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Appendix A. Gibbs Sampler

In this section, we firstly derive the Gibbs sampler of our model. Since the distributions are
all conditionally conjugate, the derivation is straightforward. For the parameters, we denote
Q = {Q(d)}Dd=1, η = {η(n)}Nn=1, φ = {φ(d)}Dd=1, δ = {δ(d)}D+1

d=1 and Θ = {Q,η,φ, δ, τ}.
The joint distribution of the TRLF model is

log p(Y ,Θ) = log p(Y | Θ) + log p(Θ), (1)

where

log p(Y | Θ) = log p(Y |Q,η, τ ) =
N∑
n=1

log p(Y(n) |Q,η(n), τ).

The prior distribution is

log p(Θ) = log p(Q | φ,u) + log p(φ) + log p(δ) + log p(τ) + log p(η),

where

log p(Q | φ,u) =
D∑
d=1

log p(Q(d) | φ(d),u(d),u(d+1)), u
(d)
l =

l∏
h=1

δ
(d)
h ,

log p(δ) =

D+1∑
d=1

log p(δ(d)), log p(φ) =

D∑
d=1

log p(φ(d)), log p(η) =

N∑
n=1

log p(η(n)).

Given the joint distribution Eq. (1), we can establish the Gibbs sampler algorithm by
sampling from the conditional distributions sequentially.
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Sample Q The conditional distributions of the core tensors Q involve subchains of Q
and η. Hence, to make the notations consistent, we denote Q(D+1) = η. For d = 1, . . . , D
and i = 1, . . . , Pd, the conditional distribution is

p(Q(d)[i] | −) ∼ N (vec(Q(d)[i]) | µ(i)

Q(d) ,Λ
(i)

Q(d)), (2)

where

µ
(i)

Q(d) = Λ
(i)

Q(d)

τ N∑
n=1

∑
p−d

Y(n)
p vec(Q 6=d,ᵀ[p−d])

 ,

Λ
(i)

Q(d) =

τ N∑
n=1

∑
p−d

vec(Q 6=d,ᵀ[p−d])vec(Q 6=d,ᵀ[p−d])
ᵀ

+diag(vec(φ
(d)
:i: )) ∗ (U (d+1) ⊗U (d))

−1 .
where U (d) = diag(u(d)).

Sample φ For d = 1, . . . , D, j = 1, . . . , Rd and h = 1, . . . , Rd+1, the conditional distribu-
tion of φ is

p(φ
(d)
jih | −) ∼ Ga(aφ, bφ),

where

aφ =
1

2
+ ν, bφ = ν + (Q

(d)
jh [i])2u

(d)
j u

(d+1)
h .

Sample δ We denote u
(d)
l,−h =

∏l
j=1,j 6=h δ

(d)
j and U (d) = diag(u(d)). Hence we have u

(d)
l =∏l

j=1 δ
(d)
j = u

(d)
l,−hδ

(d)
h . For δ(1), the conditional distribution is

log p(δ
(1)
h | −) ∝ log p(Q(1) | φ(1),u(1),u(2)) + log p(δ(1)), ∀h = 1, . . . , R1.

Hence, we have

p(δ
(1)
h | −) ∼ Ga(ahδ , b

h
δ ),

where

ahδ = αδ +
P1R2(R1 − h+ 1)

2
, bhδ = 1 +

1

2

R1∑
l=h

[
P1∑
i=1

u(2),ᵀ(Q
(1)
l· [i] ∗Q(1)

l· [i])

]
u
(1)
l,−h.

For d = 2, . . . , D, we have

p(δ
(d)
h | −) ∝

log p(Q(d−1) | φ(d−1),u(d−1),u(d)) + log p(Q(d) | φ(d),u(d),u(d+1)) + log p(δ(d))

Then the conditional distribution is also a Gamma,

p(δ
(d)
h | −) ∼ Ga(aδh, b

δ
h), ∀h = 1, . . . , Rd,
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where

ahδ =αδ +
(PdRd+1 + Pd−1Rd)(Rd − h+ 1)

2
,

bhδ =1 +
1

2

Rd∑
l=h

 Pd∑
i=1

u(d+1),ᵀ(Q
(d)
l· [i] ∗Q(d)

l· [i]) +

Pd−1∑
i=1

(Q
(d−1)
·l [i] ∗Q(d−1)

·l [i])u(d−1)

u(d)l,−h.
Similarly, for δ(D+1), we have

p(δ
(D+1)
h | −) ∼ Ga(ahδ , b

h
δ ), ∀h = 1, . . . , RD+1,

where

ahδ = αδ+
PDRD+1(RD+1 − h+ 1)

2
, bhδ = 1+

1

2

RD+1∑
l=h

[
PD∑
i=1

(Q
(D)
·l [i] ∗Q(D)

·l [i])u(d+1)

]
u
(D+1)
l,−h .

Sample η The conditional distribution is,

p(η(n) | −) ∼ N (vec(η(n)) | µ(n)
η ,Λ

(n)
η ), (3)

where

µ
(n)
η = Λ

(n)
η

(
τ
∑
p

Y(n)
p vec(Q≤D,ᵀ[p])

)
,

Λ
(n)
η =

(
τ
∑
p

vec(Q≤D,ᵀ[p])vec(Q≤D,ᵀ[p])ᵀ + I

)−1
.

Sample τ The conditional distribution is p(τ | −) ∝ Ga(aτ , bτ ), where

aτ =
N
∏D
d=1 Pd
2

+ ατ , bτ = βτ +
1

2

N∑
n=1

∥∥∥Y(n) − Ŷ(n)
∥∥∥2
F
.

Appendix B. PX-EM Algorithm

In this section, we firstly derive the original EM algorithm. Then we describe the PX-EM
algorithm by adding an additional double-rotation step. In the EM algorithm, we treat η
as latent variables and update them in the expectation step. Other parameters are updated
in the maximization step. In this section, we denote the expectation w.r.t. η as 〈·〉.

B.1. Expectation step

Based on Eq. (3), we can compute the expectation of the latent variables η, as

〈η̃(n)〉 = Λ
(n)
η

(
τ
∑
p

Y(n)
p vec(Q≤D,ᵀ[p])

)
, (4)

〈η̃(n) · (η̃(n))ᵀ〉 = 〈η̃(n)〉 · 〈η̃(n)〉ᵀ + Λ
(n)
η , (5)
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for n = 1, . . . , N , where η̃(n) = vec(η(n)) and

Λ
(n)
η =

(
τ
∑
p

vec(Q≤D,ᵀ[p])vec(Q≤D,ᵀ[p])ᵀ + I

)−1
.

The computational complexity is O(K3 +
∑D

d=1 PdR
4 +NK2 +NPDR3), where K is the

factor number, D is the data order, N is the sample size, P =
∏D
d=1 Pd is the feature length

and R1 = · · · = RD = R is the TR ranks. However, if Y admits a TR format of rank r,
the inner product in Eq. (4) can be computed polynomially with D and the computational
complexity reduces to O(K3 +

∑D
d=1 PdR

4 +NK2 +N
∑D

d=1 PdR
2r2).

B.2. Maximization step

In the maximization step we give MAP estimate of the rest paramters. These estimates can
be derived from the conditional distributions by replacing η by its expectations in Eq. (4)
and (5).

Update Q For the core tensors Q(d),∀d = 1, . . . , D, according the conditional posterior
Eq. (2), we have the update rule

vec(Q(d)[i]) = 〈Λ−1Q 〉

τ N∑
n=1

∑
p−d

Y(n)
pd 〈vec(Q 6=d,ᵀ[p−d])〉

 q̃(d)[i], ∀i = 1, . . . , Pd, (6)

where

ΛQ =

τ N∑
n=1

∑
p−d

vec(Q6=d,ᵀ[p−d])vec(Q 6=d,ᵀ[p−d])
ᵀ

+ diag(vec(φ
(d)
:i: )) ∗ (diag(u(d+1))⊗ diag(u(d)))

)−1
.

The computation of 〈vec(Q 6=d,ᵀ[p−d])〉 is straightforward. Then, we have

〈
∑
p

vec(Q6=d,ᵀ[p])vec(Q 6=d,ᵀ[p])ᵀ〉

=
∑
pd−1

Q(d1)
rd−2m

[pd−1]Q
(d−1)
r′d−2n

[pd−1] · · ·
N∑
n=1

〈
vec(η(n),ᵀ)vec(η(n),ᵀ)ᵀ

〉
· · ·
∑
p1

Q
(1)
r1i

[p1]Q
(1)
r′1j

[p1],

where the expectation term is given by Eq. (5).
The computational complexity for all {Q(d)}Dd=1 is O(

∑D
d=1 PdR

6 + N
∑D

d=1 PdR
4 +

NPD2R3). Similarly, if Y admits TR format of rank r, the complexity cab be reduced to
O(
∑D

d=1 PdR
6 +N

∑D
d=1 PdR

4 +ND
∑D

d=1 PdR
2r2).

Update φ The update rule for φ is

φ
(d)
jih =

1
2 + ν

ν + (Q
(d)
jh [i])2u

(d)
j u

(d+1)
h

. (7)
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Update δ For δ(1), the update rule is

δ
(1)
h =

αδ + P1R2(R1 − h+ 1)/2

1 + 1
2

∑R1
l=h

[∑P1
i=1 u

(2),ᵀ(Q
(1)
l· [i] ∗Q(1)

l· [i])
]
u
(1)
l,−h

. (8)

For d = 2, . . . , D, the update rule is

δ
(d)
h =

αδ + (PdRd+1 + Pd−1Rd)(Rd − h+ 1)/2

1 + 1
2

∑Rd
l=h

[∑Pd
i=1 u

(d+1),ᵀ(Q
(d)
l· [i] ∗Q(d)

l· [i]) +
∑Pd−1

i=1 (Q
(d−1)
·l [i] ∗Q(d−1)

·l [i])u(d−1)
]
u
(d)
l,−h

.

(9)
For δ(D+1), we have

δ
(D+1)
h =

αδ + PDRD+1(RD+1 − h+ 1)/2

1 + 1
2

∑RD+1

l=h

[∑PD
i=1(Q

(D)
·l [i] ∗Q(D)

·l [i])u(d+1)
]
u
(D+1)
l,−h

. (10)

Update τ For the noise precision, the update rule is

τp =
NP1 · · ·PD/2 + ατ

βτ +
∑N

n=1〈
∥∥∥Y(n)

p − Ŷ(n)
p

∥∥∥2
F
〉/2

. (11)

The expectation term can be computed using the similar strategy with updating Q.

B.3. Rotation step

For the parameter-expanded version of the TRLF model, we have

Y =� Q̃(1)
,Q(2), . . . ,Q(D−1), Q̃(D)

,η � +E,
η(n) ∼MN (0,A,B),

where

Q̃
(1)

[i] = R−11 Q
(1)[i], ∀i = 1, . . . , P1,

Q̃
(D)

[i] = Q(D)[i]R−12 , ∀i = 1, . . . , PD.

In the PX-EM algorithm, we add MGP priors on the loading core tensors Q̃(1)
and Q̃(D)

,
instead of Q(1) and Q(D). Moreover, by setting R1 as the upper triangular part of the
Cholesky decomposition of B and R2 as the lower triangular part of the Cholesky decom-
position of A, it is equivalent to the original TRLF model. The key part is to find the
optimal rotation matrix R1 and R2, based on A and B. Like other parameters, the op-
timal rotation matrices are also obtained by maximizing expectation of the log-likelihood
function. In specific, we have

A∗,B∗ = arg max
A,B

N∑
n=1

−R1

2
log|A| − RD

2
log|B| − 1

2
tr(A−1η(n)B−1η(n),ᵀ). (12)
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Though optimization problem Eq. (12) is non-convex for A and B, we can update them in
an alternating manner. Specifically, we have

A∗ = arg max
A

N∑
n=1

−R1

2
log|A| − 1

2
〈tr(A−1η(n)B−1η(n),ᵀ)〉

= 〈
N∑
n=1

η(n),ᵀB−1η(n)〉/(NR1),

B∗ = arg max
B

N∑
n=1

−RD
2

log|B| − 1

2
〈tr(A−1η(n)B−1η(n),ᵀ)〉

= 〈
N∑
n=1

η(n)A−1η(n),ᵀ〉/(NRD).

(13)

In each iteration of the PX-EM algorithm, we only update A and B once to get a local
solution. It should be noted that if we use the TT format (i.e., TTLF), A or B is fixed as
an identity matrix. Hence, the update rule for TTLF is optimal. The rotation step is used
to get sparse latent factors and is optional. In practice, we can add this step for the first
several iterations. The PX-EM algorithm is summarized in Algorithm 1.

Appendix C. Experiments

C.1. Synthetic Analysis

For the POET model1, we use factor number 50. For the InfLF model2, we initialize the
factor number as 30 and adaptively tune the factor number in the Gibbs sampling process.
For the HOLQ model3, we use the default settings. For our model, we initialize with TT-
rank 30 and prune small factors during training. The TTLF is a special case of TRLF
in that the first rank is 1. In the simulation study, the TRLF has similar log-Euclidean
distance (LED) with TTLF.

C.2. Real Data Covariance Estimation

For high dimensional data, if the covariance matrix has no special structure, it is hard to
compute the log-likelihood function. Hence, we do not compare with the LW method in
this experiment. Moreover, we find that the POET model is hard to fit these data. So we
compare our model with InfLF and HOLQ in this subsection. For InfLF and our model,
we compute the log-likelihood by using the Woodbury identity. For HOLQ, since it has
Kronecker structure, it is also very efficient to compute the matrix determinant and matrix
inverse. For all the data, we initialize the InfLF model with factor number 40 and our
model with TT-rank 40.

1. https://cran.r-project.org/web/packages/POET/
2. https://cran.r-project.org/web/packages/infinitefactor/
3. https://cran.r-project.org/web/packages/tensr/index.html

https://cran.r-project.org/web/packages/POET/
https://cran.r-project.org/web/packages/infinitefactor/
https://cran.r-project.org/web/packages/tensr/index.html
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Algorithm 1 PX-EM algorithm for TRLF.

Input: Data Y , hyper-parameters αδ, βδ, ατ , βτ , ν.
Initialize: Estimator Ŷ =�Q(1), · · · ,Q(D),η �.
Output: Ŷ .
repeat

// E-step
for n = 1 : N do

Update η(n) by Eq. (4) and (5).
end for
// M-step
for d = 1 : D do

Update Q(d) by Eq. (6).
end for
for d = 1 : D do

Update φ(d) by Eq. (7).
end for
for d = 1 : D + 1 do

Update δ(d) by Eq. (8), (9) and (10) respectively.
end for
Update τ by Eq. (11).
// Rotation (optional)
Compute A and B by Eq. (13) and the corresponding Cholesky decompositions.
for i = 1 : P1 do

Set Q(1)[i] := R1Q
(1)[i].

end for
for i = 1 : PD do

Set Q(D)[i] := Q(D)[i]R2.
end for

until Maximum iteration or convergence.

C.3. Image Inpainting

The BCPF model also uses sparse Bayesian priors to automatically choose latent factors
and requires no hyperparameters. However, for the rest of models, we have to carefully
tune the hyperparameters, e.g., the TT/TR-ranks. Here we compute those models under
several TT/TR-rank settings and select the best performance. However, it should be noted
that this is not realistic in many applications where the true signals are unknown. For
our model, we simply initialize with TR format of rank 15, and we truncate the redundant
factors while training, in order to reduce computational cost. For the image inpainting
task, if we use the tensor train decomposition, it may require much larger TT-ranks to get
comparable performance. So we only use tensor ring decomposition in this experiment.

We choose 8 standard pictures as benchmark, as shown in Figure 1. We randomly
generate masks of missing rate 0.5, 0.7 and 0.9. Figure 2 shows the visualization results of
the Lena image completion. Our model has better recovery results than the competitors,
especially when the missing rate is high.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 1: Benchmark images.

(a) Missing (b) TRLF (c) TRALS (d) TRLRF (e) TTWOPT (f ) BCPF

Figure 2: Illustration of the Lena image completion. Each row from the above to the bottom
according to missing rate 0.5, 0.7 and 0.9 respectively.
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