D)‖M(D′)) = αHα−1(M(D′)‖M(D))− α+ 1

≤ αHα−1(P‖Q)− α+ 1

= Hα(Q‖P ),

where the inequality uses the fact that α−1 ≥ 1, ' is symmetric, and that (P,Q) dominates for order ≥ 1.
The converse follows the same argument but starts with α > 1.

Proof of Proposition 30. We first prove the case for α ≥ 1. By Theorem 8 of [Balle et al., 2018] (Standard
amplification by sampling bound in DP), we know that for any D 'add/remove D

′ and all ε ≥ 0 (thus α ≥ 1!)

Heε(M◦ SγPoisson(D)‖M ◦ SγPoisson(D′)) ≤ γ sup
D̃'add/removeD̃′

H1+ eε−1
γ

(M(D̃)‖M(D̃′))

≤γH1+ eε−1
γ

(P‖Q) = γ

∫ (
p(x)− (1 + eε−1

γ )q(x)
)

+
dx

=

∫
((1− γ)q(x) + γp(x)− eεq(x))+ dx = Heε((1− γ)Q+ γP‖Q).

where the inequality in the second line is due to that (P,Q) is a dominating pair ofM.

The same proof works line by line for the random subset sampling when we use Theorem 9 of [Balle et al.,
2018] instead and adopt the D 'replace D

′ neighboring relationship.

Next we prove the statement for 0 < α < 1. Check that we can apply Lemma 31 because both 'replace
and 'add/remove are symmetric. By the third statement of Lemma 31, (Q, (1− γ)Q+ γP ) dominates the
subsampled mechanism for 0 < α < 1. Also by the first statement of Lemma 31 we know that (Q,P ) is also a
dominating pair forM, thus by repeating the same argument, we get that (P, (1− γ)P + γQ) also dominates
the subsampled mechanism for 0 < α < 1, which completes the proof.

The above discussion characterizes the tight8 upper bound of the privacy profile of subsampled mechanisms
using two (ordered) pairs of distributions, rather than just one pair. This is insufficient for us to apply
the composition theorem because the region between α > 1 and α < 1 in some sense “mixes with each
other” during composition, as we have clearly seen from the proof of Theorem 10. What we do know is
that neither ((1 − γ)Q + γP,Q) nor (Q, (1 − γ)Q + γP ) is a dominating pair for the sampled mechanism
under “Add/Remove” or “Replace” neighboring relation. This is the reason why we proposed the more elegant
approach for handling “add” and “remove” separately in the first place.

For completeness, and to also handle the case when we want the “replace one” neighboring relation for
M◦SSubset, we state the following result which constructs an explicit but not-so-clean dominating pair.

Corollary 32 (Dominating pair of sampled mechanisms under symmetric neighbor relations). Let (P,Q)
be a dominating pair of M and ' is “Add/Remove” (or “Replace”). Then (P̃ , Q̃) is a dominating pair of
M◦ SPoisson (orM◦ SSubset) where Q̃ = Uniform[0, 1] and P̃ has a CDF of

FP̃ (x) =


0, if x < 0;

1 +
[

max{Hα((1− γ)Q+ γP,Q), Hα(P, (1− γ)P + γQ)}
]∗

(−x), if x ∈ [0, 1),

1, if x ≥ 1;

where
[
·
]∗ denotes the Fenchel conjugate of a function.

8They are tight for the reason we described in the Remark on the “Exact optimality of the bounds” above.
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The proof, which we omit, is a direct application of Proposition 30 with the generic approach of Proposition 9
for constructing the dominating pair.

D The characteristic function of basic mechanisms

D.1 φ-function of basic mechanisms
We now derive φ-function for three basic mechanisms: randomized response, Laplace and Gaussian mechanism.
The results and their dominating distributions are summarized in Table 2.

Let f be a predicate, i.e., f : D∗ → {0, 1}. The Randomized Response mechanism for f is defined as

M(D) =

{
f(D) with probabilty p
1− f(D) with probability1− p

Lemma 33 (Randomized response). The φ function of Randomized Response mechanism M with the
parameter p satisfies φM(α) = φ′M(α) = peαi log( p

1−p ) + (1− p)eαi log( 1−p
p ).

Proof. First of all, the dominating pair will be:

P : PrP [0] = p;Q : PrQ[1] = p

Then, follow the definition of φ-function, we have

φM(α) = Ex∼P eiα log(p(x)/q(x)) = peαi log( p
1−p ) + (1− p)eαi log( 1−p

p )

For Laplace and Gaussian mechanisms, we assume that f : D∗ → R is a function of sensitivity 1.

Lemma 34 (Laplace Mechanism). Let Laplace Mechanism for f is defined asM(D) = f(D) + Lap(λ) where
Lap(λ) is Laplace dstribution with scale λ, i.e., its density function is 1

2λ exp(−|x|/λ). For any α ∈ R and
λ > 0, we have

φM(α) = φ′M(α) =
1

2

(
e
iα
λ + e

−iα−1
λ +

1

2αi+ 1
(e

iα
λ − e

−iα−1
λ )

)
.

Proof. we consider the dominating distribution P (o) = 1
2λ exp(−|o|/λ) and Q(o) = 1

2λ exp(−|o− 1|/λ). We
can show that the dominating pair for α ≥ 1 also dominates 0 < α < 1 using the third statement of Lemma 31
and the symmetry of Laplace mechanism. To calcuate the characteristic function φM, we define the privacy
loss RV LP,Q as follows

LP,Q(o) = log

(
p(o)

q(o)

)
=


1
λ , o ≤ 0
1−2o
λ , 0 < o ≤ 1
−1
λ , o > 1

The characteristic function φM(α) is calculated as follows

φM(α) = EP [eiαLP,Q ]

=

∫ 0

−∞
e
iα
λ

1

2λ
e
o
λ do+

∫ 1

0

e
iα(1−2o)

λ
1

2λ
e
−o
λ do+

∫ ∞
1

e
−iα
λ

1

λ
e
−o
λ do

=
1

2λ
·
(
e
iα
λ λ+

λ

2it+ 1
(e

iα
λ − e

−iα−1
λ ) + λe−1/λe

−iα
λ

)
=

1

2

(
e
iα
λ +

1

2iα+ 1
(e

iα
λ − e

−iα−1
λ ) + e

iα+1
−λ

)
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Similarly, for φ′M, we define privacy loss RV LQ,P as follows

LQ,P (o) = log

(
q(o)

p(o)

)
=


−1
λ , o ≤ 0

2o−1
λ , 0 < o ≤ 1

1
λ , o > 1

Therefore, we have

φ′M(α) =

∫ 0

−∞
e
−|o−1|
λ · e

−αi
λ do+

1

2λ

∫ 1

0

e
−|o−1|
λ e

2o−1
λ iαdo+

∫ ∞
1

e
−|o−1|
λ e

iα
λ do

=
1

2

(
e
iα
λ +

1

2iα+ 1
(e

iα
λ − e

−iα−1
λ ) + e

iα+1
−λ

)

Lemma 35 (Gaussian Mechanism). Let Gaussian mechanism is defined asM(D) = f(D) +N (0, σ2). For
any α ∈ R and σ > 0, we have φM(α) = φ′M(α) = e

−1

2σ2
(α2−iα).

Proof. For Gaussian mechanism, no matter what the dimensionality of the output sapce is, the dominating
distributions will always be 1D, and that extends to subsampled-gaussian as well. In the proof, we consider

the worst-case pair p(o) = 1√
2πσ2

e−
(o−1)2

2σ2 , q(o) = 1√
2πσ2

e−
o2

2σ2 .

Follow the definion of privacy loss RV, we have LP,Q(o) = 2o−1
2σ2 and LQ,P (o) = 1−2o

2σ2 . Then we have

φM(α)[eiα log(p/q)] =

∫ ∞
−∞

1√
2πσ2

e
(o−1)2

−2σ2 e
(2o−1)iα

2σ2 do = e
α2−iα
−2σ2

Similarly,

φ′M(α)[eiα log(p/q)] =

∫ ∞
−∞

1√
2πσ2

e
(o)2

−2σ2 e
(1−2o)iα

2σ2 do = e
α2−iα
−2σ2

Besides basic mechanisms, all mechanisms with discrete outputs admit an analytical φ function by defini-
tion.

Definition 36 (φ-function of mechanisms with discrete outputs). Let p, q be the probability mass function
induced byM,

φM(α) =
∑
o∈O

elog p(o)+iα(log p(o)−log q(o)) and φ′M(α) =
∑
o∈O

elog q(o)+iα(− log p(o)+log q(o)).

This function can be represented by two vectors that lists the probability masses at o from p and q. When
evaluating log φM(α) at a given α, we could use the log-sum-exp trick to improve the numerical stability.
Overall the space and time in representing these functions are linear in the size of the output space.

Provided that the worst-case pair of distributions are known, this procedure allows us to compose over
exponential mechanisms [McSherry and Talwar, 2007], Report-noisy-max, as well as other complex mechanisms
that arise out of post-processing of continuous output mechanisms, e.g., NoisyScreening [Zhu et al., 2020]
that had been used as a practical alternative to sparse vector techniques.
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D.2 Handling probability mass at ∞
One of the motivations of the work is for us to handle the situations where there is a non-zero probability
mass where the privacy loss r.v. is at infinity. This naturally happens in propose-test-rease-style algorithm
[Dwork and Lei, 2009] where we first construct a differentially private upper bound of the local sensitivity (or
other data-dependent quantities) then calibrate noise according to the local sensitivity. The issue is that
there is always a non-zero probability where the upper bound is not valid. Standard (ε, δ)-DP handles this
case at ease, but modern techniques such as RDP struggles as such a mechanism does not satisfy RDP for
any α > 0.

In this case, Lemma 5 can be more explicitly rewritten into.

Lemma 37. Let D,D′ be the worst-case pair of datasets forM, and P =M(D), Q =M(D′) then

δM(ε) = max{δP (ε), δQ(ε)}

where

δP (ε) = Pr[LP,Q =∞] +

(
Pr[ε < LP,Q <∞]− eεPr[LQ,P < −ε]

)
δQ(ε) = Pr[LQ,P =∞] +

(
Pr[ε < LQ,P <∞]− eεPr[LP,Q < −ε]

)

Proposition 38 (Composition). Let L(1)
P,Q′ , ..., L

(k)
P,Q′ be the privacy loss R.V. of mechanism M1, ...,Mk

(L(i)
Q′,P is defined analogously). Then, the δP (ε) and δQ(ε) of the composed mechansims are as follow:

δP (ε) = 1−
k∏
i=1

(1− Pr[L
(i)
P,Q′ =∞]) +

(
Pr[ε < L̃P,Q′ <∞]− eεPr[L̃Q′,P < −ε]

)

δQ(ε) = 1−
k∏
i=1

(1− Pr[L
(i)
Q′,P =∞]) +

(
Pr[ε < L̃Q′,P <∞]− eεPr[L̃P,Q′ < −ε]

)
where L̃P,Q′ is defined as the privacy loss R.V. of the composed mechanisms that excludes ∞.

The above essentially says that we can handle the cases with ∞ separately, and compose the characteristic
function of the sub-probability measure that excludes ∞.

E φ-function with discretization and experimental details
There are cases when the closed-form φ-functions do not exist. For example, in the subsample mechanisms, the
privacy loss distribution is complicated and continuous, suggesting that we cannot derive an exact closed-form
expression naively. In this section, we first provide a discretization-based solution and analyze its error bound.
Later, we develop an efficient approximation method, “Double quadrature”.

Algorithm 2 φ-function approximation
Input: The output interval [−S, S], pdf p(·), q(·) and N .
1: Set N equidistant points: oj = −S + j4o, where 4o = 2S/N, j = 0, ..., N − 1.
2: L−P,Q, L

−
Q,P ← the lower approximations of LP,Q, LQ,P using Definition 39.

3: Construct φ−MP
(α): φ−MP

(α)←
∑
oj
elog p̃(oj)+iαL

−
P,Q(oj), where p̃(oj) = p(oj)4o.

4: Construct φ−MQ
(α): φ−MQ

(α)←
∑
oj
elog q̃(oj)+iαL

−
Q,P (oj), where q̃(oj) = q(oj)4o.

5: Return φ−MP
and φ−MQ

.

The main challenge in approximating φ-function for continuous mechanisms is that an upper/lower bound
of φ-function does not necessarily attain the upper/lower bound of privacy costs. Motivated by recent



Yuqing Zhu, Jinshuo Dong, Yu-Xiang Wang

work [Koskela et al., 2021] that truncates the privacy loss R.V. range to discretize subsample Gaussian
mechanism, we consider discretizing the output domain. Our choice on the output domain instead of the
privacy loss R.V. range is because many recent advances in communication-efficient private learning require
the output space to be discrete. Note that the output domain is the output domain of the dominating pair.
There always exists a one-dimension tightly dominating pair for any mechanisms as we have shown in the
main results. The approximation procedure given in Algorithm 2 takes as input a truncated output domain
[−S, S] ⊂ O, the partition parameter N and the pdf measure of two privacy loss random variables. The
algorithm first introduces the grid approximation of privacy loss RVs using the following definition.

Definition 39 (Grid approximation of privacy loss R.V.). Given N equidistant points o1, ..., oN over the
interval [−S, S], We define L−P,Q(oj) = mint∈[j−1,j] LP,Q(ot) and L+

P,Q(oj) = maxt∈[j−1,j] LP,Q(ot) as the grid
approximation of the original privacy loss R.V., where LP,Q(ot) denotes the density of LP,Q when evaluated
at ot.

L−Q,P (oj) and L+
Q,P (oj) are defined analogously. Next, the algorithm constructs φ-function approximations

φ−MP
and φ−MQ

using similar ideas as that in Definition 36, except that we replace privacy loss R.V. with
their approximation alternatives. The idea behinds the approximation is to construct Riemann sum style
lower and upper bounds of δM(ε) using sampled points in the output interval. We formalize the idea using
the following lemma.

Lemma 40. Consider the truncation parameter goes to infinity, i.e., S → ∞, and privacy loss random
variable LP,Q and LQ,P is a monotonical function of the output random variable o. We have for all ε > 0,
the privacy profile δ(ε) of a continuous mechanismM is bounded by

δMmin(ε) ≤ δM(ε) ≤ δMmax(ε)

where δMmin
(ε) is constructed using Algorithm 1 with(φ−MP

, φ−MQ
) pair and δMmax

(ε) is constructed using
(φ+
MP

, φ+
MQ

) pair.

Proof. The proof sketch is first to show that the CDF FLP,Q(ε) is always smaller bounded by FL−P,Q
(ε)

when the monotonical condition is satisfied. Then we rewrite the privacy profile into the CDF forms and
demonstrate that a larger CDF leads to a smaller δ for any ε > 0.

FLP,Q(ε) =

∫ ∞
−∞

I

[
log

(
p(o)

q(o)

)
≤ ε
]
p(o)do (10)

≤
∑
j∈Z
4oI

[
log

(
min

t∈[j−1,j]

p(ot)

q(ot)

)
≤ ε
]
p(oj) (11)

= FL−P,Q
(ε) (12)

Note that the indicator function preserves the monotonic property, which implies that we can lower bound
FLP,Q(ε) using the left Riemann sum. Analogously, the CDF FLQ,P (−ε) is smaller than FL−Q,P (−ε) for all
ε > 0. Therefore, we have

δM(ε) = sup
D'D′

(
Pr[LP,Q > ε]− eεPr[LQ,P < −ε]

)
= 1− sup

P'Q

(
FLP,Q(ε) + eεFLQ,P (−ε)

)
≥ 1− sup

P'Q

(
FL−P,Q

(ε) + eεFL−Q,P
(−ε)

)
= δMmin

(ε)

The following corollary allows us to upper and lower bound privacy cost over composition.
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Corollary 41. Consider a simple composition ofM1 andM2 on datasets D and D′, we have

δM1min
+M2min

(ε) ≤ δM1+M2
(ε) ≤ δM1max+M2max

(ε)

Proof. We overload the LP,Q to denote the privacy R.V. over composition. The lower bound of the CDF
FLP,Q is given as follows:

FLP,Q(ε) =

∫ ∞
−∞

I

[
log

(
pM1·M2

(o)

qM1·M2
(o)

)
≤ ε
]
pM1,M2

(o)do

= 4o
∑
j∈Z

∑
r∈Z

I

[
log

(
pM1(or)

qM1
(or)

)
+ log

(
pM2(oj − or)
qM2

(oj − or)

)

≤ ε
]
pM1M2(oj)

≤ 4o
∑
j∈Z

∑
r∈Z

I

[
log

(
min

t1∈[r−1,r]

pM1(ot1)

qM1
(ot1)

)

+ log

(
min

t2∈[oj−or−1,oj−or]

pM2
(t2)

qM2(t2)

)
≤ ε
]
pM1M2(oj)

= FL−P,Q
(ε)

Gaussian quadrature: We apply Gaussian quadrature to efficiently evaluate integral in computing CDFs.
Note that the integral is defined over an infinite integral (see Theorem 18), we will use the following lemma
to convert the integral range to [−1, 1] before we apply Gaussian quadrature.

Lemma 42 (Integrals over infinite intervals). Let f(x) is defined over the infinite interval. We have∫ ∞
−∞

f(x)dx =

∫ +1

−1

f

(
t

1− t2

)
1 + t2

(1− t2)2
dt

By a change of variables, we can convert the infinite integral to a finite integral, which can be easily
implemented using numerical integration methods.

Double quadrature: To improve the time complexity of Algorithm 2, which is linear with a sufficiently
large N , we next apply Gaussian quadrature to approximate φ-function when its closed-form expression is
not available. We call this algorithm “Double quadrature”, as we use it twice, one is in the approximation for
φ-function, and another is for the CDF computation. In the experiment section, we show that the “Double
quadrature” algorithm matches the Fourier Accountant approach [Koskela and Honkela, 2021] while only
samples hundreds of points in evaluating Poisson Subsample Mechanisms.

E.1 Error analysis
In this section, we provide the end-to-end error analysis of AFA by looking into the following three scenar-
ios.

1. φ-functions have closed-form expressions.

2. φ-functions with discretization is used (see Algorithm 2).

3. Double quadrature algorithm: φ-function is approximated using Gaussian quarature.

Error analysis closed-form φ functions. When we have closed-form φ-functions (see Exp1 and Exp2),
the numerical error is only caused by the quadrature method, which is used to convert φ-function to CDFs.
Therefore, we can tap into the classical results from numerical analysis that bounds the error in quadrature
methods (see, e.g., Chapter 7 of Conte and de Boor “Elementary Numerical Analysis”) with an asymptotic
scaling more or less O(1/nα) for integrating an αth times differentiable functions, and faster for more advanced
rules, see the following Lemma.
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Lemma 43. [Stoer and Bulirsch, 2002] Let the function f(·) has 2n continuous derivatives over the integral
[a, b] and n is the number sample points. We have the error estimate

(b− a)2n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ζ), a < ζ < b

From a practical standpoint, “Scipy.integrate” allows us to specify a desired error tolerance (e.g., O(10−14)
used in experiments). The error induced in CDFs will be amplified by eε in the final δ(ε) evaluation according
to Lemma 5, which is still negligible in practice. The inverse (ε as a function of δ) requires an additional
binary search, which calls δ(ε) a handful of times.

In the cases when the φ-function does not have a closed-form expression, we proposed two approaches to
approximate the -function: Algorithm 2 and Double Quadrature. In Algorithm 2, we discretize the support
of the dominating pairs using an equispaced grid approximation.

Error analysis with approximated φ functions. We analyzed the error caused by truncation, approxi-
mation of Algorithm 2 as follows.

1. The error caused by truncation (ignore o ≥ S or o ≤ −S).

2. The error arising from Riemann Sum approximation.

3. The error caused by using Gaussian quadrature to compute CDF.

The first two errors arising from the approximation of φ-function and the third error is the numerical error
when we apply Gaussian quadrature to compute the integral in privacy profile. The third term is often
negligible as we discuss earlier. When p and q are determined, we bound the tail integral

∫∞
S

max(p(o), q(o))do

and
∫ −∞
−S max(p(o), q(o))do using the Chernoff bound and denote it is upper bounded by δtail. Then a union

bound over k compositions will bound all bad events that the output happens to be out of [−S, S]k. Lastly,
we estimate the total error by subtracting and adding kδtail to the lower and the upper Riemann sums bound,
respectively.

Theorem 44. Denote the privacy profile of machanism M over k-fold composition as δ(k)
M . Let δ(k)

Mmin
(ε)

and δ(k)
Mmax

(ε) denote the lower and upper bounds of Riemann sum approximation over k-fold composition.
Denote δtail be the upper bound of tail integral, i.e.,Pr[o > S] + Pr[o < S] ≤ δtail. Then we have

δ
(k)
Mmin

(ε)− kδtail < δ
(k)
M < kδtail + δ

(k)
Mmax

(ε)

Double Quadrature For the second approach — adaptive approximation via double quadrature, we do not
have an asymptotic analysis of the bounds but ‘scipy.integrate.dblquad’ does provide us valid bounds. The
“double quadrature” approach is the best-performing algorithm we recommend in practice.

E.2 Experimental details in Exp 3
Theorem 11 allows us to consider the following one dimension9 distribution as the worst-case pair neighboring
distribution for the Poisson subsampling Gaussian mechanism.

p(o) = γ
1√

2πσ2
e

(o−1)2

−2σ2 + (1− γ)
1√

2πσ2
e

o2

−2σ2

q(o) =
1√

2πσ2
e

o2

−2σ2

Therefore, the pairing privacy loss RV is given by

LP,Q = log

(
γe

2o−1

2σ2 + 1− γ
)
, LQ,P = − log

(
γe

2o−1

2σ2 + 1− γ
)

9the error analysis of the (P, (1− γ)P + γQ) dominating pair is similar
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We cannot derive a closed-form expression of φ-function naively for the above privacy loss RVs. Therefore, we
consider the discretization method (Algorithm 2) to approximate the Poisson subsampling.

We set S = 100 and N = 105 to discretize the exact integral of o, which is [−∞,∞] for the Gaussian
mechanism. We use γ = 0.01 and σ = 2.0, for number of compositions up to 1500. We now provide the error
analysis of our Poisson subsample Gaussian experiments. Recall the error analysis in Theorem 44, we first
bound the error caused by truncation (ignore o ≥ S or o ≤ −S).

The error caused by trunction consists of the tail integral t1 :=
∫∞
S

max(p(o), q(o))do and t2 :=∫ −∞
−S max(p(o), q(o))do. We can upper bound t1 and t2 using the tail bound of Gaussian distribution.

t1 ≤ Pr[N (1, σ2) > S] ≤ e
(S−1)2

−2σ2

The first inequality is because p(o) is a mixture of two Gaussian distribution N (0, σ2) and N (1, σ2). The

second inequality follows the tail bound of Gaussian distribution Pr[N (0, σ) > x] ≤ e
−x2

2σ2 . Similarly, we can

upper bound t2 by e
S2

−2σ2 .

We use δtail to denote the failure probability when o happens to be out of the range [−S, S]. Here, we have

δtail ≤ e
S2

−2σ2 + e
(S−1)2

−2σ2 . Substituting S = 100, k = 1500 and σ = 2.0 into Theorem 44, we have k · δtail is
upper bounded by e−1000, which is neglectable in the δ term. For the error caused by discretization, we plot
the valid lower and upper bound using Algorithm 2.

In “Double quadrature”, we apply Gaussian quadrature to compute φ(M) and φ′(M) directly. That is, we
apply Gaussian quadrature to solve the integration

φ(M)(α) =

∫ ∞
−∞

eiα log(p(o)/q(o))q(o)do

and
φ′(M)(α) =

∫ ∞
−∞

eiα log(q(o)/p(o))p(o)do

Though we did not include an error analysis of the Double quadrature algorithm, the algorithm exactly
matches the result from Koskela et al. [2021] and its computation time for each δ(ε) query is only around 0.2
sec.

F An “optimal” Renyi DP to DP conversion?
In this section, we provide the detailed description of how we generated the improved “optimal” conversion
rule in Figure 1 based on an extension of the technique of Balle et al. [2020].

Specifically, Balle et al. [2020] shows that (α, ε)-RDP implies f -DP for any tradeoff function f that lower
bounds the following tradeoff region:{

(x, y) ∈ [0, 1]2
∣∣∣∣ xα(1− y)1−α + (1− x)αy1−α ≤ e(α−1)ε(α)

yα(1− x)1−α + (1− y)αx1−α ≤ e(α−1)ε(α)

}
.

Then one can further convert this f -DP to (ε, δ)-DP according to our formula in Section B (originally due to
[Dong et al., 2021].)

The main improvement that we propose is to consider the mechanism specific version of the same conversion
rule, which converts the RDP function εM(·) satisfied by a mechanismM to an f -DP ofM, which involves
taking the pointwise maximum of all f functions implied by each (α, εM(α))-RDP. The key to obtain the
conversion that we have shown in Figure 1 was to consider and extended version of RDP that also includes
0 < α < 1, which we find to have a nontrivial effect in the resulting tradeoff function.

In the remainder of the section, we will first explain how the two-stage conversion works in Section F.1 and
Section F.2 and then comment on whether the rule can be improved in Section F.3.
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F.1 RDP to f-DP
The hypothesis testing interpretation (f -DP) of RDP is not entirely tight. Here we present a simplified
derivation of the tradeoff function f implied by RDP via closedness to post-processing.

Consider any hypothesis testing procedure h : O → {0, 1} that uses the output o of an (α, ε)-RDP mechanism.
“1” denotes “Rejecting the null hypothesis” that individual z is not in the dataset, indicating that h predicts
that z is in the dataset. “0” denotes the complement event of “Failing to reject the null hypothesis”, indicating
that h predicts that z is not in the dataset. By the closure to post-processing property, h(o) satisfies
(α, ε)-RDP. By definition of RDP,

1

α− 1
logEh(o)∼q

[
(
p

q
)α
]
≤ ε (13)

for all pairs of neighboring datasets that induce distributions p, q.

Let q be the distribution where individual z is not in the dataset and p otherwise. Let x denote the probability
of false positive (Type I error) — z is not in the dataset but the prediction is 1; and y denote the probability
of false negative (Type II error) — z is in the dataset but the prediction is 0.

For α > 1, (13) is equivalent to

(1− y)αx1−α + yα(1− x)1−α ≤ e(α−1)ε,

xα(1− y)1−α + (1− x)αy1−α ≤ e(α−1)ε,

where the first constraint follows by taking the moments of the density ratio of the binary random variable
h(o), by noting that the event for prediction 1 is false positive under q but true positive under q. The second
constraint follows from swapping p, q.

When α = 1, by the definition of KL-divergence, (13) is equivalent to

x log(
x

1− y
) + (1− x) log(

1− x
y

) ≤ ε,

y log(
y

1− x
) + (1− y) log(

1− y
x

) ≤ ε.

Finally, when 0 < α < 1, (13) is equivalent to

(1− y)αx1−α + yα(1− x)1−α ≥ e(α−1)ε

xα(1− y)1−α + (1− x)αy1−α ≥ e(α−1)ε.

Note that the only difference from the case when α > 1 is the direction of the inequality. Also note that the
symmetry of the two inequalities ensures that it suffices to consider α ≥ 0.510.

The f-DP of a mechanism satisfying ε(α)-RDP for a family α is therefore the pointwise maximum of the
resulting f function for all α.

F.2 f-DP to (ε, δ)-DP
fDP is related to (ε, δ)-DP in the following lemma.

Lemma 45. Let f be the lower bound of Type II error given Type I error, then mechanisms that satisfy fDP
with function f also obeys a family of (ε(x), δ(x))-DP for all x ∈ [0, 1] such that

δ(x) = 1− f(x)− (−∂f(x))x

ε(x) = log(−∂f(x))

where ∂f(x) is any subgradient of f at x. Recall that by definition of subgradient, g is a subgradient of f at x
if for all y ∈ Dom(f), f(y) ≥ f(x) + g · (y − x) (note that Dom(f) = [0, 1] for trade-off function f).

10Let 0 < α < 0.5 and α′ = 1 − α. Notice that (1 − y)αx1−α + yα(1 − x)1−α = xα
′
(1 − y)1−α

′
+ (1 − x)α

′
y1−α.

Next, check that for all positive ε and 0 < α < 0.5, e(α−1)ε < e(α
′−1)ε. In other words, the bound with α in (0, 0.5) is

never active.
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Numerically stable computation of ε given δ or δ given ε involves working with ∂f and 1− f in logarithmic
scale. Specifically, we find x such that there exists subgradient g ∈ ∂f(x) such that

log(δ) ≥ log(elog(1−f(x)) − elog(−g)+log(x)). (14)

Then it is true that ε(δ) = log(−g). In fact, a more general procedure finds an x (why any feasible x works is
left as an exercise) such that ∂f(x) contains g satisfying (14). It then follows that

ε(δ) = min
g∈∂f(x)

log(−g).

When f(x) is differentiable everywhere, we can solve (14) as a nonlinear equation and then we can write
ε(δ) = log(−f ′(x(δ))) if f ′(x(δ)) < −1, and ε(δ) = 0 otherwise.

Similarly, δ(ε) can be found by solving the nonlinear equation log(−∂f(x)) = ε for x and then plug into
(14):

δ(ε) = elog(1−f(x(ε))) − elog(−∂f(x(ε)))+log(x(ε)).

In other word, provided that log(1 − f(x)) and log(−∂f(x)) admit an analytical implementation, we can
convert f -DP to (ε, δ)-DP in a numerically stable fashion.

F.3 Optimality of this conversion rule?
A natural question to ask is that whether the aforementioned conversion rule from RDP to (ε, δ)-DP is
optimal. The answer is yes and no. Let us explain.

From Figure 1, we can clearly see that for the randomized response mechanism, the resulting conversion
matches exactly with the exact (ε, δ)-DP obtained via the privacy-profile.

Moreover, observe that the converted f -function of the Gaussian mechanism touches that of the randomized
response mechanism which satisfies the same RDP bound for all α > 0. For this reason, we know that for
Gaussian mechanism, the conversion rule cannot be improved in any ways that strictly improves the stated
conversion rule at all inputs (Type I error).

This example, however, does not rule out the possibility of improving the RDP-implied f -DP elsewhere for
Gaussian mechanism. Therefore, it is unclear whether the proposed RDP-to-DP conversion rule is optimal in
the strong sense:

Is it optimal for all RDP functions and all input (type I error) at the same time?

Our conjecture is positive, but it is beyond the scope of the current paper to formally prove this.

A promising direction is to compare our approach to the optimal conversion rule proposed by Asoodeh
et al. [2021] (which uses a very different approach to derive almost the same formula as that in [Balle et al.,
2020]).

G Omitted proofs in Appendix B
Lemma 46.

Hα(Q‖P ) = αHα−1(P‖Q)− α+ 1.

Proof of Lemma 46. Let p, q be the Radon–Nikodym derivative of P and Q with respect to a common
dominating measure µ (say 1

2P + 1
2Q). Then Hα(P‖Q) =

∫
(p − αq)+ dµ and Hα(Q‖P ) =

∫
(q − αp)+ dµ.

We will drop the dµ notation in the integrals for convenience.

Hα(Q‖P ) =

∫
(q − αp)+ = α

∫
(α−1q − p)+

= α

∫
(α−1q − p) + α

∫
(p− α−1q)+

= α(α−1 − 1) + αHα−1(P‖Q) = αHα−1(P‖Q)− α+ 1

where we used the fact that a+ − (−a)+ = a on the second line.
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Proof of Lemma 19. Let A = {ω : dP
dQ (ω) > α} = {ω : log dQ

dP (ω) 6 logα−1}. We have

Hα(P‖Q) = Eω∼Q[(
dP

dQ
(ω)− α)+]

= Eω∼Q[(
dP

dQ
(ω)− α) · 1A]

= P [A]− αQ[A] = F (− logα)− αG(− logα).

The second identity can be obtained in a similar fashion.

Proof of Lemma 22. Follow directly from Lemma 48.

Proof of Lemma 23. The first expression is the direct consequence of f ′
(
1−F (x)

)
= −ex and the well-known

fact in convex analysis that for a convex function f , f ′ and (f∗)′ are inverse functions of each other.

Let t = −ex. Then from Lemma 48 we have Hex(Q‖P ) = 1 + f∗(t) and hence d
dtHex(Q‖P ) = (f∗)′(t).

Therefore,

F (x) = 1− (f∗)′(t) = 1− d

dt
Hex(Q‖P ) = 1− dx

dt
· d

dx
Hex(Q‖P )

= 1−
(

dt

dx

)−1

· d

dx
Hex(Q‖P ) = 1 + e−x · d

dx
Hex(Q‖P )

Now the first identity about G is a direct consequence of Lemma 22, and the second one is a direct consequence
of Lemma 19.

Lemma 47. G(x) =
∫ x
−∞ et dF (t).

Proof of Lemma 47. Let h : R→ R be a Borel measurable function. Then∫
h(x) dG(x) =

∫
h
(

log dQ
dP (ω)

)
dQ(ω) =

∫
h
(

log dQ
dP (ω)

)
· dQ

dP (ω) dP (ω) =

∫
h(x)ex dF (x)

The choice of h as the indicator function of (−∞, x] yields the second identity.

Lemma 48. The functions f, F,G and the hockey-stick divergence have the following relations:

f(1− F (x)) = G(x)

f ′
(
1− F (x)

)
= −ex

Heε(Q‖P ) = 1 + f∗(−eε)

Proof of Lemma 48. The first identity follows from the definition of the trade-off function and Neyman–
Pearson lemma. In fact, 1− F (x) and G(x) are the type I and type II errors of the likelihood ratio test with
threshold at x. Taking derivative with respect to x on both sides of the first identity, we have

f ′(1− F (x)) · (−F ′(x)) = G′(x).

Now the second identity follows by plugging in Lemma 47.

Proof of Lemma 25. It is known that hockey-stick divergence is determined by the trade-off function, namely
Heε(Q‖P ) = 1 + f∗(−eε). By Lemma 23, we know the distributions of log dP

dQ (under P and Q respectively)
are also determined by the trade-off function f . Therefore, φ and φ′ are determined by f . In particular, if
we can find P ′, Q′ such that f = T [P ′, Q′], then we can use φ(t) = EP ′eit log dP ′

dQ′ and φ(t) = EQ′eit log dQ′
dP ′ to

compute φ and φ′.
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From the proof of Proposition 2.2 of Dong et al. [2021], we know that we can pick P ′ as the uniform
distribution over [0, 1] and Q′ has density −f ′(1− x) = |f ′(1− x)| on [0, 1]. Therefore,

φ(t) = EP ′eit log dP ′
dQ′ =

∫ 1

0

e−it log dQ′
dP ′ dx

=

∫ 1

0

e−it log |f ′(1−x)| dx =

∫ 1

0

e−it log |f ′(x)| dx

The second identity can be proved similarly.
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