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Abstract

Radiology reports are unstructured and con-
tain the imaging findings and corresponding di-
agnoses transcribed by radiologists which in-
clude clinical facts and negated and/or uncer-
tain statements. Extracting pathologic find-
ings and diagnoses from radiology reports is im-
portant for quality control, population health,
and monitoring of disease progress. Existing
works, primarily rely either on rule-based sys-
tems or transformer-based pre-trained model
fine-tuning, but could not take the factual and
uncertain information into consideration, and
therefore generate false positive outputs. In
this work, we introduce three sedulous aug-
mentation techniques which retain factual and
critical information while generating augmen-
tations for contrastive learning. We intro-
duce RadBERT-CL, which fuses these informa-
tion into BlueBert via a self-supervised con-
trastive loss. Our experiments on MIMIC-
CXR show superior performance of RadBERT-
CL on fine-tuning for multi-class, multi-label
report classification. We illustrate that when
few labeled data are available, RadBERT-CL
outperforms conventional SOTA transformers
(BERT/BlueBert) by significantly larger mar-
gins (6-11%). We also show that the represen-
tations learned by RadBERT-CL can capture
critical medical information in the latent space.
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1. Introduction

Chest radiography is a critical medical imaging tech-
nique used for diagnosis, screening, and treatment of
many perilous diseases. Radiology reports are doc-
umented by radiologists after examining a patient’s
medical history and diagnostic imaging, and repre-
sent complex anatomical and medical terms written
for healthcare providers, along with indications of the
presence or absence of any disease. Classifying radi-
ology reports according to their description of ab-
normal findings is important for quality assurance
and can mitigate the risks of diagnostic radiation ex-
posure in children [24]. Additionally, the Precision
Medicine Initiative (PMI) initiated by NIH and mul-
tiple research centers has highlighted the importance
of text mining techniques to enable cohort pheno-
typing of patients for population health (Shin et al.,
2017). Classifying radiology reports can help to iden-
tify patient cohorts and enable precision medicine on
a large scale. Labeling radiology reports with disease
types can also assist in the development of deep learn-
ing applications for automated-diagnosis (Rajpurkar
et al., 2017; Han et al., 2020; Yao et al., 2018).
ChestX-rayl4 (Wang et al., 2017), MIMIC-CXR
(Johnson et al., 2019), and Openl (Demner-Fushman
et al., 2016) are some of the largest radiology datasets
available, and many classification algorithms have
been developed based on the training sets provided by
these datasets to classify reports into diseases. CheX-
pert (Irvin et al., 2019) is an automated rule-based
labeler consisting of three stages: mention extraction,
mention classification, and mention aggregation, to
extract observations from the free text radiology re-
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ports to be used as structured labels for the images.
CheXBert (Smit et al., 2020) uses the labels extracted
by CheXpert to fine-tune BERT transformer along
with ~ 1000 manually annotated reports to classify
radiology reports. While these methods have shown
great advancements, they cannot capture many criti-
cal and factual information (especially negated state-
ments). Negated statements in a radiology report
can lead to false positive classifications and there-
fore should be treated with caution. Also negated
statements provide rich information that should be
captured and integrated into the classification algo-
rithms.

Motivated by the success of contrastive learning in
computer vision (Chen et al., 2020a; He et al., 2020;
Chen et al., 2020b; Grill et al., 2020; Robinson et al.,
2020) to improve on the learning of feature represen-
tation in latent space, we propose to pre-train trans-
formers using contrastive learning before the end-to-
end fine-tuning for classification of radiology reports.
Medical reports contain many critical and factual in-
formation such as the presence/absence of a disease
(see Table 1 for more details). This information is
central for making a classification decision, and many
other downstream tasks such as Report Generation
(Zhang et al., 2020a), Report Summarization (Zhang
et al., 2020c), etc. Most existing approaches do not
handle uncertainty /negation information explicitly,
and depend on the deep learning models to capture
them. We identified that the SOTA transformers
such as Bert (Devlin et al., 2019), BlueBert (Peng
et al., 2019), do not perform well at capturing uncer-
tainity /negation information in latent space. Consid-
ering the significance of these critical information for
both interpretability and performance improvement
of deep learning models, we introduce RadBERT-CL,
a pre-trained model using contrastive learning which
can capture critical medical and factual nuances of
radiology reports. It trains BlueBert (Peng et al.,
2019) with the radiology report dataset and captures
its fine-grained properties, in order to improve perfor-
mance of report classification task at the fine-tuning
stage. We introduce three novel data augmentation
techniques at the sentence and document level, which
can retain the critical medical concepts and factual
information present in radiology reports while gener-
ating positive and negative pairs for contrastive learn-
ing.

RadBERT-CL outperforms the previous best re-
ported CheXbert labeler (Smit et al., 2020) with 0.5%
improvement on F1l-score without any need for hight

quality manual annotation during training (note that
the baseline (Smit et al., 2020) has claimed their re-
sults very close to human-level performance). We
evaluated our system using 687 expert-annotated re-
ports, same as CheXbert (Smit et al., 2020). We
find that representations learned by RadBERT-CL
are more informative, can capture and distinguish
critical information present in the radiology reports.
The improvements on Fl-measure are more signifi-
cant if few manually annotated data are available.
This is particularly important since obtaining manu-
ally annotated data in medicine is extremely difficult
and costly. In this case, our algorithm can achieve
6-11% improvements on disease classification. The
highlights of our contributions are:

e We propose two novel data augmentation tech-
niques which retain factual and critical medical
concepts, identified by our semi-rule based Info-
Preservation Module, while generating positive
and negative keys for contrastive learning.

e We show that our model RadBERT-CL is able to
learn and distinguish fine-grained medical con-
cepts in latent space, which cannot be captured
by SOTA pre-trained models like BERT, and
BlueBert.

e We apply contrastive learning for radiology re-
port classification task and show improvements
on the state-of-the-art methods. We use weakly-
labeled data during our training and evaluate our
system using 687 high-quality reports manually
labelled by radiologists.

e Lastly, we evaluate our model performance when
a few data labels are available for training and
show that our model outperforms significantly
by 6-11% improvements in disease classification
task.

2. Related Work

Contrastive Learning: Contrastive learning (CL)
seeks to learn effective representations by maximizing
the agreement between two augmentations from one
example and minimizing the agreement of augmenta-
tions from different instances. CL has been recently
explored in computer vision and graph Neural Net-
work due to its success in self-supervised represen-
tation learning. However, CL still receives limited
interest in the NLP domain. The main reason is the
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Table 1: Examples from the set of rules in our Info-Preservation Module for Negation and Uncertainty
Detection and their corresponding matching sentences.

BACKGROUND: Radiographic examination of the chest. clinical history: 80 years of age, male. PA
AND LATERAL CHEST, ___

FINDINGS: Heart size and mediastinal contours are normal. The right hilum is asymmetrically enlarged
compared to the left hilum but has a similar size and configuration compared to a baseline radiograph ___ ___.
A chest CT performed in ___ demonstrated no evidence of a right hilum mass, and the observed asymmetry
is probably due to a combination of a slight rotation related to mild scoliosis and a prominent pulmonary

vascularity.

Lungs are slightly hyperexpanded but grossly clear of pleural effusions.

IMPRESSION: No radiographic evidence of pneumonia.

Table 2: Explanation of class value predicted by
RadBERT-CL for disease observations

Blank observation not mentioned in the report

Positive observation mentioned and its presence
is confirmed
eg. definite focal consolidation is seen
in lungs

Negation observation mentioned and its absence

is confirmed
eg. the lungs are clear of any focal con-
solidation

Uncertain observation mentioned with uncer-
tainty
eg. signs of parenchymal changes sug-
gesting pneumonia

discrete nature of text and it is hard to define and
construct effective positive pairs. Several works have
explored ways to perform augmentations. (Fang and
Xie, 2020) back-translated source sentences to create
sentence-level positive augmentations, which main-
tain semantic meaning of the source sentence. (Wu
et al., 2020a) integrated four sentence-level augmen-
tation techniques, namely word and span deletion, re-
ordering and synonym substitution, to increase mod-
els’ robustness.

Factual Correctness and Consistency: Factual
correctness and factual consistency are key require-
ments for medical reports. Keeping factual informa-

tion and avoiding hallucinations could support med-
ical decision-making process. These requirements
have been recently explored in NLP tasks, especially
in abstractive text summarization. (Zhang et al.,
2020b) directly took factual correctness as a training
objective in their system via reinforcement learning.
On the other hand, (Falke et al., 2019) and, (Goyal
and Durrett, 2020) used textual entailment to detect
factual inconsistency based on the assumption that
summary should be entailed by the source document.
(Zhu et al., 2021) built a knowledge graph containing
all the facts in the text, and then fused it into the
summarization process.

3. Methods

3.1. Problem Formulation

Radiology report classification is a multi-class multi-
label classification problem, which classifies radiology
reports into different disease observations (e.g., car-
diomegaly, effusion, mass, edema). Following (Smit
et al., 2020), we label each report r* in MIMIC-CXR
dataset with a 14-dim vector y = [y1, Y2, U3, .- , Y14]
of observations, where observations y; — y13 can take
any value from the following 4 classes : blank, pos-
itive, negative, and uncertain. For ¥4, which corre-
sponds to No Finding (no pathology is found in the
scope of any of 13 disease observations), the classifier
takes value from only 2 classes: blank, and uncertain.

3.2. Data Augmentation

In computer vision, it has been verified that con-
trastive learning benefits from strong data augmenta-
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Figure 1: (a) Pre-training architecure of RadBERT-CL using contrastive learning. Two separate data aug-
mentation views are generated using the augmentation techniques described in Section 3.2. Both
views (query and key) are passed through RadBERT-CL, which is a transformer-based encoder

f(.), and a projection head g(.).
two augmented views using contrastive loss.

RadBERT-CL is trained to maximize agreement between the

(b) Fine-tuning Model architecture of RadBERT-CL.

The model consists of 14 linear heads corresponding to 14 disease concepts. Among them, 13
linear heads can predict 4 outputs, while linear head corresponding to “No Finding” can predict

2 outputs.
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tion techniques like random cropping, rotation, blur-
ring, color distortion, etc. However, in NLP, generat-
ing data augmentation is comparatively difficult due
to the discrete representation of words, and it is un-
known what kind of augmentation will benefit noise-
invariant representational learning. (Fang et al.,
2020) used back-translation to perform sentence aug-
mentation while (Wu et al., 2020b) explored four dif-
ferent basic augmentation techniques: word and span
deletion, reordering, and substitution. While these
methods have shown improvements on some SentE-
val and GLUE benchmarks, they cannot be directly
applied to generating augmentations for radiology re-
ports. Radiology reports contain critical and factual
information and that need to be preserved while gen-
erate augmentations. Table 1 presents an example
of radiology report in which we have highlighted the
information such as chest, left hilum, pulmonary vas-
cularity, clear of, no evidence, pneumonia, etc.

Through augmentation, it is likely that (Wu et al.,
2020b) dropped critical words or phrases which can
lead to a completely different diagnosis. For exam-
ple, dropping negation words, such as No, can lead
to a diagnosis suggesting the presence of pleural ef-
fusion, and it can have negative consequences during
our downstream task of disease classification. Also,
as suggested by (Fang et al., 2020), back-translation
cannot provide satisfactory results for the medical
data because back-translation models have limited
the cross-language translation ability for domain spe-
cific texts.

In order to ensure that critical and factual infor-
mation is preserved while generating augmentations,
we define an Info-Preservation module, which iden-
tifies and preserves facts during augmentation gener-
ation. We propose sentence-level and document-level
augmentation techniques, to effectively pre-train our
RadBERT-CL architecture.
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Table 3: Examples highlighting the selection of positive and negative keys for a given anchor sentence using
two different approaches for Sentence-Level Contrastive Learning. For Disease-based Augmentation,
a given anchor sentence with disease concept d, any other sentence from any report mentioning d
can be taken as positive example. In Disease + Factuality Based Augmentation, we incorporate
mentions from our negation or uncertainty dictionary along with disease concept while generating

augmentation pairs.

a. Disease-based augmentation

Anchor/Query : definite focal consolidation is seen in left side of lungs

Positive Key

: there is a focal consolidation at the left lung base adjacent to the lateral hemidiaphragm

Negative Key : there are low lung volumes and mild bibasilar atelectasis

b. Disease + Factuality based augmentation

Anchor/Query : definite focal consolidation is seen in left side of lungs

Positive Key

: there is a focal consolidation at the left lung base adjacent to the lateral hemidiaphragm

Negative Key : the lungs are clear of any focal consolidation

3.2.1. INFO-PRESERVATION MODULE

Radiology reports consist of many important radiol-
ogy concepts such as diseases, body parts, etc. In
order to preserve them during augmentation, we de-
velop a rule-based tool similar to Dynamic-LCS (Raj
et al., 2020) to greedily match concepts in RadLex
ontology (Langlotz, 2006) on sequences of the lem-
matized tokens in the reports (longer matches are re-
turned when possible). For capturing the presence of
negation of any concept, we manually create a dic-
tionary of 30 negation indicator keywords such as:
not, without, clear of, ruled out, free of, disappear-
ance of, without evidence of, no evidence of, absent,
miss. Following (Chen et al., 2018), we create a dic-
tionary of uncertainty keywords with a wide range
of uncertain types, from speculations to inconsisten-
cies present in the reports. We design a set of pat-
tern matching rules following (Wang et al., 2017) for
identifying sentences containing negation or uncer-
tainty. Appendix Table 10 presents some examples
of our rules and the matched sentences from the ra-
diology reports. While generating augmentations, we
make sure that any identified radiology concept or
word from our negation and uncertainty list is not
dropped.

3.2.2. SENTENCE-LEVEL AUGMENTATION

Sentence-level augmentations are generated by first
splitting radiology reports into sentences and then
applying random word and phrase dropping (Wu
et al., 2020b), while preserving critical and factual
information identified in Info - Preservation module.

Algorithm 1: Patient-based Doc-Level CL

Input: RadBERT-CL initialized with
BlueBert-uncased

Output: RadBERT-CL pre-trained using CL

Data: Preprocessed radiology reports of
patients.

Initialize the weights of projection head g(.)

for each epoch do

while not converged do
Sample a mini-batch of training patients

P e Py

For each p € P, randomly sample two
reports (query, key™) belonging to same
patient

For each p € P, randomly sample k
reports (key_) of patients other than p

Encode query, key™, and k-key~ with
7() and g()

ComPUte loss: Lcontrastive

Compute gradient of loss function
V Leontrastive and update f(.) and g(.)

end

end
Return Pre-trained RadBERT-CL

We propose two different augmentation techniques
by associating each sentence with a disease concept
from Radlex and a boolean variable indicating pres-
ence/absence of any negation or uncertainty phrase.
Sentences without any mention of disease concepts
are discarded.
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e Disease-based augmentation: In this tech-
nique, we discard all sentences which consist of
any mention from our negation or uncertainty
dictionary. For a given anchor sentence with
disease concept d, any other sentence from any
report mentioning d can be taken as positive ex-
ample. Negative samples can be sentences which
mention any disease concept except d. Refer Ta-
ble 3 for the example.

e Disease + Factuality based augmentation:
In this technique, we consider any mention from
our negation or uncertainty dictionary along
with disease concept while generating augmen-
tation pairs. For a given anchor sentence with
disease concept d and negation or uncertainty
present, any other sentence from any report men-
tioning d and negation or uncertainty present
can be taken as positive example. Negative sam-
ples can be sentences which mention same dis-
ease d, but negation or uncertainty absent. Refer
Table 3 for the example.

Algorithm 2: Disease-based Sentence-Level CL

Input: RadBERT-CL initialized with
BlueBert-uncased

Output: RadBERT-CL pre-trained using CL

Data: Preprocessed radiology reports at
sentence level: (sentence,
disease-mention)

Initialize the weights of projection head g(.)

for each epoch do

while not converged do
Sample a mini-batch of training sentences

S e Sau

For each s € S, randomly sample another
sentence (key™) with same disease
mention

For each s € S, randomly sample k
sentences (key_) having disease mention
other than s

Encode query, key™, and k-key™ with
7() and g(.)

Compute loss: Lcontrastive

Compute gradient of loss function
vLcontrasti’ue and update f() and g()

end

end
Return Pre-trained RadBERT-CL

Algorithm 3:
Sentence-Level CL

Disease+Factuality-based

Input: RadBERT-CL initialized with
BlueBert-uncased

Output: RadBERT-CL pre-trained using CL

Data: Preprocessed radiology reports at
sentence level: (sentence,
disease-mention, factuality-mention)

Initialize the weights of projection head g(.)

for each epoch do

while not converged do
Sample a mini-batch of training sentences

S € San

For each s € S, randomly sample another
sentence (key™) with same disease and
factuality mention

For each s € S, randomly sample k
sentences (key_) having disease and
factuality mention other than s

Encode query, key™, and k-key~ with
7() and g(.)

ComPUte loss: Lcontrastive

Compute gradient of loss function
V Leontrastive and update f() and g()

end

end
Return Pre-trained RadBERT-CL

3.2.3. DOCUMENT-LEVEL AUGMENTATION

Document-level augmentations are generated at the
report-level, where each report is first pre-processed
with removing extra spaces, newlines, and unwanted
tokens. For a given report 7%, we apply four types
of augmentations (word deletion, span deletion, sen-
tence reordering, and synonym substitution with
probability 0.2) mentioned in (Wu et al., 2020b) while
preserving critical and factual information identified
in Info-Preservation module, to generate positive key.
Negative keys can be any report not from the same
patient.

3.3. Model Architecture

Our proposed model RadBERT-CL is a two-staged
training process: pre-training and fine-tuning (Fig-
ure 1(a) and (b)). For pre-training, we follow Sim-
CLR (Chen et al., 2020a) framework closely, and use
BlueBert architecture as the encoder. Radiology re-
ports are processed by Info-Preservation module and
augmentations are generated using techniques pro-
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Table 4: The weighted F1 scores for fine-tuned RadBERT-CL variants using Model architecture in Figure

1 (a) and (b).

We compare RadBERT-CL variants with SOTA models for reports classification

CheXpert (Irvin et al., 2019), and CheXbert (Smit et al., 2020) trained on MIMIC-CXR. Reported
Fl-scores are calculated on the test set of 687 manually labelled reports, similar to (Smit et al.,
2020). Note that our method does not require any expensive labeled reports during training. Our
contrastive pre-training helps RadBERT-CL to outperform the baselines.

Category CheXpert Previous SOTA Algorithm 1 Algorithm 2 Algorithm 3
CheXbert RadBERT-CL RadBERT-CL RadBERT-CL
Enlarged Cardiom. 0.613 0.713 0.692 0.717 0.690
Cardiomegaly 0.764 0.815 0.808 0.806 0.817
Lung Opacity 0.763 0.741 0.761 0.747 0.746
Lung Lesion 0.683 0.664 0.732 0.685 0.701
Edema 0.864 0.881 0.885 0.889 0.891
Consolidation 0.772 0.877 0.876 0.886 0.885
Pneumonia 0.684 0.835 0.838 0.846 0.847
Atelectasis 0.917 0.940 0.926 0.936 0.931
Pneumothorax 0.882 0.928 0.950 0.933 0.943
Pleural Effuison 0.905 0.919 0.920 0.926 0.913
Pleural Other 0.478 0.534 0.541 0.577 0.581
Fracture 0.671 0.791 0.791 0.796 0.791
Supported Devices 0.867 0.888 0.888 0.884 0.889
No Finding 0.543 0.640 0.580 0.588 0.615
Average 0.743 0.798 0.799 0.801 0.804

posed in Section 3.2. The augmentations are passed
through the encoder f(.) and we take the CLS output
of encoder and further pass it through the projection
head ¢g(.). Our projection heads consist of two MLP
layers of size 768, along with non-linearity RELU and
BatchNorm Layer. After pre-training we discard the
projection head and use our pre-trained encoder for
fine-tuning.

3.4. Dataset

For the disease labelling task, we use MIMIC-CXR
dataset (Johnson et al., 2019) which consists of
377,110 chest-Xray images of 227, 827 patients along
with their corresponding de-identified radiology re-
ports. The dataset is pseudo-labeled using automatic
labeler (Irvin et al., 2019) for the intended set of 14
observations using the entire body of the report.

In our study, we apply the contrastive pre-training
by wusing the radiology reports from the entire
MIMIC-CXR, dataset for generating positive and neg-
ative augmentations. We divide our dataset into two
parts for the fine-tuning stage after removing the du-
plicate reports of same patient: 80% for training, 20%

for validation. Note that there is no patient over-
lap between the training and validation split. Ad-
ditionally, we have a set of 687 reports belonging to
687 unique patients, similar to (Smit et al., 2020),
which has been manually annotated by radiologists
for the same 14 observations, and we evaluate our
RadBERT-CL on this dataset.

3.5. Contrastive Pre-training

RadBERT-CL uses a transformer architecture sim-
ilar to (Peng et al., 2019) and pre-trains it us-
ing contrastive self-supervised learning similar to
(Chen et al., 2020a) on MIMIC-CXR, dataset. Note
that RadBERT-CL can be used on top of other
language representation models and is not specific
to (Peng et al., 2019). We propose three novel
contrastive learning algorithms 1,2,3 with the help
of augmentation techniques proposed in 3.2, which
help RadBERT-CL to learn discriminative features
across different medical concepts as well as factual
cues. As shown in Figure 1(a), the augmenta-
tion views generated using techniques in 3.2, are
passed through the our encoder RadBERT-CL f(.)
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Table 5: Transfer learning performance (Fl-score) of RadBERT-CL, BERT, and BlueBERT when few la-
beled data is available. Fine-Tuning is done using randomly selected 400 reports and F1-score is
reported on the remaining 287 reports of 687 high-quality manually annotated reports. Reported
results are the mean Fl-score of the 10 random training experiments and rounded to 3 decimal
places. We identify significant improvements by RadBERT-CL in both Linear Evaluation setting
(freeze encoder f(.) parameters and train the classifier layer), and Full-network Evaluation setting
(train encoder f(.) and classifier layer end-to-end).

Model

Linear Evaluation

BERT-uncased
BlueBERT-uncased

Algorithm 3 RadBERT-CL
(pre-trained using 687 test reports)
Algorithm 3 RadBERT-CL

0.137 £0.012 0.477 £0.009
0.153 £0.005 0.480 +0.007
0.258 £0.015 0.543 £0.021
0.282 £0.011 0.591 £0.019

(pre-trained using Full MIMIC-CXR unlabelled data)

and non-linear projection head g(.) to generate two
768-dimensional vectors z; = g(f(viewl)) and z; =
9(f(view2)). RadBERT-CL is pre-trained by max-
imizing the agreement between z; and z; using the
contrastive loss similar to normalized temperature
scaled cross-entropy loss (NT-Xent) (Chen et al.,
2020a) defined as:

exp (sim (z;, ;) /T)
D one hss exp (sim (25, 21) /)

batch—size

> Lay
k=1

where 7 is a temperature parameter, and num is
the number of negative views. We calculate the loss
for each sample in our mini-batch and sum them
to estimate Loontrastive- We calculate the gradient
V Leontrastive and back-propagate it to update our
encoder f(.) and g(.). Contrastive learning bene-
fits from training for larger epochs (He et al., 2020;
Chen et al., 2020a; Grill et al., 2020), so we trained
RadBERT-CL for 100 epochs using SGD optimizer.
Note that after pre-training, we discard the project
head ¢(.) and only use our encoder f(.) for fine-tuing
on downstream task.

(2)

LContrastive =

3.6. Supervised Fine-Tuning

In order to use the pre-trained RadBERT-CL model
for our downstream task of report classification, we
further fine-tune f(.) on the pseudo-labels of radiol-
ogy report classification task as shown in Figure 1(b).
Our disease is multi-class classification problem and

We use cross-entropy loss as our supervised classifi-
cation loss, defined as:

k= Zzyfk x log(7; 1)
Ik

batch—size

7
Lclassification = E Ll,k
=1

3)

(4)

where, ¢ denotes ¢ — th training example, [ de-
notes class label (Edema, Cardiomegaly, etc.), k €
{Positive, Negative, Uncertain, Blank}. We calcu-
late the gradient V L¢jgssification and back-propagate
it to update our encoder f(.).

4. Evaluation and Results
4.1. Evaluation

Following (Smit et al., 2020), we evaluate our system
based on its average performance on three retrieval
tasks: positive extraction, negative extraction, and
uncertainty extraction. For each of the 14 observa-
tions, we compute a weighted average of the F1 scores
on each of the above three tasks, weighted by the
support for each class of interest, which we call the
weighted-F1 metric. Table 4 presents the weighted-
F1 score of RadBERT-CL using our three different
variants of contrastive learning and their comparisons
with SOTA methods. We have also presented the
detailed evaluation score of our best RadBERT-CL
variant (Algorithm 3) for all three retrieval tasks in
Appendix Table 9.

To demonstrate the effectiveness of RadBERT-CL
performance when only a few labeled data is avail-
able, we evaluated RadBERT-CL performance in two
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Table 6: Cosine Similarity between the normalized-[CLS] embeddings of report snippets generated by
RadBERT-CL after contrastive pre-training. Our RadBERT-CL embeddings are capable of dis-
tinguishing between the factual nuances of medical reports which cannot be captured by the em-
beddings generated by BERT, and BlueBert. Our model is able to capture fine-grained differences
among diseases, negation, and uncertainty in the latent representations.

Report Segment

BERT BlueBert Algorithm 3

RadBERT-CL

. definite focal consolidation is seen in left side of lungs... 0.9411  0.9223 -0.8266
. the lungs are clear of any focal consolidation ...

. subtle opacity at the right base could represent infection ... 0.9120  0.9038 0.4332
. patchy left base opacity represent severe infection ...

. pleural effusion is obserevd ... 0.9752  0.8931 0.3836

. pleural edema is seen ...

different training scenarios: (a) pre-train RadBERT-
CL using Algorithm 3 on 687 high-quality annotated
dataset (no manually annotated label is used), fine-
tune on randomly selected 400 high-quality anno-
tated dataset, and test it on remaining 287 high-
quality annotated dataset. (b) pre-train RadBERT-
CL using Algorithm 3 on entire MIMIC CXR, fine-
tune on randomly selected 400 high-quality anno-
tated dataset, and test it on remaining 287 high-
quality annotated dataset.

4.2. Results

We observe that our RadBERT-CL model pre-trained
using Algorithm 3 outperforms previous state-of-the-
art model CheXbert in 7 out of 14 findings after fine-
tuning. Table 4 presents the weighted F1 scores of
RadBERT-CL varients and previous SOTA systems
CheXpert and CheXbert. Our model variants com-
bined together outperform CheXbert in 11 out of 14
findings. Note that CheXbert training is calibrated
under the supervision of ~ 1000 manually anno-
tated reports by radiologists while our system is
trained using weakly labeled reports. With the help
of the guided-supervision of expert-level annotated
data as proposed in CheXbert (Smit et al., 2020),
we believe that our system will show more significant
improvements.

In our analysis using Algorithm 1,2,3, we found
that RadBERT-CL is very successful in capturing
the factual information present in radiology reports.
We calculated the cosine similarity between CLS em-
beddings generated by two factually different report
snippets as shown in Table 6, by BERT, BlueBert
and RadBERT-CL. RadBERT-CL is able to distin-
guish between the factual nuances of medical reports

which are not captured in the representations gener-
ated by BERT and BlueBert.

While deep learning methods often require expert-
annotated high-quality data for training, getting suf-
ficiently annotated data in the medical domain is
very costly due to the limited availability of human
experts. However, we have enough unlabelled data
which can be used to improve our DL models with
the supervision of few high-quality annotated data.
Table 5 illustrates our RadBERT-CL performance in
such scenario. Clearly, our model outperforms con-
ventional fine-tuning using BERT /BlueBert for the
classification task, by huge margins of 0.06 to 0.11
on weighted Fl-metric. Better performance in Lin-
ear evaluation settings indicates that the representa-
tions learned by RadBERT-CL in pre-training stage
are significantly better than BERT/BlueBert. Our
experiments confirm that using largely available un-
supervised data to pre-train transformers using con-
trastive learning provide significant improvement in
fine-tuning tasks when few labelled data is available.

5. Conclusion

In this work, we present novel data augmentation
techniques for contrastive learning to capture factual
nuances of medical domain. Our method involves
pre-training transformers using abundance of unsu-
pervised data to capture fine-grained domain knowl-
edge before fine-tuning it for downstream tasks such
as disease classification. We further show that such
training strategy improves the performance in down-
stream tasks significantly in limited data settings. We
hope that this work can draw community attention
towards the ability of contrastive learning to capture
discriminative properties in the medical domain.
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6. Appendix
Hyperparameter Pretraining Finetuning
batch-size 128 32
learning-rate 0.1 2e-5
optimizer SGD Adam
temperature (CL) 0.4 -
n_epochs 100 10
beta - [0.9, 0.99]
Aug. Probability 0.2 -

Table 7: Training details for RadBERT-CL Pretrain-
ing and Finetuning Stages.
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Figure 2: t-SNE visualization of BlueBert and RadBERT-CL(Algorithm 3) for radiology reports annotated
positive for three major diseases (Cardiomegaly, Pneumonia, and Atelectasis). Note that the
reports used for generating the t-SNE plot are sampled from 687 radiologists annotated test set
which are not used in RadBERT-CL pre-training. From the figure, it is evident that embeddings
generated after pre-training RadBERT-CL with contrastive learning, is more informative compared
to BlueBert on unseen data.

Report Snippet: ... apparent new small right pleural edema manifested by posterior blunting of right
costophrenic sulcus ...

Prediction: Pleural Other

Ground Truth: Edema

Reasoning: the presence of pleural keyword along with edema may have confused the model to classify it
as Pleural Other.

Report Snippet: ... new area of pleural abnormality has developed in right side of lungs, and the heart
and mediastinal structures and bony structures remain normal in appearance ...

Prediction: Pleural Effusion

Ground Truth: Pleural Other

Reasoning: we found in reports that many pleural disorders share similar context which possibly make it
difficult to classify them correctly. This can also explain the low Fl-score of Pleural Other category.

Report Snippet: ... mild interstitial edema and small right pleural effusion are new since ___ ...

Prediction: Pleural Effusion

Ground Truth: Pleural Effusion, Edema

Reasoning: the model misses to identify edema and only identified Pleural Effusion possibly because
majority of times, edema is mentioned as Pleural Edema in reports.

Table 8: Examples where RadBERT-CL incorrectly assign or misses label while making prediction. We
include speculative reasoning for the classification errors.
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Category Positive F1 Negation F1 Uncertain F1 Blank F1
Enlarged Cardiomediastinum  0.579 0.786 0.831 0.965
Cardiomegaly 0.870 0.862 0.433 0.978
Lung Opacity 0.820 0.200 0.512 0.910
Lung Lesion 0.777 0.571 0.211 0.983
Edema 0.913 0.901 0.745 0.993
Consolidation 0.909 0.824 0.876 0.997
Pneumonia 0.786 0.916 0.807 0.991
Atelectasis 0.962 0.444 0.874 0.999
Pneumothorax 0.850 0.971 0.526 0.996
Pleural Effuison 0.938 0.957 0.596 0.985
Pleural Other 0.623 0.234 0.114 0.981
Fracture 0.894 0.333 0.667 0.993
Supported Devices 0.902 0.100 0.000 0.942
No Finding 0.592 0.000 0.000 0.978

Table 9: Detailed Fl-evaluation of RadBERT-CL variant (Algorithm 3) for the classification tasks of positive
extraction, negation extraction, uncertainty extraction, and blank for each of our 14 observations.
Note that for ”Blank”, we have fl-scores related to positive extraction and blank, while the other
two are set to zero.

Table 10: Examples from the set of rules in our Info-Preservation Module for Negation and Uncertainty
Detection and their corresponding matching sentences.

a. Negation Detection

RULE: * + clear/free/disappearance + < prep.of > + *+ DISEASE CONCEPT
1. the left lung is free of consolidations or pneumothorax

2. the lungs are clear of any focal consolidation

3. pleural sinuses are free of any fluid accumulation

RULE: * + no/not + evidence/ *x + < prep_of|for] > +*+ DISEASE CONCEPT
1. within the remaining well-ventilated lung, there is no evidence of pneumonia

2. there is not evidence for pulmonary edema

3. there are no evidences of acute pneumothorax

b. Uncertainty Detection

RULE: * + couldbe/maybe/... + *+ DISEASE_CONCEPT

1. there are bibasilar opacities which could be due to atelectasis given low lung volumes
2. perihilar opacity could be due to asymmetrical edema

3. left base opacity may be due to atelectasis

RULE: * + suggest/suspect/[—ing| —ed] + *+ DISEASE_CONCEPT

1. signs of parenchymal changes suggesting pneumonia

2. the left heart border is silhouetted, with a suspected left basilar opacity

3. prominence of the central pulmonary vasculature suggesting mild pulmonary edema
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