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Abstract

Clinical decision support for histopathology im-
age data mainly focuses on strongly super-
vised annotations, which offers intuitive in-
terpretability, but is bound by expert perfor-
mance. Here, we propose an explainable can-
cer relapse prediction network (eCaReNet) and
show that end-to-end learning without strong
annotations offers state-of-the-art performance
while interpretability can be included through
an attention mechanism. On the use case
of prostate cancer survival prediction, using
14,479 images and only relapse times as anno-
tations, we reach a cumulative dynamic AUC
of 0.78 on a validation set, being on par with
an expert pathologist (and an AUC of 0.77 on a
separate test set). Our model is well-calibrated
and outputs survival curves as well as a risk
score and group per patient. Making use of the
attention weights of a multiple instance learn-
ing layer, we show that malignant patches have
a higher influence on the prediction than benign
patches, thus offering an intuitive interpreta-
tion of the prediction. Our code is available at
www.github.com/imsb-uke/ecarenet.
Keywords: Computational Pathology, Gated
Recurrent Units, Multiple Instance Learning,
Prostate Cancer, Recurrent Neural Network,
Self Attention, Survival Prediction, Explain-
ability
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1. Introduction

In recent years deep learning has greatly improved the
performance in computer vision tasks for medical ap-
plications (Esteva et al., 2021). In particular, decision
support systems for cancer treatment in the field of
computational pathology are emerging (Abels et al.,
2019). Many systems rely on physicians’ annotations
like treatment decisions, manual annotation of tissue
regions or patient classification according to a staging
system (Bulten et al., 2020). This strong supervision
limits the models’ performance through subjectivity
and thus ambiguity of the ground truth, and empha-
sizes the need for quantifiable labels that are indepen-
dent of the physician, such as time to disease-related
death or relapse. Difficulties arise as such labels are
relatively weak (a single survival time per patient),
thus requiring a large dataset for training, and in-
clude censored cases as not all patients relapse or die
of the disease. A survival model, unlike a classifica-
tion model, models the patient’s survival over time
and can include censored patients.

The aim of this work is to show that high predic-
tive power can be achieved when training end-to-end
only with quantitative patient relapse times, while
having a majority of censored cases. We focus on
prostate cancer as a use case, which was the cancer
with the second most new cases in men worldwide
in 2020 (Ferlay et al., 2020). Instead of predicting
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Gleason grades to estimate cancer severity (Gleason
and Mellinger, 1974), which are highly controversial,
often revised and suffer from interobserver variability
of up to 81% (Egevad et al., 2012), we use time to
biochemical recurrence (BCR) as annotation. This is
defined as a significant rise in prostate specific anti-
gen (PSA) level in the blood after prostatectomy. As
input, digitized hematoxylin and eosin (H&E) stained
tissue microarray (TMA) spots are used, of which a
dataset containing 14,479 images is available.

To the best of our knowledge, we are the first
to propose an explainable end-to-end deep learning
model to predict BCR over time after prostatectomy
from TMA spots. We introduce a novel network
based on self-attention (Rymarczyk et al., 2021),
attention-based multiple instance learning (MIL, Ilse
et al. (2018)) and recurrent neural networks (RNNs,
Rumelhart and McClelland (1987)) for survival pre-
diction, called eCaReNet (explainable cancer relapse
prediction network). With an AUC of 0.78 on the val-
idation set (0.77 on the test set) we achieve state-of-
the-art results, while assuring calibration. Through
evaluation of attention weights of the MIL layer,
we further show that our model weights malignant
patches higher than benign patches. In general, our
approach is applicable to various cancer and non-
cancer histopathology survival prediction problems.

This work is organized as follows. Section 2 gives
an overview on related work. In Section 3, the avail-
able data is described. The details of our model can
be found in Section 4, followed by a discussion of the
results in Section 5, including a comparison to bench-
mark models and a pathologist.

2. Related Work

Image-based decision support systems often aim at
reproducing classification systems used in clinical
practice (Bulten et al., 2020). Only after classifica-
tion Arvaniti et al. (2018) and Nagpal et al. (2019)
correlate findings to patient survival. Disadvantages
are time-consuming annotations and label quality
limited by the annotator. However, this classifica-
tion allows for an improved interpretability of pro-
gression prediction. If only a weak label for a whole
image is available, MIL approaches as proposed by
Tlse et al. (2018) can be applied to analyze which im-
age regions have the highest influence on a model’s
prediction. Couture et al. (2018) for example inte-
grate MIL methods in their model for risk of recur-
rence prediction from image patches, which is also
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a clinical score. Especially when analyzing whole
slide images, MIL approaches are often used. Yao
et al. (2020) predict a single risk score per patient
with attention-based MIL, while (Campanella et al.,
2019) use MIL for binary tumor classification. Lu
et al. (2021) extend MIL to multi-class classification
by implementing multiple attention branches. Im-
age regions relevant for the diagnosis are indicated
by high attention weights.

Human performance can be improved upon if dis-
ease progression is modeled based on patient outcome
directly. A binary classification of whether a patient
has a relapse before a certain point in time is often ap-
plied, but is diagnostically less conclusive (Duanmu
et al., 2020; Yamamoto et al., 2019). Wulczyn et al.
(2020) treat survival prediction as a multi-class prob-
lem with the goal to correctly classify the interval of
the event and output a risk score.

To predict relapse probability over time, a survival
analysis model can be used. One option is the Cox
model (Cox, 1972), where the linear part can be re-
placed by a neural network, as proposed in DeepSurv
by Katzman et al. (2018) and its counterpart for im-
ages DeepConvSurv by Zhu et al. (2016). Especially
in histopathology, often a complex feature extraction
step is applied prior to the Cox model (Yao et al.,
2020; Tang et al., 2019; Zhang et al., 2021). Further-
more, the Cox model is limited by the proportional
hazard assumption, which enforces hazard rates to
be constant over time. Xiao et al. (2020) and Vale-
Silva and Rohr (2021) avoid the proportional hazard
assumption as well as annotation-expensive prepro-
cessing steps by developing end-to-end deep learning
models. The latter however also include electronic
health record and omics data to improve performance
and neither includes an explainability mechanism,
treating the model as a black box. Ren et al. (2019)
and Giunchiglia et al. (2018) include recurrent layers
to model time dependency, but only use patient elec-
tronic health records. A different approach is applied
by Yala et al. (2021), who predict risk of cancer over
time from mammography images by converting the
prediction into a classification across multiple time
points.

We propose a novel framework named eCaReNet
for explainable end-to-end relapse prediction by ex-
ploiting the advantages of different works.
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3. Dataset

Two datasets were provided by the local pathology
department. All images in our datasets show prostate
tissue obtained after prostatectomy, during which the
patient’s prostate is removed. Multiple tissue sam-
ples are then taken with a hollow needle, resulting in
tissue cores of 0.6 mm diameter each. Arranged in
a TMA, multiple samples from multiple patients are
stained at once with H&E and digitized afterwards.
Small differences, or biases, in staining intensity be-
tween TMA blocks arise due to e.g. staining times
(Parsons and Grabsch, 2009).

The survival dataset (see Table 1) comprises 39 dig-
itized TMAs with 129 to 522 images each. For these
images, besides the time to BCR and the censoring
status, the integrative quantitative (IQ-) Gleason and
International Society of Urological Pathology (ISUP)
scores (Sauter et al., 2018; Egevad et al., 2012) of
the whole prostate are labeled (for details on Gleason
grading see Appendix A.1). In this context it is im-
portant to note that the Gleason scores are based on
the whole prostate, while in our dataset the image per
patient only represents a small part of prostate tissue.
Since the TMA spot image can only cover a very small
part of the prostate, and annotations for individual
images are missing, it is possible that a given image
is not fully representative of a patient’s disease status
and outcome. In order to remove the most extreme of
those cases, per-image Gleason scores are predicted
and compared to the annotated overall Gleason score.
Images that are predicted as non-cancerous — but
have a high overall IQ Gleason annotation, a PSA
value > 4 =% and a relapse within 2 years — are
removed from the dataset, as these are considered
unrepresentative and expected to reduce the model’s
generalizability. Other discrepancies between the im-
ages and relapse times are left unchanged.

Images from all but one TMA are shuffled and split
into training, validation and test sets, stratified by
prostate Gleason annotation. One TMA is left out
as a separate test set to evaluate model performance
on a set with a unique staining bias. Table 1 sum-
marizes the number of images per dataset split. The
distribution of event times for censored and uncen-
sored patients in the training and validation datasets
is shown in Figure A.1.

We pretrained our model on a second, smaller
dataset (Gleason dataset), which also contains TMA
spots, but is annotated with image-level Gleason and
ISUP scores (see Figure C.1A). It includes 1930 im-

ages in the training, 417 in the validation and 419 in
the test set.

For clinical practice, an estimate of the relapse time
is of interest prior to prostatectomy. Since tissue sam-
ples obtained through needle biopsy are visually sim-
ilar to post-prostatectomy tissue cores, the dataset
can simulate such biopsies. The Gleason labels are
annotated following the convention for biopsies.
Preprocessing and data augmentation steps are de-
tailed in Appendix A.3.

Table 1: Overview of number of images for each split
in the survival dataset. 80% of patients are
censored. ¢ = 0:uncensored, ¢ = l:censored,
valid.:validation.
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training | valid. | test | single TMA test
c=0 1965 445 429 36
c=1 8023 1698 | 1742 141
total 9988 2143 | 2171 177
4. Methods

4.1. Survival prediction

The following is derived according to Kvamme et al.
(2019). For a patient with relapse at time t*, the
probability to be event-free at time ¢ is modeled via
the survival function

S(t) = P(t* > t). (1)
The risk of the event to occur in the interval at time
t + At, given that it did not occur until time ¢, is
expressed with the hazard rate

Pt <t <t+ Atjt* >t)
At '

(2)

A well-established method for modeling survival func-
tions of individual patients via the hazard rate is
the Cox model (Cox, 1972). It is limited by the
proportional hazard assumption, which assumes that
the hazard is constant over time and equal for all
patients, therefore not allowing for crossing survival
curves.

In order not to be constrained by this assumption,
we directly model the individual hazard functions
with a neural network. The time is discretized into
time intervals t; € (%o, ..., t) and discrete versions of
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survival and hazard functions are defined as

S(t;) = P(t* > t;), 3)
h(tj) = P(t* = tj|t* > tjfl), (4)
S(t;) = 111 = ht))- (5)

k=0

The survival function is a monotonically decreasing
function, as can be seen from Equation 5.

An important characteristic of survival data is cen-
soring. Not all patients in the dataset experience an
event, either because they are lost to follow-up, their
event occurs after the end of documentation or they
never relapse. These patients are right-censored and
here t* is not the time of the event, but the last ob-
served time without any event.

4.2. Model

As a base model for our proposed survival predic-
tion an InceptionV3 network (Szegedy et al., 2015),
pretrained on the ImageNet dataset (Russakovsky
et al., 2015), is chosen, while replacing the last lay-
ers to perform survival prediction as described be-
low. We chose InceptionV3 as it achieved best re-
sults in our experiments. We include two preceding
steps (4.2.1 and 4.2.2), before training our survival
model eCaReNet in a third step. Figure C.1 shows an
overview of the presented models and which datasets
these are trained on.

4.2.1. Misup

In the first step, we additionally pretrain the Incep-
tionV3 model to adapt it to our histopathology do-
main. Our model Migyp takes images from the Glea-
son dataset as input (Figure C.1A), downsized with
bilinear interpolation to 1024 x 1024 pixels, and clas-
sifies these into one out of six classes (benign or one of
5 malignant ISUP classes). During training, a cross-
entropy loss is used. For training details and results,
see Appendix B.

4.2.2. Mpy

In the second step, a binary classification model Mg;,
is used to predict relapse within 2 years on the sur-
vival dataset (Figure C.1B). 2 years was chosen, as
it lies close to the median (26.8 months) of the re-
lapse times (44% of relapses earlier than 2 years).
For this, we took the model Migyp and modified the
output to 2 classes. The input image is resized to
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1024 x 1024 pixels as in Migyp and a cross-entropy
loss is applied during training. As opposed to the first
step, the prediction per image is saved and used in
the third step, which is the survival prediction model
eCaReNet, shown in Figure 1.

4.2.3. ECARENET

Each image of the survival dataset is cut into square,
non-overlapping patches as input to eCaReNet (64
patches with 256 x 256 pixels each, see also Section 5).
As this model predicts the hazard over time, one out-
put node per time interval is needed. We chose 28 in-
tervals to cover a time span of 7 years with intervals
of 3-months length, covering the 90% of relapses that
occur prior to 7 years. For eCaReNet, only the first
4 inception blocks of Migup are used to reduce over-
fitting. The following global average pooling layer re-
duces the dimensionality. Then a self-attention block,
as proposed by Rymarczyk et al. (2021), models the
influence of each patch across all other patches. Next,
the aforementioned binary classification is concate-
nated with the output vector of the self-attention
layer. This concatenated vector is repeated 28 times
to model the discrete time intervals. The current time
step is concatenated to each of these vectors. A gated
recurrent unit (GRU) layer (Cho et al., 2014) mod-
els the temporal dependency of the hazard rate in the
output, as proposed by Ren et al. (2019). At the end,
an attention-based MIL-layer weights the predictions
per patch and outputs a prediction per image, as pro-
posed in Ilse et al. (2018).

An individual survival curve per patient is obtained
through Equation 5. Using the normalized area un-
der the survival curve, the patient’s overall risk is es-
timated. Since a large area under the survival curve
indicates a low risk r and vice versa, the normalized
area is subtracted from one:

k

DSt - [t —tial,

=1

r=1—-—
k

(6)

with the last interval k& at time ¢ (based on the sur-
vival time prediction in Xiao et al. (2020)). Since the
risk score is a single numerical value between 0 and
1, it eases comparison among patients.

As proposed by Kvamme et al. (2019), during
training a maximum likelihood loss is optimized. It
differs for censored (¢ = 1) and uncensored (¢ = 0)
patients with the observed event time t*. For un-
censored patients, the loss L, can be defined by the
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Figure 1: The survival model eCaReNet consists of a pretrained InceptionV3 base model, followed by global
average pooling (GAP), a self-attention layer, a recurrent layer with gated recurrent units (GRU)
and multiple instance learning (MIL) to combine results per patch. As output, a survival curve
as well as a risk score are calculated per patient. The input image needs to be cut into regular
patches. As additional information, a prediction whether the relapse occurs in the first two years
is used and a time grid is included. The influence of the colored parts is evaluated in Section 5.

known hazard, whereas for censored patients the loss
L. can be defined with the survival function:

Ly =) [log(h(t*))+ > log(l—h(t:))], (7)

c=0 titt; <t*
Le=) [ Y log(l—h(t;))] (8)
c=1 t;:t; <t*

(9)

(10)

=D llog(S(t")],

L=alL,+ (1—-alL.).

Both censored and uncensored patients’ losses are
linearly combined and equally weighted with o =
0.5. As labels, the survival and hazard are defined
as described in Section 4.1. Since only a discrete
event time is known, from Equation 3 it follows that
S(t;) =1Vt; <t* and S(t;) =0V t; >t*. For the
hazard function, h(t;) = 0V t; < t* and h(t*) = 1
hold. The hazard function is not defined for ¢; > ¢*.

4.3. Metrics

To evaluate a survival model, both discrimination and
calibration need to be considered. Discrimination es-
timates whether patients are ranked in the correct
order, whereas calibration measures how well the pre-
dicted survival curves match with the ground truth.
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To evaluate discrimination, we use the cumulative
dynamic area under the curve (¢/d AUC),
c/d AUC(t) = P(Si(t) < S;(0)[t; <t,t] > 1)
+0.5P(S;i(t) = S;(t)|t; <t,t; > 1),
(11)
which is further integrated over time and weighted by
the Kaplan-Meier estimate to account for censored
and uncensored patients. Details can be found in
Blanche et al. (2019). With the ¢/d AUC the order
of the patients’ survival probabilities are compared
at multiple discrete time points t. Censored patients
are only comparable to patients with a known sur-
vival time that is shorter than the time of censoring.
Perfect order results in a measure of 1 (Blanche et al.,
2019). To improve readability, we refer to the ¢/d
AUC as AUC in the following.
In the literature, the concordance, or c-index, is more
commonly used (Blanche et al., 2019). This measure
also ranges between 0 and 1, with 1 being perfect
discrimination. However, the c-index is not a proper
scoring rule, meaning that the underlying data gener-
ation process does not necessarily give the best score
(Gerds and Kattan, 2021). The Brier score combines
calibration and discrimination (Brier, 1950), as it
measures the mean squared error between the ground
truth survival curve and the predicted survival curve.
A model that reaches a Brier score below 0.25 is con-
sidered to be meaningful (Gerds and Kattan, 2021).



ECARENET

In an ideal case, the predicted survival curve would be
compared to the true survival probability over time,
but this cannot be observed. To evaluate how mean-
ingful the resulting survival curves for single patients
are, the d-calibration is introduced by Haider et al.
(2020). The idea behind this is to verify that the
predicted survival probability at time ¢ matches the
true probability of surviving up to time ¢. The d-
calibration is calculated by comparing the number
of patients that relapse while having a certain pre-
dicted survival probability to the expected number.
D-calibration is measured with a chi-square test, that
needs to pass. For details, see Appendix D.

The Brier score evaluates individual patients’ predic-
tions, while the other metrics are only applicable to
whole populations. These are thus best used for com-
parisons between model performances on the same
data, not across datasets (Gerds and Kattan, 2021).

5. Experiments and Results

All models are trained with the Nadam optimizer
(Dozat, 2016) on the training set and the model with
the smallest loss L on the validation set is chosen for
evaluation. 5 training runs are performed per model
with different random seeds for weight initialization
to avoid initialization bias. The models are imple-
mented in Tensorflow 2.1 in Python 3.6. Training is
performed on an NVIDIA Quadro RTX 8000 GPU
with 48 GB memory. As the focus of this work is on
survival prediction, the results for the pretraining on
ISUP scores are provided in Appendix B.

5.1. Benchmark

As benchmark, we compare eCaReNet to architec-
tures and loss functions proposed in the literature as
well as to an expert pathologist’s annotations. Re-
sults are summarized in Table 2, where higher AUC
and c-index, but lower Brier score indicate better
model performance. For d-calibration, only pass or
failure of the chi-square test is indicated. We start
by comparing eCaReNet to two models proposed in
the literature. First, we retrain our pretrained Misyp
(see Section 4.2.1) with the Cox loss and output as
proposed in DeepConvSurv by Zhu et al. (2016). To
do so, the output needs to be reduced to only one
node. That model reaches an AUC of 0.69 (c-index
of 0.65) on the validation and 0.71 (0.64) on the test
set. The test for d-calibration fails and also the Brier
score of 0.305 (0.296 on the test set) indicates a non-
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Figure 2: Example survival curves for 3 patients of
the survival test dataset, predicted with
eCaReNet (blue) and CDOR (orange-red).
Both models predict the order of the pa-
tients correctly. The survival curves pre-
dicted by our model are monotonically de-
creasing, in contrast to CDOR. t*: time of
BCR in months. For eCaReNet, also the
predicted risk and risk group are indicated.

—

R Y R S

50 100 150

time in months

200 250

Figure 3: Kaplan-Meier curves for separate risk
groups on the test set. The majority of
groups separate well, only the log-rank
tests between groups 2/3 as well as 4/5 fail
with p-values 0.07 and 0.31 respectively.

calibrated model. As second comparison, we train
Misup with the output structure and loss proposed
in censoring-aware deep ordinal regression (CDOR)
by Xiao et al. (2020). That model reaches an AUC
of 0.77 on the validation and 0.78 on the test set and
a c-index of 0.73 for both sets, but also fails in terms
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Table 2: Benchmark of our proposed approach. Values are the mean of 5 training runs with the standard
deviation in parentheses. For d-calibration only failure (f) or pass (p) is indicated.

Validation set ‘ AUC Brier C-index D-calibration
ISUP 0.78 - 0.75 -
DeepConvSurv (Zhu et al., 2016) | 0.69 (0.0207)  0.305 (0.0146)  0.65 (0.0173) f

CDOR (Xiao et al., 2020) 0.77 (0.0089)  0.111 (0.0014)  0.73 (0.0046) f

eCaReNet 0.78 (0.0041) 0.107 (0.0004) 0.75 (0.0016) p

Test set |

ISUP 0.80 - 0.76 -
DeepConvSurv 0.71 (0.0232)  0.296 (0.0227) 0.64 (0.0132) f

CDOR 0.78 (0.0005) 0.110 (0.0001) 0.73 (0.0003) f

eCaReNet 0.77 (0.0048) 0.109 (0.0006) 0.74 (0.0037) p

of calibration. Furthermore, the resulting survival
curves are not monotonically decreasing, therefore bi-
ologically unreasonable (see Figure 2).

Compared to both previously described models,
eCaReNet shows the best performance for all mea-
sures on the validation set (AUC 0.78, Brier score
0.107, c-index 0.75) and passes the chi-square test
for d-calibration. On the test set it also obtains the
best Brier score (0.109) and c-index (0.74) and passes
the chi-square test for d-calibration. CDOR performs
best on the test set’s AUC. In contrast to CDOR,
eCaReNet outputs monotonically decreasing survival
functions (see Figure 2).

In addition, we assign individual patients to 8 risk
groups, to enable a relative ranking as detailed in Ap-
pendix E. Risk groups further allow the evaluation of
Kaplan-Meier curves (Kaplan and Meier, 1958) with
a log-rank test, which is common in survival analysis
(Li et al., 2015). Kaplan-Meier curves are calculated
for the risk groups on the training, validation and test
datasets. Overall, we can show that the risk groups
stratify well on all sets. The results for the test set
are shown in Figure 3, where five out of seven log-
rank tests pass (p < 0.05).

Furthermore, we compare eCaReNet to annotations
of an expert pathologist. In clinical practice, pathol-
ogists do not estimate relapse times for patients di-
rectly, but assign a Gleason score. We compare
eCaReNet’s discrimination power to the assigned
ISUP scores, since a higher ISUP score corresponds
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to an increased risk of relapse. eCaReNet reaches
on par performance in terms of AUC and c-index
with the pathologist’s annotations on the validation
set (AUC 0.78 and c-index 0.75). Only on the test
set, the ISUP annotation shows higher AUC and c-
index. In contrast to our model that uses a single
TMA spot image per patient, for the ISUP annota-
tion the whole prostate tissue was available, giving
Gleason-based survival prediction an advantage over
model-based prediction.

5.2. Comparison of model adaptations

In the following, eCaReNet (see Figure 1) is adapted
to evaluate which parts contribute most to model
discrimination power and calibration (see Table 3).
As base model My,qe, the first 4 blocks of an Incep-
tionV3 model, pretrained on the ImageNet dataset,
are extended with a GRU layer for survival predic-
tion. The following adaptations are included grad-
ually. As first adaptation (Mpyetr), a retraining of
the InceptionV3 on Gleason classes as described in
Misup is applied (see Section 4.2.1). The next adap-
tation is model My, which processes image patches.
Here, an attention-based MIL layer is added to the
previous model (blue part in Figure 1). For model
MwiL-Bin, the binary relapse prediction in Mp;, from
Section 4.2 is added (red part in Figure 1). The
last evaluated model is eCaReNet, where addition-
ally a self-attention layer is included (green part in



Table 3: Comparison of model adaptations.
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Values are the mean of 5 training runs with the standard

deviation in parentheses for the validation (Valid.) and test sets. When models Migyp or Mpiy, or
MIL or self-attention (sa) layers are included, it is indicated with a dot (e). Best results are marked
in bold. MIL=multiple instance learning, Bin=including binary relapse prediction from Mp;,. For
d-calibration (D-cal.) only failure (f) or pass (p) is indicated.

Valid. set ‘ Misup MIL Mg, sa ‘ AUC Brier C-index D-cal.
Mpase 0.74 (0.0042)  0.116 (0.0038)  0.72 (0.0008) p
Mpretr ° 0.76 (0.0018)  0.109 (0.0005)  0.73 (0.0023) p
M, ° ° 0.76 (0.0004)  0.109 (0.0000)  0.74 (0.0000) p
MMIL-Bin ° ° ° 0.77 (0.0012)  0.107 (0.0003) 0.74 (0.0026) p
eCaReNet | o ° . 0.78 (0.0041) 0.107 (0.0004) 0.75 (0.0016) p
Test set

Mpase 0.74 (0.0054)  0.115 (0.0007)  0.71 (0.0031) p
Mpretr ° 0.76 (0.0031) 0.110 (0.0004) 0.73 (0.0018) p
My, ° 0.76 (0.0002)  0.110 (0.0000)  0.74 (0.0003) p
MMIL-Bin ° 0.77 (0.0011) 0.109 (0.0003) 0.74 (0.0022) p
eCaReNet | o ° 0.77 (0.0048) 0.109 (0.0006) 0.74 (0.0037) p

Figure 1), to account for inter-patch influences. For
model My, and Myrr-Bin, the experiments showed
best results using 16 patches of size 512 x 512 pixels,
whereas 64 patches with 256 x 256 pixels each lead
to best results when including self-attention.

All results are summarized in Table 3. It can be seen
that the pretraining on histopathology images has a
positive effect on all metrics. Adding MIL further im-
proves the discrimination on the validation dataset.
Best results are achieved when adding the 2-year re-
lapse prediction and self-attention, reaching perfor-
mance rivaling that of expert pathologists (AUC val-
idation set: 0.78, test set: 0.77). However, the model
with self-attention shows a slightly higher variance in
the results than Myr-gin. It is concluded that the
inter-dependence of patches does not add much ad-
ditional information to the prediction, as both model
versions with and without self-attention show similar
performance on the test set. The Brier score is simi-
lar for all models and best also for the variants that
include a binary relapse prediction. For all our mod-
els, the d-calibration chi-square test passes, assuring
calibration. Furthermore, the models generalize well,
as there is only a slight performance drop when evalu-
ating on the test set. Evaluation of the results on the
separate test set, only containing a single TMA, also
results in AUC scores of 0.74-0.76 for all adaptations.
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5.3. Evaluation of attention weights

To apply a model in clinical practice, an accurate per-
formance on test data is not sufficient. Physicians can
only benefit from a support system if the decisions
can be explained and interpreted, with the terms
‘explainability’ or ‘interpretability’ having many dif-
ferent and non-standardized meanings in the litera-
ture (Barredo Arrieta et al., 2020). In this paper,
we include explainability by computing the attention
weights of the MIL layer and showing which image
regions have the highest influence on the prediction.
It is expected that malignant patches show higher at-
tention weights than patches with benign tissue.

In a first analysis we use the Gleason dataset to create
an artificial dataset for which the annotation per im-
age patch is known. Each image in this dataset com-
bines one image showing benign tissue and one image
with malignant Gleason grade 5 tissue by stitching
half of each together (see example in Figure 4(a)).
For each image, the attention weights per patch are
extracted from the MIL layer of eCaReNet. In the
example it can be seen that the upper, malignant
part, receives the highest attention weights, while in
the benign tissue only relatively bright regions are
highlighted. This may be because white regions cor-
respond to glands, which are an important structure
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to distinguish benign from malignant tissue (see also
Figure F.1). A boxplot of the attention weights of
all 12 example images is shown in Figure 4(b). The
attention weights for malignant patches are signifi-
cantly higher than for benign patches. The original
images that were stitched together are neither part
of the training nor of the validation or test sets and
give an unbiased estimate of importance.

Another experiment was conducted on the survival
dataset. From each TMA, one image was randomly
chosen from both the validation and test sets of the
survival dataset, while maintaining the overall data
distribution with respect to the ISUP grades, relapse
time and censoring status. An expert pathologist
marked tumor regions in each image, enabling us to
compare this to the attention weights per patch. A
patch is counted as tumorous if 66% of it lie within
the marked tumor region. Figure 4(c¢) shows that all
highlighted patches lie within the tumor area, how-
ever not all patches in the tumor area receive a high
attention weight. Figure 4(d) shows the results on
all images showing tumor tissue drawn from the test
set. Patches marked as tumor show on average higher
attention weights than non-tumor image patches.
Overall, both experiments provide strong evidence
that eCaReNet focuses on tumor regions, thus hu-
man interpretable explanations are provided.

6. Conclusion

We developed an end-to-end deep learning model for
predicting prostate cancer patients’ time to relapse
using only images as data source. By directly utiliz-
ing time to relapse as ground truth, we could show
that detailed annotations are not necessary for train-
ing, but are useful for pretraining on a small dataset.
eCaReNet reaches the same AUC on the validation
set that can be reached with ISUP scores, annotated
by an expert pathologist on the whole prostate, while
our model only uses a single image per patient.

By including explainability in our model, we tackle
a major drawback of end-to-end systems. With an at-
tention module, we open up the black box and showed
in two experiments that the model weights malignant
patches significantly higher than benign patches.
Since eCaReNet only requires pairs of histopathology
images and physician-independent labels, it is gener-
alizable and can be applied to other use cases and
end points, like time to disease-related death.
Future work includes a more detailed analysis of the
model in terms of explainability. Further improve-
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Figure 4: In the example images, lighter patches indi-
cate higher attention weights. Boxplots (b)
and (d) show results over all example im-
ages per experiment. (a) An example im-
age of the first experiment, with the lower
part being benign and the upper part be-
ing malignant. (c¢) An example image with
the tumor region marked in black. Patches
with highest attention weights all lie within
the tumor area. For both experiments, the
attention weights for malignant patches are
significantly higher than for benign patches
(x: p < 0.05, %% : p < 0.01).

ments are expected when including multiple images
per patient or adding additional information, e.g.
about the patient’s age, PSA value or family history.
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Appendix A. Dataset and
preprocessing

A.1. Prostate cancer grading

If prostate cancer is suspected, the amount of tu-
mor and its grade are first estimated with a biopsy
(Grignon, 2018). Among different treatment options,
a prostatectomy might be chosen. For both biopsy
and prostatectomy, the tissue is graded according to
the Gleason grading system (Gleason and Mellinger,
1974). The tumor is stratified into five Gleason pat-
terns. The Gleason score is defined as the sum of two
patterns (in biopsy the most common and the worst,
in prostatectomy the two most common patterns). As
there is controversy about the grading system, the In-
ternational Society of Urological Pathology (ISUP)
decided on a scoring system that combines differ-
ent Gleason pattern combinations into five groups
(Egevad et al., 2012). However, there is no consensus
yet on how to include possible tertiary patterns and
also the percentages of the Gleason patterns in the
tumor are neglected. Therefore, Sauter et al. (2018)
introduced a more differentiated score, the Integrated
Quantitative (IQ) Gleason score. In this work, we fo-
cus on the ISUP scores, as they are used in most other
studies.

A.2. Dataset distribution

In total, our survival dataset contains 17,230 images
with prostate tissue, of which 60 images that either
contain little to no tissue or are of poor quality (e.g.
artifacts in the image) are omitted. Additionally,
3,624 patients with unknown relapse time or cen-
soring status are excluded. 709 patients fall under
the filtering criterion described in Section 3. Since
multiple exclusion criteria may apply to one patient,
14,479 patients remain in the final survival dataset.
The dataset distribution is shown in Figure A.1 for
the training and validation sets. 90% of uncensored
events occur prior to 7 years, 44% prior to 2 years.

A.3. Preprocessing

The images are all square but of different sizes
(2490 x 2490 to 3181 x 3181 pixels), cut out from
digitized TMA images. Therefore, they consist of
circular tissue on white background. Since the white
background does not include any information, only
a center square of each circular spot is used, which
results in images of size 2048 x 2048. The steps are
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Figure A.1: Distribution of censored and uncensored
cases in training and validation sets. The
red and orange lines indicate 24 and 84
months after prostatectomy.

shown in Figure A.2. Using the OpenCV package
for Python (OpenCV, 2015), the RGB image A.2(a)
is first converted to grayscale A.2(b) and binarized
with Otsu-thresholding A.2(¢) (Otsu, 1979). Then,
an ellipse is fitted A.2(d) to use its center as center
point for the resulting square A.2(e)-A.2(f), as not
all tissue spots are perfectly round. It is assumed
that the information loss at the margins by exclud-
ing some tissue is negligible compared to the gain in
the foreground to background ratio.

During model training, data augmentation is ap-
plied. As data augmentation methods, the images
are randomly flipped and rotated. For the survival
model, images are further cut into regular, non-
overlapping tiles. The continuous time to BCR label
is converted to a binary vector of length 28 for 28
time intervals ¢;. It has value 1 for ¢; < ¢* and 0 for
t; > t*.

Appendix B. ISUP classification

For the ISUP classification in model Migyp, the ISUP
score labels are encoded as an ordinal regression, to
account for the fact that e.g. classes 2 and 3 are closer
than classes 2 and 5. Labels are in the form y = [I;]
for i = 0...4 with [; = 1 if ¢ < ¢ else 0 for each class c.
For example, class 2 is encoded as [1,1,0,0,0]. The
model’s output o is converted back to class label by
summing all output values p = >, 0; and rounding
the result. During training, the cross-entropy loss,

l= Zyc IOg(Oc)v (12)
C
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Figure A.2: Preprocessing steps to cut center pieces
of the image and remove most of the
white background on an example. Start-
ing with the original image (a), it is
converted to grayscale (b), then Otsu-
thresholding is applied (c). Next, an el-
lipse is fitted to the tissue spot, here pro-
jected back to the RGB image (d) and a
center square is cut (e) - (f).

introduced by Rubinstein (1999), is optimized using
C classes.

The ISUP classification was trained on 1863 images
with 402 validation images of the Gleason dataset (see
Figure C.1A). The kappa score on the validation set
is 0.85. The confusion matrix is shown in Figure B.1.
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Figure B.1: Confusion matrix for ISUP classification.
The axes show the ISUP scores as well
as the corresponding possible Gleason
grade combinations. Most class confu-
sions are between neighboring classes.
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Appendix C. Model

The complete model eCaReNet is shown in Figure C.1
including the pretraining model Misyp and Mp;y,.

C.1. Model results

The d-calibration for eCaReNet is shown in Fig-
ure C.2. The distribution’s uniformity has been con-
firmed with a chi-square test. The AUC of eCaReNet
can also be evaluated over time, as shown in Fig-
ure C.3.

Appendix D. D-calibration

In a d-calibrated model, the survival functions per pa-
tient can be interpreted as probability of relapse over
time. If a survival curve shows 90% survival proba-
bility, the patient can trust that only 10% of patients
with the same diagnosis experience a relapse at that
time point. This also means that 10% of patients
should experience their event when the survival prob-
ability is between 90 and 100%. Since the same holds
for all other intervals (0-10, 10-20, ...), the expected
number of events is compared to the true number of
events and a chi-square test is used to measure this.
Censored patients need to be treated differently from
uncensored patients, because their true event time is
not known. For details, see (Haider et al., 2020).

Appendix E. Risk stratification details

For each patient, an individual risk score is calculated
with Equation 6. It follows that r=0 if V¢;:S(¢;)=1
and =1 if V¢;: S(¢;) =0. Risk scores are grouped
into classes to enable a relative ranking among pa-
tients. In order to assign risk scores to risk groups,
intervals need to be defined, for which an exploratory
approach is used.

For the selection of the interval limits, multiple pos-
sible interval limits are defined and the best combi-
nation is chosen as follows. For each possible combi-
nation, the patients are assigned to the risk groups
and patients within one group are combined in a sin-
gle Kaplan-Meier curve (Kaplan and Meier, 1958).
The resulting Kaplan-Meier curves per risk group are
tested for discrimination power with a log-rank test,
which is commonly used in survival analysis (Li et al.,
2015). Since the proposed model allows for non-
proportional hazards and therefore crossing survival
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Figure C.3: The resulting AUC of eCaReNet over
time. In the time range from 6 to 26
months after prostatectomy, the AUC is
higher than 0.8. Overall, eCaReNet per-
forms very similar to the expert pathol-
ogist. Only in the first months, where
eCaReNet’s survival curves are close to
1, it is outperformed by the patholo-
gist, whose predictions are constant over
time.
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curves, the log-rank test is modified with Fleming-
Harrington weights according to Fleming and Har-
rington (2005). If the test passes, the survival curves
stratify well. Multiple combinations of boundaries
can give perfectly stratified curves on the training set,
which is why the best suited limits are further eval-
uated on the validation set. The limits with the best
results on the validation set are used for final evalu-
ation on the test set. The number of risk groups is
also varied in this procedure, since using too few risk
groups gives good stratification but is not meaningful
for patients, whereas using too many risk groups, the
Kaplan-Meier curves cannot separate well any more.
In our analysis, using 8 risk groups was the largest
number of possible groups that led to the best pos-
sible stratification in the training set. The found in-
terval limits are 0.06, 0.12, 0.15, 0.18, 0.3, 0.42 and
0.51. Resulting Kaplan-Meier curves on the test set
are shown in Figure 3. While all groups separate well
in the training set, one log-rank test fails in the vali-
dation set and two tests fail for the test set. As limit
for the p-value, 0.05 is chosen.

Appendix F. Attention example

As an additional example for the experiment de-
scribed in Section 5.3, Figure F.1 is provided. Also
here it is shown that the malignant patches (in the
lower part of the image) receive higher attention
weights.

Figure F.1: Another example of attention weights.
The lower part is annotated as malignant
(Gleason 5), the upper part as benign.
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