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Abstract

We study model selection in linear bandits,
where the learner must adapt to the dimen-
sion (denoted by d?) of the smallest hypoth-
esis class containing the true linear model
while balancing exploration and exploitation.
Previous papers provide various guarantees
for this model selection problem, but have
limitations; i.e., the analysis requires favor-
able conditions that allow for inexpensive sta-
tistical testing to locate the right hypothesis
class or are based on the idea of “corralling”
multiple base algorithms, which often per-
forms relatively poorly in practice. These
works also mainly focus on upper bounds. In
this paper, we establish the first lower bound
for the model selection problem. Our lower
bound implies that, even with a fixed action
set, adaptation to the unknown dimension
d? comes at a cost: There is no algorithm
that can achieve the regret bound Õ(

√
d?T )

simultaneously for all values of d?. We pro-
pose Pareto optimal algorithms that match
the lower bound. Empirical evaluations show
that our algorithm enjoys superior perfor-
mance compared to existing ones.

1 INTRODUCTION

Model selection considers the problem of choosing an
appropriate hypothesis class to conduct learning, and
the hope is to optimally balance two types of error:
the approximation error and the estimation error. In
the supervised learning setting, the learner is provided
with a (usually nested) sequence of hypothesis classes
Hd ⊂ Hd+1. As an example, Hd could be the hypothe-
sis class consisting of polynomials of degree at most d.
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The goal is to design a learning algorithm that adap-
tively selects the best of these hypothesis classes, de-
noted byH?, to optimize the trade-off between approx-
imation error and estimation error. Structural Risk
Minimization (SRM) (Vapnik and Chervonenkis, 1974;
Vapnik, 1995; Shawe-Taylor et al., 1998) provides a
principled way to conduct model selection in the stan-
dard supervised learning setting. SRM can automat-
ically adapt to the complexity of the hypothesis class
H?, with only additional logarithmic factors in sample
complexity. Meanwhile, cross-validation (Stone, 1978;
Craven and Wahba, 1978; Shao, 1993) serves as a help-
ful tool to conduct model selection in practice.

Despite the importance and popularity of model se-
lection in the supervised learning setting, only very
recently have researchers started to study on model se-
lection problems in interactive/sequential learning set-
ting with bandit feedback. Two additional difficulties
are highlighted in such bandit setting (Foster et al.,
2019): (1) decisions/actions must be made online/se-
quentially without seeing the entire dataset; and (2)
the learner’s actions influence what data is observed,
i.e., we only have partial/bandit feedback. In the sim-
pler online learning setting with full information feed-
back, model selection results analogous to those in
the supervised learning setting are obtained by sev-
eral parameter-free online learning algorithms (McMa-
han and Abernethy, 2013; Orabona, 2014; Koolen and
Van Erven, 2015; Luo and Schapire, 2015; Orabona
and Pál, 2016; Foster et al., 2017; Cutkosky and Boa-
hen, 2017; Cutkosky and Orabona, 2018).

The model selection problem for (contextual) linear
bandits is first introduced by Foster et al. (2019). They
consider a sequence of nested linear classifiers in Rdi
as the set of hypothesis classes, with d1 < d2 < · · · <
dM = d. The goal is to adapt to the smallest hypoth-
esis class, with apriori unknown dimension d?, that
preserves linearity in rewards. Equivalently, one can
think of the model selection problem as learning a true
reward parameter θ? ∈ Rd, but only the first d? en-
tries of θ? contain non-zero values. The goal is to de-
sign algorithms that could automatically adapt to the
intrinsic dimension d?, rather than suffering the am-
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bient dimension d. In favorable scenarios when one
can cheaply test linearity, Foster et al. (2019) pro-
vide an algorithm with regret guarantee that scales as
Õ(K1/4T 3/4/γ2 +

√
TKd?/γ

4), where K is the num-
ber of arms and γ is the smallest eigenvalue of the
expected design matrix. The core idea therein is to
conduct a sequential test, with sublinear sample com-
plexity, to determine whether to step into a larger hy-
pothesis class on the fly. Although this provides the
first guarantee for model selection in the linear ban-
dits, the regret bound is proportional to the number
of arms K and the reciprocal of the smallest eigen-
value, i.e., γ−1. Both K and γ−1 can be quite large
in practice, thus limiting the application of their algo-
rithm. Recall that, when provided with the optimal
hypothesis class, the classical algorithm LinUCB (Chu
et al., 2011; Auer, 2002) for linear bandit achieves a

regret bound Õ(
√
d?T ), with only polylogarithmic de-

pendence on K and no dependence on γ−1.

The model selection problem in linear bandits was fur-
ther studied in many subsequent papers. We roughly
divide these methods into the following two sub-
categories:

1. Testing in Favorable Scenarios. The algorithm
in Ghosh et al. (2020) conducts a sequence of sta-
tistical tests to gradually estimate the true sup-
port (non-zero entries) of θ?, and then applies stan-
dard linear bandit algorithms on identified sup-
port. The regret bound of their algorithm scales

as Õ(d2/γ4.65 + d
1/2
? T 1/2), where γ = min{|θ?,i| :

θ?,i 6= 0} is the minimum magnitude of non-zero en-
tries in θ?. Their regret bound not only depends on
the ambient dimension d but also scales inversely
proportional to a small quantity γ. Their guaran-
tee becomes vacuous when d and/or γ−1 are large.
Chatterji et al. (2020) consider a different model
selection problem where the rewards come from ei-
ther a linear model or a model with K indepen-
dent arms. Their algorithm also relies on sequen-
tial statistical testing, which requires assumptions
stronger than the ones used in Foster et al. (2019)
(thus suffering from similar problems).

2. Corralling Multiple Base Algorithms. An-
other approach maintains multiple base learners
and use a master algorithm to determine sample
allocation among base learners. This type of algo-
rithm is initiated by the Corral algorithm (Agarwal
et al., 2017). Focusing on our model selection set-
ting, the base learners are usually constructed using
standard linear bandit algorithms with respect to
different hypothesis classes (dimensions). To give
an example of the Corral-type of algorithm, the
Smooth Corral algorithm developed in Pacchiano

et al. (2020b) enjoys regret guarantees Õ(d?
√
T ) or

Õ(d
1/2
? T 2/3). Other algorithms of this type, includ-

ing some concurrent works, can be found in Abbasi-
Yadkori et al. (2020); Arora et al. (2020); Pacchiano
et al. (2020a); Cutkosky et al. (2020, 2021).

Note that above algorithms either only work in fa-
vorable scenarios when some critical parameters, e.g.,
γ−1 and K, are not too large or must balance over
multiple base algorithms which often hurts the empir-
ical performance. They also mainly focus on devel-
oping upper bounds for the model selection problem
in linear bandits. In this paper, we explore the fun-
damental limits (lower bounds) of the model selection
problem and design algorithms with matching guar-
antees (upper bounds). We establish a lower bound,
using only a fixed action set, indicating that adapta-
tion to the unknown intrinsic dimension d? comes at a
cost: There is no algorithm that can achieve the regret
bound Õ(

√
d?T ) simultaneously for all values of d?.

We also develop a Pareto optimal algorithm, with ideas
fundamentally different from “testing” (Foster et al.,
2019; Ghosh et al., 2020) and “corralling” (Pacchiano
et al., 2020b; Agarwal et al., 2017), to bear on the
model selection problem in linear bandits. Our algo-
rithm is built upon the construction of virtual mixture-
arms, which is previously studied in continuum-armed
bandits (Hadiji, 2019) and K-armed bandits (Zhu and
Nowak, 2020). We adapt their methods to our setting,
with new techniques developed to deal with the linear
structure, e.g., the construction of virtual dimensions.

1.1 Contribution and Outline

We briefly summarize our contributions as follows.

• We review the model selection problem in linear
bandits, and additionally define a new parameter
(in Section 2) that reflects the tension between time
horizon and the intrinsic dimension. This param-
eter provides a convenient way to analyze high-
dimensional linear bandits.

• We establish the first lower bound for the model se-
lection problem in Section 3. Our lower bound in-
dicates that the model selection problem is strictly
harder than the problem with given optimal hy-
pothesis class: There is no algorithm that can
achieve the non-adaptive Õ(

√
d?T ) regret bound

simultaneously for all values of d?. We addition-
ally characterize the exact Pareto frontier of the
model selection problem.

• In Section 4, we develop a Pareto optimal algorithm
that is fundamentally different from existing ones
relying on “testing” or “corralling”. Our algorithm
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is built on the construction of virtual mixture-arms
and virtual dimensions. Although our main algo-
rithm is analyzed under a mild assumption, we also
provide a workaround.

• We conduct experiments in Section 5 to evaluate
our algorithms. Our main algorithm shows supe-
rior performance compared to existing ones. We
also show that our main algorithm is fairly robust
to the existence of the assumption used in our anal-
ysis.

1.2 Other Related Work

Bandit with Large/Continuous Action Space.
Adaptivity issues naturally arises in bandit problems
with large or infinite action space. In continuum-
armed bandit problems (Agrawal, 1995), actions are
embedded into a bounded subset X ⊆ Rd with a
smooth function f governing the mean payoff for each
arm. Achievable theoretical guarantees are usually in-
fluenced by some smoothness parameters, and an im-
portant question is to design algorithms that adapt
to these unknown parameters, as discussed in Bubeck
et al. (2011). Locatelli and Carpentier (2018) show
that, however, no strategy can be optimal simulta-
neously over all smoothness classes. Hadiji (2019)
establishes the Pareto frontier for continuum-armed
bandits with Hölder reward functions. Adaptivity is
also studied in the discrete case with a large action
space (Wang et al., 2008; Lattimore, 2015; Chaudhuri
and Kalyanakrishnan, 2018; Russo and Van Roy, 2018;
Zhu and Nowak, 2020). Lattimore (2015) studies the
Pareto frontier in standard K-armed bandits. Zhu and
Nowak (2020) develop Pareto optimal algorithms for
the case with multiple best arms.

High-Dimensional Linear Bandits. As more and
more complex data are being used and analyzed, mod-
ern applications of linear bandit algorithms usually in-
volve dealing with ultra-high-dimensional data, some-
times with dimension even larger than time horizon
(Deshpande and Montanari, 2012). To make progress
in this high-dimensional regime, one natural idea is to
study (or assume) sparsity in the reward vector and
try to adapt to the unknown true support (non-zero
entries). The sparse bandit problem is strictly harder
than the model selection setting considered here due
to the absence of the hierarchical structures. Con-
sequently, a lower bound on the regret of the form
Ω(
√
dT ), which scales with the ambient dimension

d, is indeed unavoidable in the sparse linear bandit
problem (Abbasi-Yadkori et al., 2012; Lattimore and
Szepesvári, 2020). Other papers deal with the sparsity
setting with additional feature feedback (Oswal et al.,
2020) or further distributional/structual assumptions

(Carpentier and Munos, 2012; Hao et al., 2020) to cir-
cumvent the lower bound. These high-dimensional lin-
ear bandit problems motivate our investigation of the
relationship between time horizon and data dimension.

2 PROBLEM SETTING

We consider a linear bandit problem with a finite ac-
tion set A ⊆ Rd where |A| = K (Auer, 2002; Chu
et al., 2011). (The feature representation of) Each ar-
m/action a ∈ A is viewed as a d dimensional vector,
and its expected reward f(a) is linear with respect to
a reward parameter θ? ∈ Rd, i.e., f(a) = 〈a, θ?〉. As
standard in the literature (Lattimore and Szepesvári,
2020), we assume maxa∈A ‖a‖ ≤ 1 and ‖θ?‖ ≤ 1. The
bandit instance is said to have intrinsic dimension d?
if θ? only has non-zero entries on its first d? ≤ d coor-
dinates. The model selection problem aims at design-
ing algorithm that can automatically adapt to the un-
known intrinsic dimension d? in the interactive learn-
ing setting with bandit feedback.

At each time step t ∈ [T ],1 the algorithm selects an
action At ∈ A based on previous observations and
receives a reward Xt = 〈At, θ?〉 + ηt, where ηt is
an independent 1-sub-Gaussian noise. We define the
pseudo regret (which is random, due to randomness in

At) over time horizon T as R̂T =
∑T
t=1 〈θ?, a? −At〉,

where a? corresponds to the best action in action
set, i.e., a? = arg maxa∈A〈a, θ?〉. We measure the
performance of any algorithm by its expected regret
RT = E[R̂T ] = E[

∑T
t=1 〈θ?, a? −At〉].

We primarily focus on the high-dimensional linear ban-
dit setting with ambient dimension d close to or even
larger than (the allowed) time horizon T . We use
R(T, d?) to denote the set of regret minimization prob-
lems with time horizon T and any bandit instance with
intrinsic dimension d?. We emphasize that T is part of
the problem instance, which was largely neglected in
previous work focusing on the low dimensional regime
where T � d?. To model the tension between the
allowed time horizon and the intrinsic dimension, we
define the hardness level as

ψ (R(T, d?)) = min{α ≥ 0 : d? ≤ Tα} = log d?/ log T.

ψ(R(T, d?)) is used here since it precisely captures
the regret over the set of regret minimization problem
R(T, d?), as discussed later in our review of the Lin-
UCB algorithm and the lower bound. Since smaller
ψ(R(T, d?)) indicates easier problem, we define the
family of regret minimization problems with hardness

1Throughout the paper, we denote [n] = {1, 2, . . . , n}
for any positive integer n.
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level at most α as

HT (α) = {∪R(T, d?) : ψ(R(T, d?)) ≤ α},

where α ∈ [0, 1]. Although T is necessary to define
a regret minimization problem, the hardness of the
problem is encoded into a single parameter α: Prob-
lems with different time horizons but the same α are
equally difficult in terms of the regret achieved by Lin-
UCB (the exponent of T ). We explore the connection
d? ≤ Tα in the rest of this paper and focus on (poly-
nomial) dependence on T (i.e., the dependence on d?
is translated into the dependence on Tα). We are in-
terested in designing algorithms with worst case guar-
antees over HT (α), but without the knowledge of α.

LinUCB and Upper Bounds. In the standard set-
ting where d? is known, LinUCB Chu et al. (2011);

Auer (2002) achieves Õ(
√
d?T ) regret.2 For any prob-

lem in HT (α) with known α, one could run LinUCB

on the first bTαc coordinates and achieve Õ(T (1+α)/2)
regret. The goal of model selection is to achieve the
Õ(T (1+α)/2) regret but without the knowledge of α.

Lower Bounds. In the case when d? ≤
√
T , Chu

et al. (2011) prove a Ω(
√
d?T ) lower bound for linear

bandits. When d? ≥
√
T is the case, a lower bound

Ω(K1/4T 3/4) is developed in Abe et al. (2003).

3 LOWER BOUND AND PARETO
OPTIMALITY

We study lower bounds for model selection in this sec-
tion. We show that simultaneously adapting to all
hardness levels is impossible. Such fundamental limi-
tation leads to the established of Pareto frontier.

Our lower bound is constructed by relating the regrets
between two (sets of) closely related problems: We
show that any algorithm achieves good performance on
one of them necessarily performs bad on the other one.
Similar ideas are previously explored in continuum-
armed bandit and K-armed bandits (Locatelli and
Carpentier, 2018; Hadiji, 2019; Zhu and Nowak, 2020).
We study the linear case with model selection and es-
tablish the following lower bound.3 We use ω ∈ HT (α)
to represent any bandit regret minimization problem
with time horizon T and hardness level at most α (i.e.,
d? ≤ Tα).

2Technically, the regret bound is only achieved by
a more complicated algorithm SupLinUCB. However, it’s
common to use LinUCB as the practical algorithm. See
Chu et al. (2011) for detailed discussion.

3Our lower bound is quantitatively similar to the one
studied in K-armed bandits with multiple best arms (Zhu
and Nowak, 2020).

Theorem 1. Consider any 0 ≤ α′ < α ≤ 1 and B > 0
satisfying Tα ≤ B and bTα/2c ≥ max{Tα/4, Tα′ , 2}.
If an algorithm is such that supω∈HT (α′)RT ≤ B, then
the regret of the same algorithm must satisfy

sup
ω∈HT (α)

RT ≥ c T 1+αB−1, (1)

with a universal constant c.

Our lower bound delivers important messages to the
model selection problem in linear bandits. Most of
the previous efforts and open problems (Foster et al.,
2019; Pacchiano et al., 2020b) are made to match the
usual non-adaptive regret with known d? (or α). Our
lower bound, however, provides a negative answer to-
wards the open problem of achieving regret guarantees
Õ(T (1+α)/2) simultaneously for all hardness levels α.
We interpret this result next.

Interpretation of Theorem 1. Fix any linear ban-
dit algorithm. We consider two problem instances with
different hardness levels 0 ≤ α′ < α ≤ 1 (and satisfy
the constrains in Theorem 1). On one hand, if the al-
gorithm is such that supω∈HT (α′)RT = ω̃(T (1+α′)/2),
we know that this algorithm is already sub-optimal
over problems with hardness level α′. On the other
hand, suppose that the algorithm achieves the desired
regret Õ(T (1+α′)/2) over HT (α′). Eq. (1) then tells

us that supω∈HT (α)RT = Ω̃(T (1+2α−α′)/2), which is

clearly larger than the desired regret Õ(T (1+α)/2) over
problems with hardness level α.

If we aim at providing regret bounds with only poly-
logarithmic dependence on K in linear bandits (which
is usually the case for linear bandits with finite ac-
tion set (Auer, 2002; Chu et al., 2011)). our lower
bound also provides a negative answer to the open
problem of achieving a weaker guarantee Õ(T γd1−γ

? ) =

Õ(T γ+α(1−γ)), with γ ∈ [1/2, 1) (Foster et al., 2019),
simultaneously for all d? (or α).

In the model selection setting, the performance of any
algorithm should be a function of the hardness level
α: The algorithm needs to adapt the unknown α. To
further explore the fundamental limit for model selec-
tion in linear bandits, following Hadiji (2019); Zhu and
Nowak (2020), we define rate function to capture the
performance of any algorithm (in terms of its regret
dependence on polynomial terms of T ).

Definition 1. Let θ : [0, 1] → [0, 1] denote a non-
decreasing function. An algorithm achieves the rate
function θ if

∀ε > 0,∀α ∈ [0, 1], lim sup
T→∞

supω∈HT (α)RT

T θ(α)+ε
< +∞.
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Since there may not always exist a pointwise ordering
over rate functions, we consider the notion of Pareto
optimality over rate functions.
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Figure 1: Pareto Optimal Rates for Model Selection
in Linear Bandits.

Definition 2. A rate function θ is Pareto optimal if
it is achieved by an algorithm, and there is no other
algorithm achieving a strictly smaller rate function θ′

in the pointwise order. An algorithm is Pareto optimal
if it achieves a Pareto optimal rate function.

We establish the following lower bound for any rate
function that can be achieved by an algorithm designed
for model selection in linear bandits.

Theorem 2. Suppose a rate function θ is achieved by
an algorithm, then we must have

θ(α) ≥ min{max{θ(0), 1 + α− θ(0)}, 1}, (2)

with θ(0) ∈ [1/2, 1].

Fig. 1 illustrates the Pareto frontiers for the model se-
lection problem in linear bandits: The blue dashed line
represents the non-adaptive rate function achieved by
LinUCB with known α; Other curves represent Pareto
optimal rate functions (achieved by Pareto optimal al-
gorithms introduced in Section 4) for the model selec-
tion problem in linear bandits. Fig. 1 implies that no
algorithm can achieve the non-adaptive rate simulta-
neously for all α: any Pareto optimal curve has to be
higher than the non-adaptive curve at least at some
points.

Pareto Optimality of Corral-Type of Algo-
rithms. We remark that, accompanied with our
lower bound, the Smooth Corral algorithm presented
in Pacchiano et al. (2020b) is also Pareto optimal.

While only a Õ(d?
√
T ) regret bound is presented

for the Smooth Corral algorithm, upon inspection of
their analysis, we find that Smooth Corral can actually

match the lower bound in Eq. (2) by setting the learn-
ing rate as η = T−θ(0), for any θ(0) ∈ [1/2, 1). See
Appendix C.3 for a detailed discussion.

Although the Corral-type of algorithm (e.g., Smooth
Corral) is Pareto optimal, they may not be effective in
problems with specific structures (Papini et al., 2021).
We introduce a new Pareto optimal algorithm in the
next section, which is shown to be more practical than
Smooth Corral regarding model selection problems in
linear bandits (see Section 5).

4 PARETO OPTIMALITY WITH
NEW IDEAS

We develop a Pareto optimal algorithm LinUCB++ (Al-
gorithm 1) that operates fundamentally different from
algorithms rely on “testing” (Foster et al., 2019; Ghosh
et al., 2020) or “corralling” (Pacchiano et al., 2020b;
Agarwal et al., 2017). Our algorithm is built upon
the construction of virtual mixture-arms (Hadiji, 2019;
Zhu and Nowak, 2020) and virtual dimensions.

We first introduce some additional notations. For any
vector a ∈ Rd and 0 ≤ di ≤ d, we use a(di) ∈ Rdi to
represent the truncated version of a that only keeps
the first di dimensions. We also use [a1; a2] to repre-
sent the concatenated vector of a1 and a2. We denote
A(di) ⊆ Rdi as the “truncated” action (multi-) set,
i.e., A(di) = {a(di) ∈ Rdi : a ∈ A}. One can always
manually construct the truncated action set A(di) and
pretend to work with arms with truncated feature rep-
resentations (though their expected rewards may not
be aligned with the truncated feature representations).

Algorithm 1 LinUCB++

Input: Time horizon T and a user-specified parame-
ter β ∈ [1/2, 1).

1: Set: p = dlog2 T
βe, di = min{2p+2−i, d} and

∆Ti = min{2p+i, T}.
2: for i = 1, . . . , p do
3: Run LinUCB on a set of arms Si for ∆Ti rounds,

where Si contains all arms in A(di) and a set
of virtual mixture-arms constructed from previ-
ous iterations, i.e., {ν̃j}j<i. LinUCB is operated
with respect to an modified linear bandit prob-
lem with added virtual dimensions.

4: Construct a virtual mixture-arm ν̃i based on em-
pirical sampling frequencies of LinUCB above.

5: end for

We present LinUCB++ in Algorithm 1. LinUCB++ oper-
ates in iterations with geometrically increasing length,
and it invokes LinUCB (SupLinUCB) (Chu et al., 2011;
Auer, 2002) with (roughly) geometrically decreasing
dimensions. The core steps of LinUCB++ are summa-
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rized at lines 3 and 4 in Algorithm 1, which consists
of construction of virtual mixture-arms and virtual di-
mensions (the modified linear bandit problem). We
next explain in detail these two core ideas.

The Virtual Mixture-Arm. After each iteration
j, let p̂j denote the vector of empirical sampling fre-
quencies of the arms in that iteration, i.e., the k-th
element of p̂j is the number of times arm k, includ-
ing all previously constructed virtual mixture-arms,
was sampled in iteration j divided by the total num-
ber of time steps ∆Tj . The virtual mixture-arm for
iteration j is the p̂j-mixture of the arms played in
iteration j, denoted by ν̃j . When LinUCB samples
from ν̃j , it first draws a real arm jt ∼ p̂j with fea-
ture representation At,

4 then pull the real arm At to
obtain a reward Xt = 〈θ?, At〉 + ηt. The expected re-
ward of virtual mixture-arm ν̃j can be expressed as
〈θ?, a?〉 − R∆Tj/∆Tj , where we use R∆Tj to denote
the expected regret suffered in iteration j. Virtual
mixture-arms ν̃j provide a convenient summary of the
information gained in the j-th iterations so that we
don’t need to explore arms in the (effectively) dj di-
mensional space again.

Linear Bandits with Added Virtual Dimen-
sions. We consider the linear bandit problem in it-
eration i, where each arm in A(di) is viewed as a vec-
tor in Rdi . Besides this simple truncation, we lift
the feature representation of each arm into a slightly
higher dimensional space to include the i − 1 virtual
mixture-arms constructed in previous iterations (i.e.,
adding virtual dimensions). More specifically, we aug-
ment i− 1 zeros to the feature representation of each
truncated real arm a ∈ A(di); we also view each vir-
tual mixture-arm ν̃j as a di + i − 1 dimensional vec-

tor ν̃
〈di〉
j with its (di + j)-th entry being 1 and all

other entries being 0. As a result, LinUCB will operate
on an modified linear bandit problem with action set
A〈di〉 ⊆ Rdi+i−1, where A〈di〉 = {[a(di); 0] ∈ Rdi+i−1 :

a ∈ A}∪{ν̃〈di〉j }, and |A〈di〉| = K+i−1. Working with
added virtual dimensions allows us to incorporate in-
formation stored in virtual mixture-arms without too
much additional cost since i ≤ p = O(log T ).

Remark 1. Previous application of the virtual
mixture-arms only works in continuum-armed bandits
or K-armed bandits (Zhu and Nowak, 2020; Hadiji,
2019), where no further modifications are needed to in-
corporate information stored in virtual mixture-arms.
Besides the construction of the virtual dimension, we
also provide another way to incorporate the virtual

4If the index of another virtual mixture-arm is returned,
we sample from that virtual mixture-arm until a real arm
is returned.

mixture-arms in Section 4.2. These modifications are
important for the linear bandit case.

4.1 Analysis

We first analyze LinUCB++ with the following assump-
tion. A modified version of LinUCB++ (Algorithm 2)
is provided in Section 4.2 and analyzed without the
assumption.

Assumption 1. An action set A ⊆ Rd is expressive
if we have a[di] = [a(di); 0] ∈ A for any a ∈ A and
di < d.

Assumption 1 is naturally satisfied when certain com-
binatorial structure and ranking information are asso-
ciated with the action set. This is best explained with
an example. Suppose the arms are consumer products
and each has a subset of d possible features, i.e., the
arms are binary vectors in Rd indicating the features of
the product (the combinatorial aspect). Think of the
features as being ordered from base-level features to
high-end features (the ranking information). In this
case, Assumption 1 means that if a product a ∈ A,
then A also contains all products with fewer high-end
features, i.e., truncations of action a. We also make
the following two comments regarding Assumption 1.

1. The action set we used to construct the lower
bound in Theorem 1 can be made expressive, as
noted in Remark 2 in Appendix A.1;

2. Although the original version of LinUCB++ is ana-
lyzed with Assumption 1, it shows strong empiri-
cal performance even without such assumption (see
Section 5).

Equipped with Assumption 1, we can replace the
“truncated” action set A(di) with real arms that ac-
tually exist in the action set. As a result, the linear-
ity in rewards is preserved in the modified linear ban-
dit problem in Rdi+i−1 with added virtual dimensions.
The modified linear bandit problem is associated with

reward vector θ
〈di〉
? = [θ

(di)
? ; µ̃1; . . . ; µ̃i−1] ∈ Rdi+i−1,

where we use µ̃i = 〈θ?, a?〉 − R∆Ti/∆Ti to denote the
expected reward of mixture-arm ν̃i. In the i-th itera-
tion of LinUCB++, we invoke LinUCB to learn reward

vector θ
〈di〉
? ∈ Rdi+i−1, which takes worst case regret

proportional to di + i − 1 instead of the ambient di-
mension d.

Since there are at most O(log T ) iterations of Lin-
UCB++, we only need to upper bound its regret at
each iteration. Suppose Si is the set of actions that
LinUCB++ is working on at iteration i. We use aSi =
arg maxa∈Si〈θ?, a〉 to denote the arm with the high-
est expected reward; and decompose the regret into
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approximation error and learning error:

R∆Ti = E [∆Ti · 〈θ?, a? − aSi〉]︸ ︷︷ ︸
expected approximation error due to the selection of Si

(3)

+ E

[
∆Ti∑
t=1

〈θ?, aSi −At〉

]
︸ ︷︷ ︸

expected learning error due to the sampling rule {At}Tt=1

.

The Learning Error. At each iteration i, Lin-
UCB++ invokes LinUCB on a linear bandit problem in
Rdi+i−1 for ∆Ti time steps, where di and ∆Ti are
specifically chosen such that di ∆Ti ≤ Õ(T 2β). The

learning error is then upper bounded by Õ(
√
di ∆Ti) =

Õ(T β) based on the regret bound of LinUCB (the norm

of reward vector θ
〈di〉
? increases with iteration i due to

added virtual dimensions, we deal with that in Ap-
pendix B.2).

The Approximation Error. Let i? ∈ [p] denote
the largest integer such that di? ≥ d?. For iterations
i ≤ i?, since θ? only has its first d? ≤ di coordinates be-

ing non-zero, we have max
a∈A〈di〉{〈θ

〈di〉
? , a〉} = 〈θ?, a?〉

and the expected approximation error equals zero. As
a result, we upper bound the expected regret for itera-
tion i ≤ i? by its expected learning error, i.e., R∆Ti ≤
Õ(T β). Now consider any iteration i > i?. Since the
virtual mixture-arm ν̃i? is constructed by then, and
its expected reward is µ̃i? = 〈θ?, a?〉 − R∆Ti?

/∆Ti? ,
we can further bound the expected approximation er-
ror by ∆TiR∆Ti?

/∆Ti? = Õ(T 1+α−β) (detailed in Ap-
pendix B.5).

We now present the formal guarantees of LinUCB++.

Theorem 3. Run LinUCB++ with time horizon T and
any user-specified parameter β ∈ [1/2, 1) leads to the
following upper bound on the expected regret:

sup
ω∈HT (α)

RT

≤ O
(

log7/2 (KT log T ) · Tmin{max{β,1+α−β},1}
)
.

The next theorem shows that LinUCB++ is Pareto op-
timal with any input β ∈ [1/2, 1).

Theorem 4. The rate function achieved by LinUCB++
with any input β ∈ [1/2, 1), i.e.,

θβ : α 7→ min{max{β, 1 + α− β}, 1}, (4)

is Pareto optimal.

4.2 Removing Assumption 1

Assumption 1 is used to preserve linearity when work-
ing with truncated action sets. In general, one should
not expect to deal with misspecified linear bandits
without extra cost: Lattimore et al. (2020) develop
a regret lower bound Ω(ε

√
d T ) for misspecified linear

bandits with misspecification level ε. The lower bound
scales linearly with T if there is no extra control/as-
sumptions on the misspecified level ε.

Going back to our algorithm, however, we notice that
there is a special structure in the source of misspecifi-
cations: the virtual-mixture arms are never misspeci-
fied. We explore this fact and provide a modified ver-
sion of Algorithm 1 (i.e., Algorithm 2) that works with-
out Assumption 1 and is Pareto optimal. The modi-
fied algorithm is less practical since it invokes Smooth
Corral as a subroutine (see Section 5).

Algorithm 2 LinUCB++ with Corral

Input: Time horizon T and a user-specified parame-
ter β ∈ [1/2, 1).

1: Set: p = dlog2 T
βe, di = min{2p+2−i, d} and

∆Ti = min{2p+i, T}.
2: for i = 1, . . . , p do
3: Construct two (smoothed) base algorithms: (1)

a LinUCB algorithm working with action set
A(di); and (2) a UCB algorithm working with the
set of virtual-mixture arms (if any), i.e., {ν̃j}j<i.
Invoke Smooth Corral as the master algorithm
with learning rate η = 1/

√
di∆Ti.

4: Construct a virtual mixture-arm ν̃i based on the
empirical sampling frequencies.

5: end for

We defer detailed discussion on Algorithm 2 and
Smooth Corral to Appendix C. We state the guaran-
tee of Algorithm 2 next.

Theorem 5. With any input β ∈ [1/2, 1), the rate
function achieved by Algorithm 2 (without Assump-
tion 1) is Pareto optimal.

5 EXPERIMENTS

We empirically evaluate our algorithms LinUCB++ and
LinUCB++ with Corral in this section. We find that
LinUCB++ enjoys superior performance compared to
existing algorithms. Although Assumption 1 is needed
in the analysis of LinUCB++, our experiments show
that LinUCB++ is fairly robust to the existence of such
assumption.

We compare LinUCB++ and LinUCB++ with Corral with
four baselines: LinUCB (Chu et al., 2011), LinUCB Or-
acle, Smooth Corral (Pacchiano et al., 2020b) and Dy-
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Figure 2: Experiments without Assumption 1: (a) Re-
gret Curve Comparison with α ≈ 0.32. (b) Regret
Comparison with Different α.

namic Balancing (Cutkosky et al., 2021). LinUCB is
the standard linear bandit algorithm that works in the
ambient dimension Rd. LinUCB Oracle represents the
oracle version of LinUCB: it takes the knowledge of
the instrinsic dimension d? and works in Rd? . Smooth
Corral and Dynamic Balancing are implemented with
M = dlog2 de base LinUCB learners with different di-
mensions di ∈

{
20, 21, . . . , 2M−1

}
; their master algo-

rithms conduct corraling/regret balancing on top of
these base learners. We set β = 0.5 in LinUCB++ and
LinUCB++ with Corral.5 The regularization parameter
λ for least squares in (all subroutines/base learners of)
LinUCB is set as 0.1.

We first conduct experiments without an expressive
action set (i.e., without Assumption 1). We con-
sider a regret minimization problem with time horizon
T = 2500 and a bandit instance consists of K = 1200
arms selected uniformly at random in the d = 600 di-
mensional unit ball. We set reward parameter θ? =
[1/
√
d?, . . . , 1/

√
d?, 0, . . . , 0]> ∈ Rd for any intrinsic

dimension d? (see Appendix D for experiments with
other choices of θ?). To prevent lengthy exploration
over exploitation, we consider Gaussian noises with
zero means and 0.1 standard deviations. We evaluate
each algorithm on 100 independent trials and aver-
age the results. Fig. 2a shows how regret curves of
different algorithms increase. The experiment is run
with intrinsic dimension d? = 12, which corresponds
to a hardness level α ≈ 0.32. LinUCB++ outperforms
all other algorithms (except LinUCB Oracle), and en-
joys the smallest variance. LinUCB++ (almost) flat-
ten its regret curve at early stages, indicating that it
has learned the true reward parameter. Fig. 2b il-
lustrates the performance of algorithms with respect
to different intrinsic dimensions. We run experiments
with d? ∈ {5, 10, 15, 20, 25, 30, 35}, and mark the corre-
sponding α values in the plot. Across all α values, Lin-

5In practice, we recommend taking β = (1 + α̂)/2 if an
estimation α̂ (of α) is available; otherwise, we empirically
find that taking β = 0.5 works well.

UCB++ shows superior performance compared to Lin-
UCB, Smooth Corral, Dynamic Balancing and LinUCB++
with Corral. These results indicate that LinUCB++ can
be practically applied without an expressive action set
(thus without Assumption 1).

The empirically poor performance of Corral-type of al-
gorithms might be due to the fact that they need to
balance over multiple base algorithms. On the other
hand, LinUCB++ invokes only one LinUCB subroutine
at each iteration. Although the subroutine is restarted
at the beginning of each iteration, it runs on (roughly)
geometrically decreasing dimensions. Such efficient
learning procedure is backed by our construction of
virtual mixture-arms and virtual dimensions.
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Figure 3: Similar Experiment Setups to Those Shown
in Fig. 2, but with An Expressive Action Sets.

We also run experiments with expressive action sets.
We first generate K = 800 arms uniformly at random
from a d = 400 dimensional unit ball. The action set is
then made expressive by adding actions with truncated
features.6 We provide the expressive action set to all
algorithms since the best reward could be achieved by
a truncated arm. Other experimental setups are simi-
lar to the ones described before. The shape of curves
appearing in both Fig. 3a and Fig. 3b are resembles
the ones in Fig. 2, and LinUCB++ outperforms LinUCB,
Smooth Corral, Dynamic Balancing and LinUCB++ with
Corral. One slight difference is that Smooth Corral, Dy-
namic Balancing, LinUCB++ with Corral and LinUCB++
have relatively worse performance when as α increases:
The regret curves (in Fig. 3b) increase at faster speeds.
Smooth Corral, Dynamic Balancing and LinUCB++ with
Corral are outperformed by the standard LinUCB when
the hardness level α gets large.

6 DISCUSSION

We study the model selection problem in linear bandits
where the goal is to adapt to the unknown intrinsic

6We only truncate actions with respect to di s selected
by LinUCB++ to avoid the computational burden of dealing
with a large number of actions.
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dimension d?, rather than suffering from regret pro-
portional to the ambient dimension d. We establish
a lower bound indicating that adaptation to the un-
known intrinsic dimension d? comes at a cost: There
is no algorithm that can achieve the regret bound
Õ(
√
d?T ) simultaneously for all values of d?. Under

a mild assumption, we design a Pareto optimal algo-
rithm, with ideas fundamentally different from “test-
ing” (Foster et al., 2019; Ghosh et al., 2020) and “cor-
ralling” (Pacchiano et al., 2020b; Agarwal et al., 2017),
to bear on the model selection problem in linear ban-
dits. We also provide a workaround to remove the
assumption. Experimental evaluations show superior
performance of our main algorithm compared to exist-
ing ones.

Although linear bandits with a fixed action set are
commonly studied in the literature (Lattimore et al.,
2020; Wagenmaker et al., 2021), an interesting direc-
tion is to generalize LinUCB++ to the contextual set-
ting. The current version of LinUCB++ works in the
setting with adversarial contexts under the following
two additional assumptions: (1) we have a nested se-
quence of action sets At ⊆ At+1 with | AT | ≤ K;
and (2) one of the best/near-optimal arm belongs to
A1. How to remove/weaken these assumptions is left
to future work. We also remark that, after our ini-
tial (arXiv) publication, Marinov and Zimmert (2021)
established the Pareto frontier for general contextual
bandits, providing a negative answer to open problems
raised in Foster et al. (2020).
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Supplementary Material:
Pareto Optimal Model Selection in Linear Bandits

A OMITTED PROOFS FOR SECTION 3

Besides specific treatments for linear bandits (e.g., the lower bound construction for model selection), our proofs
for this section largely follow the ones developed in Hadiji (2019); Zhu and Nowak (2020). We provide details
here for completeness.

A.1 Proof of Theorem 1

We consider K+1 linear bandit instances such that each is characterized by a reward vector θi ∈ Rd, 0 ≤ i ≤ K,
with different intrinsic dimensions d? (or equivalently α). For any action a ∈ Rd, we obtain a reward r = 〈θi, a〉+η
where η is an independent (1/2)-sub-Gaussian noise. Time horizon T is fixed and the ambient dimension d is
assumed to be large enough to avoid some trivial conflicts in the following construction (e.g., we need d ≥ Tα to
construct θi) . For any 0 ≤ α′ < α ≤ 1 so that Tα/2 ≥ Tα

′
, we now provide an explicit construction of {θi}Ki=0

as followings, with ∆ ∈ R to be specified later.

1. Let θ0 ∈ Rd be any vector such that it is only supported on one of its first bTα′c coordinates and ‖θ0‖2 = ∆/2.
The regret minimization problem with respect to θ0 belongs to HT (α′) by construction.

2. For any i ∈ [K], let θi = θ0 + ∆ · eρ(i) where ej is the j-th canonical base and ρ(i) = bTα/2c + i. We set
K = bTα/2c = Θ(Tα) so that the regret minimization problem with respect to any θi belongs to HT (α).

We consider a common fixed action set A = {ai}Ki=0 = {θ0/‖θ0‖}∪{eρ(i)}Ki=1 for all regret minimization problems
(we set a0 = θ0/‖θ0‖ and ai = eρ(i) for convenience). We could notice that a0 is the best arm with respect to
θ0, which has expected reward ∆/2; and ai is the best arm with respect to θi, which has expected reward ∆.

Remark 2. The action set A can be made expressive by augmenting the action set with an all-zero action. The
all-zero action will not affect our analysis since it always has zero expected reward.

Remark 3. One can also add other canonical bases into the action set A so that {θi}Ki=1 becomes the unique
reward vector for corresponding problems. These additional actions will not affect our analysis as well since they
all have zero expected reward.

For any t ∈ [T ], the tuple of random variables Ht = (A1, X1, . . . , At, Xt) is the outcome of an algorithm
interacting with an bandit instance up to time t. Let Ωt =

∏t
i=1(A×R) and Ft = B(Ωt); one could then define

a measurable space (Ωt,Ft) for Ht. The random variables A1, X1, . . . , At, Xt that make up the outcome are
defined by their coordinate projections:

At(a1, x1, . . . , at, xt) = at and Xt(a1, x1, . . . , at, xt) = xt.

For any fixed algorithm/policy π and bandit instance θi, we are now constructing a probability measure Pi,t over
(Ωt,Ft). Note that a policy π is a sequence (πt)

T
t=1, where πt is a probability kernel from (Ωt−1,Ft−1) to (A, 2A)

with the first probability kernel π1(ω, ·) being defined arbitrarily over (A, 2A), to model the selection of the first
action. For each i, we define another probability kernel pi,t from (Ωt−1×A,Ft−1⊗2A) to (R,B(R)) that models
the reward. Since the reward is distributed according to N (θ>i at, 1/4), we gives its explicit expression for any
B ∈ B(R) as following

pi,t
(
(a1, x1, . . . , at), B

)
=

∫
B

√
2

π
exp

(
− 2(x− θ>i at)

)
dx.

The probability measure over Pi,t over (Ωt,Ft) could then be define recursively as Pi,t = pi,t
(
πtPi,t−1

)
. We use

Ei to denote the expectation taken with respect to Pi,T . We have the following lemmas.
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Lemma 1 (Lattimore and Szepesvári (2020)).

KL (P0,T ,Pi,T ) = E0

[
T∑
t=1

KL
(
N (θ>0 At, 1/4),N

(
θ>i At, 1/4

))]
. (5)

Lemma 2 (Hadiji (2019)). Let P and Q be two probability measures. For any random variable Z ∈ [0, 1], we
have

|EP[Z]− EQ[Z]| ≤
√

KL(P,Q)

2
.

Theorem 1. Consider any 0 ≤ α′ < α ≤ 1 and B > 0 satisfying Tα ≤ B and bTα/2c ≥ max{Tα/4, Tα′ , 2}. If
an algorithm is such that supω∈HT (α′)RT ≤ B, then the regret of the same algorithm must satisfy

sup
ω∈HT (α)

RT ≥ c T 1+αB−1, (1)

with a universal constant c.

Proof. Let Ni(T ) =
∑T
t=1 1 (At = ai) denote the number of times the algorithm π selects arm ai up to time T .

Let Ri,T define the expected regret achieved by algorithm π interacting with the bandit instance θi. Based on
the construction of bandit instances, we have

R0,T ≥
∆

2

K∑
i=1

E0 [Ni(T )] , (6)

and for any i ∈ [K]

Ri,T ≥
∆

2
(T − Ei[Ni(T )]) =

T∆

2

(
1− Ei[Ni(T )]

T

)
. (7)

According to Lemma 1 and the calculation of KL-divergence between two Gaussian distributions, we further
have

KL(P0,T ,Pi,T ) = E0

[
T∑
t=1

KL
(
N (θ>0 At, 1/4),N

(
θ>i At, 1/4

))]

= E0

[
T∑
t=1

2 〈θi − θ0, At〉2
]

= 2E0 [Ni(T )] ∆2, (8)

where Eq. (8) comes from the fact that θi = θ0 + ∆ · eρ(i) and the only arm in A with non-zero value on the
ρ(i)-th coordinate is ai = eρ(i), with 〈θi − θ0, ai〉 = ∆.
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We now consider the average regret over i ∈ [K]:

1

K

K∑
i=1

Ri,T ≥
T∆

2

(
1− 1

K

K∑
i=1

Ei[Ni(T )]

T

)

≥ T∆

2

(
1− 1

K

K∑
i=1

(
E0[Ni(T )]

T
+

√
KL(Pi,T ,P0,T )

2

))
(9)

=
T∆

2

(
1− 1

K

∑K
i=1 E0[Ni(T )]

T
− 1

K

K∑
i=1

√
E0 [Ni(T )] ∆2

)
(10)

≥ T∆

2

1− 1

K
−

√∑K
i=1 E0 [Ni(T )] ∆2

K

 (11)

≥ T∆

2

(
1− 1

K
−
√

2∆R0,T

K

)
(12)

≥ T∆

2

(
1

2
−
√

2∆B

K

)
, (13)

where Eq. (9) comes from applying Lemma 2 with Z = Ni(T )/T and P = Pi,T and Q = P0,T ; Eq. (10) comes
from Lemma 1; Eq. (11) comes from concavity of

√
·; Eq. (12) comes from Eq. (6); and finally Eq. (13) comes

from the fact that K ≥ 2 by construction and the assumption that R0,T ≤ B.

To obtain a large value for Eq. (13), one could maximize ∆ while still make sure
√

2∆B/K ≤ 1/4. Set
∆ = 2−5KB−1, following Eq. (13), we obtain

1

K

K∑
i=1

Ri,T ≥ 2−8TKB−1

= 2−8T bTα/2cB−1 (14)

≥ 2−10T 1+αB−1, (15)

where Eq. (14) comes from the construction of K; and Eq. (15) comes from the assumption that bTα/2c ≥ Tα/4.

It is clear that any action a ∈ A satisfies ‖a‖ ≤ 1 by construction, we now only need to make sure that ‖θi‖ ≤ 1 as
well. Notice that ‖θi‖ ≤

√
5∆/2 by construction, we only need to make sure ∆ = 2−5KB−1 ≤ 2/

√
5. Since on one

hand K = bTα/2c ≤ Tα, and on the other hand Tα ≤ B by assumption, we have ∆ = 2−5KB−1 ≤ 2−5 < 2/
√

5,
as desired.

A.2 Proof of Theorem 2

Lemma 3. Suppose an algorithm achieves rate function θ(α) on HT (α), then for any 0 < α ≤ 1 such that
α ≤ θ(0), we have

θ(α) ≥ 1 + α− θ(0). (16)

Proof. Fix 0 ≤ α ≤ θ(0). For any ε > 0, there exists constant c1 and c2 such that

sup
ω∈HT (0)

RT ≤ c1T θ(0)+ε and sup
ω∈HT (α)

RT ≤ c2T θ(α)+ε,

for sufficiently large T . Let B = max{c1, 1} · T θ(0)+ε, we could see that Tα ≤ T θ(0) ≤ B holds by assumption.
For T large enough, the condition bTα/2c ≥ max{Tα/4, T 0, 2} of Theorem 1 holds, and we then have

c2T
θ(α)+ε ≥ 2−10T 1+α

(
max{c1, 1} · T θ(0)+ε

)−1

= 2−10T 1+α−θ(0)−ε/max{c1, 1}.
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For T sufficiently large, we then must have

θ(α) + ε ≥ 1 + α− θ(0)− ε.

Let ε→ 0 leads to the desired result.

Theorem 2. Suppose a rate function θ is achieved by an algorithm, then we must have

θ(α) ≥ min{max{θ(0), 1 + α− θ(0)}, 1}, (2)

with θ(0) ∈ [1/2, 1].

Proof. For any adaptive rate function θ achieved by an algorithm, we first notice that θ(α) ≥ θ(α′) for any
0 ≤ α′ ≤ α ≤ 1 as HT (α′) ⊆ HT (α), which also implies θ(α) ≥ θ(0). From Lemma 3, we further obtain
θ(α) ≥ 1 + α− θ(0) if 0 < α ≤ θ(0). Thus, for any α ∈ (0, θ(0)], we have

θ(α) ≥ max{θ(0), 1 + α− θ(0)}. (17)

Note that this indicates θ(θ(0)) = 1 since we trivially have RT ≤ T . For any α ∈ [θ(0), 1], we have θ(α) ≥
θ(θ(0)) = 1, which also leads to θ(α) = 1 for α ∈ [θ(0), 1]. To summarize, we obtain the desired result in Eq. (2).
We have θ(0) ∈ [1/2, 1] as the minimax optimal rate among problems in HT (0) is 1/2 (Chu et al., 2011).

B OMITTED PROOFS FOR SECTION 4

B.1 The Virtual-Mixture Arm

The expected reward of virtual mixture-arm ν̃j can be expressed as the total expected reward obtained in
iteration j divided by the corresponding time horizon ∆Tj :

µ̃j = E[ν̃j ] = E

 ∑
t in iteration j

Xt

 /∆Tj = 〈θ?, a?〉 −R∆Tj/∆Tj ∈ [−1, 1], (18)

where we use R∆Tj to denote the expected regret suffered in iteration j. Let Xt be the reward obtained by pulling
the virtual arm ν̃j (with At being the feature representation of the drawn real arm), we then know that Xt − µ̃j
is
√

2-sub-Gaussian since Xt− µ̃j = (Xt − 〈θ?, At〉) + (〈θ?, At〉 − µ̃j) = ηt + (〈θ?, At〉 − µ̃j): ηt is 1-sub-Gaussian
by assumption and (〈θ?, At〉 − µ̃j) is 1-sub-Gaussian due to boundedness 〈θ?, At〉 ∈ [−1, 1] and E[〈θ?, At〉] = µ̃j .

B.2 Modifications of LinUCB

Recall that, under Assumption 1, the linear reward structure is preserved in the modified linear bandit problem
that LinUCB will be working on in Algorithm 1. Two main differences in the modified linear bandit problem
from the original setting considered in Chu et al. (2011) are: (1) we will be working with

√
2-sub-Gaussian noise

while they deal with strictly bounded noise; and (2) the norm of our reward parameter, i.e., ‖θ〈di〉? ‖, could be as
large as 1 + (p− 1) = p = dlog2(T β)e ≤ log2(T ) + 1 ≤ 2 log T when T ≥ 2.

To reduce clutters, we consider a d dimensional linear bandit with time horizon T and K actions. We consider
the reward structure Xt = 〈θ?, At〉+ ηt, where ηt is an independent

√
2-sub-Gaussian noise, ‖θ?‖ ≤ 2 log T and

‖At‖ ≤ 1. The following Theorem 6 takes care of these changes.

Theorem 6. For the modified setting introduced above, run LinUCB with α = 2
√

log(2TK/δ) leads to an upper
bound

O
(

log2 (KT log(T )/δ) ·
√
dT
)

on the (pseudo) random regret with probability at least 1− δ.
Corollary 1. For the modified setting introduced above, run LinUCB with α = 2

√
log(2T 3/2K) leads to an upper

bound

O
(

log2 (KT log(T )) ·
√
dT
)

on the expected regret.
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Proof. One can simply combine the result in Theorem 6 with δ = 1/
√
T .

It turns out that in order to prove Theorem 6, we mainly need to modify Lemma 1 in Chu et al. (2011),
and the rest of the arguments go through smoothly. The changed exponent on the logarithmic term is due to
‖θ?‖ ≤ 2 log T . We introduce the following notations. Let

V0 = I and Vt = Vt−1 +AtA
>
t

denote the design matrix up to time t; and let

θ̂t = V −1
t

t∑
i=1

AiXi

denote the estimate of θ? at time t.

Lemma 4. (modification of Lemma 1 in Chu et al. (2011)) Suppose for any fixed sequence of selected actions
{Ai}i≤t the (random) rewards {Xi}i≤t are independent. Then we have

P
(
∀At+1 ∈ At+1 : |〈θ̂t − θ?, At+1〉| ≤ (α+ 2 log T )

√
A>t+1V

−1
t At+1

)
≥ 1− δ/T. (19)

Remark 4. The requirement of (conditional) independence is guaranted by the SupLinUCB algorithm introduced
in Chu et al. (2011), and is not satisfied by the vanilla LinUCB: the reveal/selection of a future arm At+1 makes
previous rewards {Xi}i≤t dependent. See Remark 4 in Han et al. (2020) for a detailed discussion.

Proof. For any fixed At, we first notice that∣∣∣〈θ̂t − θ?, At+1

〉∣∣∣ =

∣∣∣∣∣A>t+1V
−1
t

t∑
i=1

AiXi −A>t+1θ?

∣∣∣∣∣
=

∣∣∣∣∣A>t+1V
−1
t

t∑
i=1

AiXi −A>t+1V
−1
t

(
I +

t∑
i=1

AiA
>
i

)
θ?

∣∣∣∣∣
≤

∣∣∣∣∣
t∑
i=1

A>t+1V
−1
t Ai

(
Xi −A>i θ?

)∣∣∣∣∣+
∣∣A>t+1V

−1
t θ?

∣∣
≤

∣∣∣∣∣
t∑
i=1

A>t+1V
−1
t Ai

(
Xi −A>i θ?

)∣∣∣∣∣+
∥∥A>t+1V

−1
t

∥∥ · ‖θ?‖. (20)

We next bound the two terms in Eq. (20) seperately.

For the first term in Eq. (20), since
(
Xi −A>i θ?

)
is
√

2-sub-Gaussian and {Xi}i≤t are independent, we know

that
∑t
i=1A

>
t+1V

−1
t Ai

(
Xi −A>i θ?

)
is

(√
2
∑t
i=1

(
A>t+1V

−1
t Ai

)2)
-sub-Gaussian. Since√√√√ t∑

i=1

(
A>t+1V

−1
t Ai

)2
=

√√√√ t∑
i=1

A>t+1V
−1
t AiA>i V

−1
t At+1

≤

√√√√A>t+1V
−1
t

(
I +

t∑
i=1

AiA>i

)
V −1
t At+1

=
√
A>t+1V

−1
t At+1,

according to a standard Chernoff-Hoeffding bound, we have

P

(∣∣∣∣∣
t∑
i=1

A>t+1V
−1
t Ai

(
Xi −A>i θ?

)∣∣∣∣∣ ≥ α
√
A>t+1V

−1
t At+1

)
≤ 2 exp

(
−α

2

4

)
=

δ

TK
, (21)
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where Eq. (21) is due to α = 2
√

log(2TK/δ).

For the second term in Eq. (20), we have∥∥A>t+1V
−1
t

∥∥ · ‖θ?‖ ≤ 2 log T
√
A>t+1V

−1
t IV −1

t At+1 (22)

≤ 2 log T

√√√√A>t+1V
−1
t

(
I +

t∑
i=1

AiA>i

)
V −1
t At+1

= 2 log T
√
A>t+1V

−1
t At+1.

where Eq. (22) comes from the fact that ‖θ?‖ ≤ 2 log T .

The desired result in Eq. (19) follows from a union bound argument together with the two upper bounds derived
above.

Remark 5. Technically, regret guarantees are for a more complicated version of LinUCB that ensures statistical
independence (Chu et al., 2011). However, as recommended by Chu et al. (2011), we will use the more practical
LinUCB as our subroutine.

B.3 Notations and Preliminaries for Analysis of LinUCB++

We provide some notations and preliminaries for analysis of LinUCB++ that will be used in the following two
subsections, i.e., the proofs of Lemma 5 and Theorem 3.

We define Ti =
∑i
j=1 ∆Tj so that the i-th iteration of LinUCB++ goes from Ti−1 + 1 to Ti. We first notice that

Algorithm 1 is a valid algorithm in the sense that it selects an arm At for any t ∈ [T ], i.e., it does not terminate
before time T : the argument is clearly true if there exists i ∈ [p] such that ∆Ti = T ; otherwise, we can show
that

Tp =

p∑
i=1

∆Ti = 2(22p − 1) ≥ 22p ≥ T,

for all β ∈ [1/2, 1].

We use R∆Ti = ∆Ti · µ? − E[
∑Ti
t=Ti−1+1Xt] to denote the expected cumulative regret at iteration i. Let Fi

denote the information collected up to the end of iteration i, we further use R∆Ti|Fi−1
to represent the expected

regret conditioned on Fi−1 and have E[R∆Ti|Fi−1
] = R∆Ti .

In the modified linear bandit problem at each iteration i, we will be applying LinUCB with respect to a di + i− 1

dimensional problem with an action set A〈di〉 such that |A〈di〉| ≤ K+ i−1. Let a
〈di〉
? = arg maxa∈A〈di〉{〈θ

〈di〉
? , a〉}

denote the best arm in the i-th iteration. Applying Eq. (3) on R∆Ti|Fi−1
leads to

R∆Ti|Fi−1
= ∆Ti ·

(
〈θ?, a?〉 − 〈θ〈di〉? , a

〈di〉
? 〉

)
+ E

 Ti∑
t=Ti−1+1

〈θ〈di〉? , a
〈di〉
? −At〉

∣∣∣∣Fi−1

 , (23)

where At ∈ A〈di〉 and 〈θ〈di〉? , At〉 represents the expected reward of pulling arm At.

B.4 Proof of Lemma 5

The proof of Lemma 5 follows the notations and preliminaries introduced in Appendix B.3.

Lemma 5. At each iteration i ∈ [p], the learning error suffered from subroutine LinUCB is upper bounded by

O(log5/2 (KT log T ) · T β).

Proof. We focus on the second term in Eq. (23), i.e., the (conditional) learning error during iteration i. Condi-

tioning on F i−1, both θ
〈di〉
? and a

〈di〉
? can be treated as fixed quantities. Applying the regret bound in Corollary 1,
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we have:

E

 Ti∑
t=Ti−1+1

〈θ〈di〉? , a
〈di〉
? −At〉

∣∣∣∣Fi−1

 ≤ O (log2 ((K + i− 1)∆Ti log(∆Ti)) ·
√

(di + i− 1)∆Ti

)
(24)

≤ O
(

log2 ((K + p)∆Ti log(∆Ti)) ·
√

(di + p)∆Ti

)
(25)

≤ O
(

log2 ((K + p)T log T ) ·
√

22p+2 + pT
)

(26)

≤ O
(

log2 (KT log T ) ·
√
T 2β + log T · T

)
(27)

≤ O
(

log5/2 (KT log T ) · T β
)
, (28)

where Eq. (24) comes from the guarantee of LinUCB in Corollary 1; Eq. (25) uses the fact that i ≤ p; Eq. (26)
comes from the definition of di and ∆Ti; Eq. (27) comes from the fact that p = dlog2 T

βe; Eq. (28) comes

from trivially bounding
√
T 2β + log T · T ≤ O((log T )1/2 · T β).7 The desired result follows from taking another

expectation over randomness in F i−1.

B.5 Proof of Theorem 3

The proof of Theorem 3 follows the notations and preliminaries introduced in Appendix B.3.

Theorem 3. Run LinUCB++ with time horizon T and any user-specified parameter β ∈ [1/2, 1) leads to the
following upper bound on the expected regret:

sup
ω∈HT (α)

RT

≤ O
(

log7/2 (KT log T ) · Tmin{max{β,1+α−β},1}
)
.

Proof. When α ≥ β, one could see that Theorem 3 trivially holds since T 1+α−β ≥ T . In the following, we only
consider the case when α < β.

Taking expectation on Eq. (23) and combining the result in Lemma 5, we obtain

R∆Ti ≤ ∆Ti · E
[(
〈θ?, a?〉 − 〈θ〈di〉? , a

〈di〉
? 〉

)]
+O

(
log5/2 (KT log T ) · T β

)
. (29)

We now focus on the first term, i.e., the expected approximation error over the i-th iteration. Notice that,

according to the definition of a
〈di〉
? and θ

〈di〉
? , we have 〈θ〈di〉? , a

〈di〉
? 〉 = 〈θ?, a?〉 if di ≥ d?, i.e., the optimal arm is

contained in the action set A〈di〉. Let i? ∈ [p] be the largest integer such that di? ≥ d?, we then have that, for
any i ≤ i? and in particular for i = i?,

R∆Ti ≤ O
(
T β log5/2 (KT log T )

)
. (30)

In the case when ∆Ti? = min{2p+i? , T} = T or i? = p, we know that LinUCB++ will in fact stop at a time step
no larger than Ti? (since the allowed time horizon is T ), and incur no regret in iterations i > i?. In the following,
we only consider the case when ∆Ti? = 2p+i? and i? < p. To incooperate another possible corner case when
di? = min{2p+2−i? , d} = d, we consider di?+1 = 2p+1−i? < di? . As a result, we have di?∆Ti? > di?+1∆Ti? =
22p+1, which leads to

∆Ti? >
22p+1

di?
>

22p

d?
=

22p

Tα
, (31)

where Eq. (31) comes from the fact that di? < 2d? according to the definition of i?.
8

7One can improve the bound to
√
T 2β + log T · T ≤ O((log T )1/2 · T β) in many cases, e.g., when β > 1/2 and T is

large enough (with respect to β). However, we mainly focus on the polynomial terms here.
8We will have ∆Ti? ≥ 22p+1/Tα > 22p/Tα if di? = min{2p+2−i? , d} = 2p+2−i? .
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We now analysis the expected approximation error for iteration i > i?. Since the sampling information during

i?-th iteration is summarized in the virtual mixture-arm ν̃i? , and its representation ν̃
〈di〉
i?

is added to A〈di〉. For
any i > i?, we then have

∆Ti · E
[(
〈θ?, a?〉 − 〈θ〈di〉? , a

〈di〉
? 〉

)]
≤ ∆Ti · E

[(
〈θ?, a?〉 − 〈θ〈di〉? , ν̃

〈di〉
i?
〉
)]

= ∆Ti · (〈θ?, a?〉 − µ̃i?) (32)

=
∆Ti
∆Ti?

·R∆Ti?
(33)

<
∆Ti
22p

Tα

·O
(

log5/2 (KT log T ) · T β
)

≤
O
(

log5/2 (KT log T ) · T 1+α+β
)

22p
(34)

≤ O
(

log5/2 (KT log T ) · T 1+α−β
)
, (35)

where Eq. (32) comes from the formulation of the modified linear bandit problem; Eq. (33) comes from that fact
that µ̃j = E[µ̃j| Fj ] = 〈θ?, a?〉 − R∆Tj/∆Tj derived from Eq. (18); Eq. (34) comes from the fact that ∆Ti ≤ T

and some rewriting; Eq. (35) comes from the fact that p = dlog2 T
βe ≥ log2 T

β .

Combining Eq. (35) and Eq. (29) for cases when i > i? (or the corner case algorithm stops before Ti? and incurs
no regret in iterations i ≥ i?), and together with Eq. (30) for cases when i ≤ i?, we have that ∀i ∈ [p],

R∆Ti ≤ O
(

log5/2 (KT log T ) · Tmax{β,1+α−β}
)
.

Since the cumulative regret is non-decreasing in t, we have

RT ≤
p∑
i=1

R∆Ti

=

p∑
i=1

O
(

log5/2 (KT log T ) · Tmax{β,1+α−β}
)

≤ O
(

log7/2 (KT log T ) · Tmax{β,1+α−β}
)
,

where we use the fact that p = dlog2(T β)e ≤ O(log T ). Our results follows after noticing RT ≤ T is a trivial
upper bound.

B.6 Proof of Theorem 4

Theorem 4. The rate function achieved by LinUCB++ with any input β ∈ [1/2, 1), i.e.,

θβ : α 7→ min{max{β, 1 + α− β}, 1}, (4)

is Pareto optimal.

Proof. From Theorem 3, we know that the rate in Eq. (4) is achieved by Algorithm 1 with input β. We only
need to prove that no other algorithms achieve strictly smaller rates in pointwise order.

Suppose, by contradiction, we have θ′ achieved by an algorithm such that θ′(α) ≤ θβ(α) for all α ∈ [0, 1] and
θ′(α0) < θ(α0) for at least one α0 ∈ [0, 1]. We then must have θ′(0) ≤ θβ(0) = β. We consider the following two
exclusive cases.

Case 1 θ′(0) = β. According to Theorem 2, we must have θ′ ≥ θβ , which leads to a contradiction.

Case 2 θ′(0) = β′ < β. According Theorem 2, we must have θ′ ≥ θβ′ . However, θβ′ is not strictly better than
θβ , e.g., θβ′(2β − 1) = 2β − β′ > β = θβ(2β − 1), which also leads to a contradiction.
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C ANALYSIS FOR SECTION 4.2

C.1 Discussion on Algorithm 2

We construct the following two (smoothed) base algorithms (Pacchiano et al., 2020b) at each iteration of Lin-
UCB++: (1) a LinUCB algorithm that works with truncated feature representations in Rdi , with possible mis-
specifications; and (2) a UCB algorithm that works only with virtual mixture-arms, if there exists any. We use
Smooth Corral from Pacchiano et al. (2020b) as the master algorithm and always optimally tune it with respect
to the LinUCB base, i.e., set the learning rate as η = 1/

√
di∆Ti. For iterations such that di ≥ d?, the LinUCB

is the optimal base and we incur Õ(
√
di∆Ti) = Õ(T β) regret; a good enough virtual mixture-arm ν̃i? is then

constructed as before. For later iterations such that di < d?, Smooth Corral incurs regret Õ(max{T 1+α−β , T β})
thanks to guarantees of the UCB base: the Õ(T 1+α−β) term is due to the approximation error and the Õ(T β)

term is due to the learning error. Although the learning error of UCB is enlarged from Õ(T 1/2) to Õ(T β), as
Smooth Corral is always tuned with respect to the LinUCB base, this won’t affect the resulted Pareto optimality.

C.2 Proof of Theorem 5

Theorem 5. With any input β ∈ [1/2, 1), the rate function achieved by Algorithm 2 (without Assumption 1) is
Pareto optimal.

Proof. At each iteration i ∈ [p] of LinUCB++, we applying Smooth Corral as the master algorithm with two
smoothed base algorithms: (1) a LinUCB algorithm that works with truncated feature representations in Rdi ,
with possible mis-specifications; and (2) a UCB algorithm that works only with virtual mixture-arms, if there
exists any. The learning rate of Smooth Corral is always optimally tuned with respect to the LinUCB base, i.e.,
η = 1/

√
di∆Ti. Since there are at most p = O(log T ) iterations, we only need to bound the expected regret at

each iteration R∆Ti . As before, we use i? ∈ [p] to denote the largest integer such that di? ≥ d?.

For i ≤ i?, the LinUCB base works on a well-specified linear bandit problem. Theorem 5.3 in Pacchiano et al.
(2020b) gives the following guarantees:

R∆Ti ≤ Õ
(√

∆Ti + η−1 + ∆Tiη + ∆Tidiη
)

= Õ
(√

di∆Ti

)
= Õ

(
T β
)
.

Good enough virtual mixture-arm ν̃i? is then constructed with conditional expectation µ̃i?| Fi? = E[ν̃i? | F i? ] =

〈θ?, a?〉 − R̂∆Ti?
/∆Ti? .

We now analyze the regret incurred for iteration i > i?. Conditioning on past information F i−1 and let r(πt)
denote the (conditional) expected reward of applying policy πt, we have

R∆Ti| Fi−1
= ∆Ti ·

(
〈θ?, a?〉 − µ̃i?| Fi?

)
+ E

[ ∑
t in iteration i

µ̃i?| Fi? − r(πt)
∣∣∣∣Fi−1

]
≤ ∆Ti ·

(
〈θ?, a?〉 − µ̃i?| Fi?

)
+ Õ

(√
∆Ti + η−1 + ∆Tiη + ∆Tiη

)
,

where the second term comes from the guarantee of Smooth Corral with respect to the UCB base. Taking
expectation over randomness in F i−1 leads to

R∆Ti ≤ Õ
(
T 1+α−β)+ Õ

(
T β
)
,

where the first term follows from a similar analysis as in Eq. (35), and the second term follows by setting
η = 1/

√
di∆Ti. A similar analysis as in Theorem 4 thus show Algorithm 2 is Pareto optimal, even without

Assumption 1.

C.3 Discussion on Smooth Corral

Pacchiano et al. (2020b) tackles the model selection problem in linear bandit by applying Smooth Corral with
O(log d) base LinUCB learners working with different dimensions di ∈ {20, 21, . . . , 2blog dc}. Let di? denote the
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smallest dimension that satisfies di? ≥ d?. With respect to the base LinUCB working on the first di? dimensions,
Smooth Corral enjoys regret guarantee

RT ≤ Õ
(√

T + η−1 + Tη + Td?η
)
. (36)

Smooth Corral then achieves the rate function in Eq. (4) by setting the learning rate η = T−β (and also noticing
that d? ≤ Tα).

D ADDITIONAL EXPERIMENT RESULTS

We conduct additional experiments with setups similar to the ones shown in Fig. 2b, but with different reward
parameters θ?. We set θ? as (the normalized version of) [ 1√

1
, 1√

2
, . . . , 1√

d?
, 0, . . . , 0]> ∈ Rd in Fig. 4a; and θ? as

(the normalized version of) [ 1√
d?
, 1√

d?−1
, . . . , 1√

1
, 0, . . . , 0]> ∈ Rd in Fig. 4b. With θ? selected in Fig. 4a, Dynamic

Balancing shows comparable performance to LinUCB++ in terms of averaged regret (but with larger variance).
LinUCB++ outperforms Dynamic Balancing when θ? is “flipped” (i.e., the one used in Fig. 4b) but with the same
intrinsic dimension d?.
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Figure 4: Similar Experiment Setups to Those Shown in Fig. 2b, but with Different reward parameters θ?.
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