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Abstract

Embedding algorithms are increasingly used to
represent clinical concepts in healthcare for im-
proving machine learning tasks such as clini-
cal phenotyping and disease prediction. Re-
cent studies have adapted state-of-the-art bidi-
rectional encoder representations from trans-
formers (BERT) architecture to structured elec-
tronic health records (EHR) data for the gener-
ation of contextualized concept embeddings, yet
do not fully incorporate temporal data across
multiple clinical domains. Therefore we devel-
oped a new BERT adaptation, CEHR-BERT,
to incorporate temporal information using a
hybrid approach by augmenting the input to
BERT using artificial time tokens, incorporat-
ing time, age, and concept embeddings, and in-
troducing a new second learning objective for
visit type. CEHR-BERT was trained on a sub-
set of clinical data from Columbia University
Irving Medical Center-New York Presbyterian
Hospital, which includes 2.4M patients, span-
ning over three decades, and tested using 4-fold
evaluation on the following prediction tasks:
hospitalization, death, new heart failure (HF)
diagnosis, and HF readmission. Our experi-
ments show that CEHR-BERT outperformed
existing state-of-the-art clinical BERT adapta-
tions and baseline models across all 4 prediction
tasks in both ROC-AUC and PR-AUC. CEHR-
BERT also demonstrated strong few-shot learn-
ing capability, as our model trained on only
5% of data outperformed comparison models
trained on the entire data set. Ablation studies
to better understand the contribution of each

time component showed incremental gains with
every element, suggesting that CEHR-BERT’s
incorporation of artificial time tokens, time/age
embeddings with concept embeddings, and the
addition of the second learning objective rep-
resents a promising approach for future BERT-
based clinical embeddings.

Keywords: Representation learning, Elec-
tronic Health Records, Pre-training

1. Introduction

Embedding algorithms, widely used for obtaining low
dimensional vector representations of words in nat-
ural language processing (NLP) applications, have
been increasingly adapted for the representation of
clinical concepts in healthcare to improve the de-
velopment of clinical phenotypes and disease predic-
tion (Glicksberg et al., 2018). Recent advances in
contextualized representations such as Bidirectional
encoder representations from transformers (BERT)
have revolutionized the NLP field, achieving state
of the art performance on all benchmark tasks (De-
vlin et al., 2019; Peters et al., 2018). However, there
have been few efforts to apply BERT to structured
electronic health record (EHR) data for generating
contextualized concept embeddings despite promising
results from early BERT adaptations demonstrating
improved performance compared to classic embed-
ding algorithms such as word2vec and GloVe (Rasmy
et al., 2021; Li et al., 2020).

Despite the differences between structured EHR
and text data, a common practice used in the afore-
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mentioned BERT adaptations and other classic em-
bedding algorithms is to treat a patient’s medical his-
tory as a text document where medical concepts are
treated as words and ordered chronologically (Beam
et al., 2020; Choi et al., 2016; Xiang et al., 2019). Al-
though this representation could capture the rich con-
textual information of a patient’s medical history, the
temporal intervals between medical concepts or vis-
its are not preserved; as a consequence, BERT models
trained using this patient representation cannot fully
leverage temporal information, limiting their perfor-
mance in downstream prediction tasks. Another chal-
lenge is that BERT’s second learning objective – Next
Sentence Prediction (NSP) (Devlin et al., 2019) does
not apply in the context of structured EHR data as
the entire patient history is treated as a single sen-
tence. A common approach adopted by others is to
disable NSP and pre-train BERT only with Masked
Language Modeling (MLM) (Li et al., 2020), yet there
is abundant information in structured EHR data that
could be leveraged for designing a new secondary
learning objective to improve BERT’s performance
in downstream prediction tasks.
In this paper, we focus on adapting the original

BERT architecture for structured EHR data in or-
der to improve disease predictions. We propose a
new BERT architecture called CEHR-BERT, where
we combine two approaches for encoding temporal in-
formation of the structured EHR data by: 1) modify-
ing the patient sequence representation through the
insertion of artificial tokens between visits to indi-
cate the time intervals; 2) concatenating both age
embeddings and time embeddings to concept embed-
dings to form temporal concept embeddings. Addi-
tionally, we designed a second learning objective –
Visit Type Prediction (VTP) for CEHR-BERT that
leverages heterogeneous EHR data to further boost
the performance of BERT.

2. Related work

A small number of recent studies have sought to
adapt BERT for structured EHR data and demon-
strated significant performance improvements in their
respective evaluations. However, these studies were
often limited to a single clinical domain, single visit,
or limited in their consideration of time, without fully
utilizing the richness of a patient’s full medical his-
tory.
Li et al. (2020) described the first BERT adapta-

tion for structured EHR data named BEHRT, which

pioneered the idea of utilizing multiple types of em-
beddings to represent patient history, including con-
cept embeddings, visit segment embeddings, age em-
beddings, and positional embeddings. In addition,
the authors inserted SEP tokens between visits to
indicate the boundaries of visits and enable the execu-
tion of BERT as-is on structured EHR data without
any modification of the encoder. However, this study
only included diagnosis codes in a patient sequence
and excluded other clinical domains such as proce-
dures and medications that contain valuable contex-
tual information. In addition, their evaluation fo-
cused on diagnosis code prediction instead of disease
prediction based on phenotypes.

Another BERT adaptation named G-BERT
(Shang et al., 2019) extended BERT to incorporate
a graph neural network (GNN). The key idea was to
leverage prior knowledge from well crafted medical
ontologies to guide the learning of concept embed-
dings. However, G-BERT was only tailored to med-
ication recommendation; its input data was limited
to single visits, and the dataset used for pre-training
was relatively small, containing 20K patients.

The latest BERT adaptation, MedBert (Rasmy
et al., 2021), had a similar patient representation as
BEHRT except that it did not include any tempo-
ral information in their model. MedBert excluded
age embeddings and visit segment embeddings, along
with excluding the SEP token inserted between vis-
its in favor of including more concept codes. Med-
Bert was trained on EHR data from 20 million pa-
tients and introduced a new second learning objec-
tive to predict whether the patient had a prolonged
length of stay (defined as inpatient visit longer than
7 days). The authors fine-tuned for two disease pre-
diction tasks using a different data source to demon-
strate the potential of transfer learning and showed
improved performance. Though a large training data
set was used and the study showed improvement in
the prediction tasks, the lack of temporal information
may have limited its potential performance.

Finally, there are two studies that attempted to in-
corporate temporal information from structured EHR
data (Peng et al., 2019; Che et al., 2018). These
studies adopted a similar strategy of incorporating
time intervals between neighboring clinical events
into their models (e.g. two neighboring visits or lab
values in time-series data). In this work, we take a
different approach of incorporating time with the in-
troduction of artificial time tokens in CHER-BERT,
which will be described in the following section.
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3. Data and Preprocessing

3.1. Data

EHR data from Columbia University Irving Medi-
cal Center-New York Presbyterian Hospital (CUIMC-
NYP) was converted into Observational Medical Out-
comes Partnership (OMOP), a common data model
used to support observational studies and managed
by the Observational Health Data Science and Infor-
matics (OHDSI) open-science community (Hripcsak
et al., 2015). The CUIMC-NYP OMOP instance in-
cludes numerous data and clinical domains, including
visits, conditions, procedures, medications, lab tests,
vital signs, and problem lists, among others. Data
spans from the early 1980s to present day. We used
the CUIMC-NYP OMOP to generate training data
and downstream prediction cohorts. To pre-train and
fine-tune BERTs, we limited the data to three OMOP
domains - conditions, procedures, and medications.

3.2. Data processing and patient
representation

For each patient, all medical codes were aggregated
from three domains and constructed into a sequence
chronologically. In order to incorporate temporal in-
formation, we inserted an artificial time token (ATT)
between two neighboring visits based on their time
interval. The following logic was used for creating
ATTs based on the following time intervals between
visits: 1) if less than 28 days, ATTs take on the form
of Wn where n represents the week number ranging
from 0-3 (e.g. W1); 2) if between 28 days and 365
days, ATTs are in the form of Mn where n repre-
sents the month number ranging from 1-11 e.g M11;
3) beyond 365 days then a LT (Long Term) token
is inserted. In addition, we added two more special
tokens — V S and V E to represent the start and the
end of a visit to explicitly define the visit segment,
where all the concepts associated with the visit are
subsumed by V S and V E. Conceptually, a patient
can be represented as a list of visits,

P = {V S, v1, V E, ATT,

V S, v2, V E, ATT,

V S, v3, V E, ATT,

. . . ,

V S, vi, V E}

where vi represents the ith visit, and each visit
consists of a list of medical concepts vi =
{ci1, ci2, ci3, . . . , cij}, see an example in Figure 4. We

will refer to EHR patient data representation as pa-
tient sequences in the rest of the paper.

4. Methods

Figure 1 shows a high level overview of our adapted
BERT architecture. We used multiple sets of embed-
dings to represent a patient history including con-
cept embeddings, visit segment embeddings, time
embeddings and age embeddings. Concept embed-
dings were used to capture the numeric representa-
tions of the concept codes based on underlying co-
occurrence statistics, whereas visit segment embed-
dings were used to indicate the boundaries of visits
(values alternating between A and B). Unlike the pre-
vious work, we decided to encode both absolute time
(time embeddings) and relative time with respect to
visits (age embeddings), due to the finding that cer-
tain conditions follow a more seasonal pattern (e.g.
flu) while other conditions are more age related (e.g.
type 2 diabetes). However, because time and age are
numeric values that cannot be directly encoded us-
ing standard procedures, we therefore followed the
methodology proposed by time2vec (Kazemi et al.,
2019). A fourier transform was applied to decompose
a sequence of time points into a series of sine func-
tions, which are controlled by learnable parameters in
order to adapt to specific training data. We concate-
nated concept, time and age embeddings together,
then fed it through a fully connected (FC) layer to
bring it back to the original dimension, which be-
came the temporal concept embeddings input for the
BERT architecture.

For pre-training, we used the core learning objec-
tive MLM and followed the standard procedure de-
scribed in the original BERT paper (Devlin et al.,
2019). In addition, we designed a second learning
objective named Visit Type Prediction (VTP) to im-
prove BERT’s performance in downstream prediction
tasks. VTP was developed based on the observation
that different medical concepts are associated with
different visit types, and therefore incorporating such
domain knowledge may allow BERT to capture ad-
ditional contextual information. Conceptually, VTP
can be thought of as a language translation task,
where a sequence of medical concepts are translated
to a sequence of visit types (e.g. Inpatient visit v.s.
Outpatient visit). To realize this idea, we added a
single decoder layer to the BERT architecture to per-
form VTP. The decoder setup can be summarized as
follows: 1) 50% of tokens in the visit sequence are ran-
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Figure 1: Overview of our BERT architecture on structured EHR data. To distinguish visit boundaries, visit
segment embeddings are added to concept embeddings. Next, both visit embeddings and concept
embeddings go through a temporal transformation, where concept, age and time embeddings are
concatenated together. The concatenated embeddings are then fed into a fully connected layer.
This temporal concept embedding becomes the input to BERT. We used the BERT learning
objective Masked Language Model as the primary learning objective and introduced an EHR
specific secondary learning objective visit type prediction.

domly masked; 2) the visit type sequence undergoes
the same temporal transformation as the concept se-
quence to generate the temporal visit type embed-
dings; 3) in the decoder, the temporal visit type em-
beddings and contextualized concept embeddings are
combined using multi-headed attention to produce
the contextualized visit embeddings; 4) contextual-
ized visit embeddings are used to predict the original
visit types for those masked positions in the visit se-
quence. This second learning objective was trained
together with the primary learning objective, MLM.
It should be emphasized that the visit sequence is not
a list of visits that a patient experienced in the past,
but rather, it is a list of visit types constructed from
the corresponding concepts in the patient sequence.

5. Experiments and Results

5.1. Experiment setup

CEHR-BERT was pre-trained using EHR data from
a Columbia University Irving Medical Center-New

York Presbyterian Hospital (CUIMC-NYP). Patients
who had at least one visit and more than 5 data
points in their medical history were included, result-
ing in 2.4M patients and 184.7M clinical data points
across OMOP domains - condition, procedure, and
medication. The data characteristics can be found in
Table 1. For pre-training BERT, we used 5 encoders
and 8 heads with a dropout rate of 0.1, along with em-
bedding and hidden dimensions of 128. The context
window of 300 tokens rather than the standard 512
was used to construct the patient sequence because
300 is enough to capture more than 90% of patients’
entire medical histories. For those patients who have
a sequence of more than 300 codes, we randomly
sliced a subset of their sequence (patient history) for
pre-training, while patients with less than 300 codes
were post-padded with the PAD token. We trained
the BERT model for 5 epochs using the Adam op-
timizer (Kingma and Ba, 2014) with a batch size of
32. The learning rate was initially set to 2e−4 and
the Cosine Annealing LR was used to decay learning
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rate after every epoch. All training and testing for
this study was done on a Linux based server with 768
GB memory, dual Intel(R) Xeon(R) Gold 6138 CPU
@ 2.00GHz processors, and two RTX 2080ti GPUs.
The code is available at https://github.com/cumc-
dbmi/cehr-bert.

Table 1: Summary statistics of the CUIMC-NYP
OMOP instance

No. of visits per
patient

No. of records
per patient

mean 14 76
std 29 196
min 1 5
25% 2 10
50% 5 24
75% 14 68
max 1106 31226

5.2. Experiments

To evaluate the model, we followed previously pub-
lished standards where we fine-tuned BERT together
with a Bi-LSTM layer for a set of disease prediction
tasks (Rasmy et al., 2021). Then, we conducted a
few-shot learning experiment using the same setup
except that a subset of the training data was used
for fine-tuning and the model performance was eval-
uated using the full test set (McDermott et al., 2021).
In these experiments, we included both BEHRT and
MedBert as BERT comparators to better understand
the relative performance of our model. For a fair
comparison, the BERT comparators were extended
to pre-train and fine-tune on three domains includ-
ing condition, medication, and procedure rather than
condition only in their original studies. To under-
stand the contribution of pre-training, we also in-
cluded a non pre-trained version of CHER-BERT,
which will be referred to as R-BERT. In addition, sev-
eral baseline models were evaluated, including logistic
regression (LR), XG-boost, and Bi-LSTM with pre-
trained time attention concept embeddings (Xiang
et al., 2019). Finally, we conducted ablation studies
to understand how different temporal components in
our adaption could impact the model performance.

5.2.1. Disease prediction

Disease prediction is the likelihood of a patient expe-
riencing a condition (disease) in a given time window.

Table 2 shows the 4 prediction tasks including demo-
graphics and patient outcomes. Full definitions can
be found in section A. For feature extraction, a one-
year observation window was used prior to the entry
of the target cohort by default unless stated otherwise
in the prediction definition.

Extracting features for sequence models (e.g.
LSTM and BERTs) was straightforward, where med-
ical concepts were organized in a sequence using
chronological order; and artificial tokens and the
SEP token were inserted between neighboring vis-
its for CEHR-BERT and BEHRT respectively. The
pre-truncate and post-padding strategy was utilized
to standardize the size of the inputs for patients who
had more/less concepts than the size of the context
window. For LR and XG-boost, frequency-based fea-
tures were constructed by counting the number of oc-
currences of medical concepts in the observation win-
dow. Additionally, medical concepts were rolled up
using ontological hierarchies to reduce dimensional-
ity (Ng et al., 2016), for which a detailed explanation
could be found in section A.1

For performance evaluation, the 4-fold evaluation
was utilized, where in each fold the data was split into
three different sets (75:10:15 split for train/val/test).
The sequence models were trained for 10 epochs with
early stopping to monitor validation loss with the pa-
tience set to 1. On the other hand, since frequency
based models (LR and XGB) were not fine-tuned for
hyper-parameters, 85% of the data was used for train-
ing and the remaining 15% was used for testing di-
rectly. The python library sklearn was utilized for
training with the default configuration. At the end
of each fold, the area under the receiver operating
characteristics curve (AUC) was calculated using the
test set. In addition, PR-AUC (Precision-Recall) was
reported because some of the prediction cohorts had
imbalanced outcomes e.g. Discharge Home Death.

Table 3 shows the average AUC and PR-AUC for
all models across 4 prediction tasks, where the best
value is highlighted in bold. Overall, sequence models
outperformed frequency based models, and BERTs
performed better than Bi-LSTM. Among all mod-
els evaluated, CEHR-BERT achieved the best per-
formance in both AUC and PR-AUC across all tasks.
In particular, CEHR-BERT is the only model that
achieved an AUC of 80 in t2dm hf, and its PR-AUC
exceeded the second best performing model MedBert
by more than 10% (from 0.274 to 0.323). The second
and third top performing models were MedBert and
BEHRT, whose performances were consistently worse
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Table 2: Definitions and cohort characteristics of prediction tasks

HF readmission Discharge home
Death

T2DM HF Hospitalization

Cohort size 97758 207919 114564 590578

Median age 72 49 61 45

Male 50.30% 33.23% 49.66% 37.46%

Female 49.71% 66.77% 50.34% 62.54%

Outcome 24.16% 4.85% 9.38% 10.90%

Description 30 days all-cause
readmission in HF
patients (Golas
et al., 2018), see
A.3 for details.

Mortality within
1 year since dis-
charged to home,
see A.4 for details

Life time heart fail-
ure prediction since
the initial diagnosis
of type 2 diabetes
mellitus (Rasmy
et al., 2021), the
medical codes used
can be found in A.2

2 year risk of hospi-
talization starting
from the 3rd year
since the inital
entry into the EHR
system (Zhang
et al., 2018), see
A.5 for details

than that of CEHR-BERT. However, these relative
performances did not follow the same trend in hospi-
talization, where Bi-LSTM was the second best per-
forming model after CEHR-BERT and outperformed
MedBERT and BEHRT. Finally, R-BERT was per-
forming consistently worse than CHER-BERT, sug-
gesting that pre-training played an important role in
improving the downstream prediction tasks.

5.2.2. Performance of few-shot learning

One of the advantages of using pre-trained models
is the ability to leverage prior knowledge captured
from millions of training examples during the pre-
training phase. As a result, BERT could be fine-
tuned for downstream tasks using a small training
set to achieve decent performance. The setup for
few-shot learning was similar to the 4-fold evaluation
except that we used a subset of the training data in
each fold. Specifically, we predefined a list of train-
ing percentages (5%, 10%, 20%, 40%, and 80%) with
respect to 75% of the training data in each fold in
the experiment, and then iterated through the per-
centages to conduct a separate 4-fold evaluations, in
which a subset of the training data was randomly
selected based on the training percentage. Apart
from randomly sampling the training data, the other
configurations including disease phenotypes, baseline
models, the process for train/val/test split, and re-
porting metrics were identical to the disease predic-

tion tasks. Figure 7 shows that CEHR-BERT is the
best performing model in terms of AUC and PR-
AUC at different training percentages for t2dm hf.
Following CEHR-BERT, MedBert and BEHRT were
other top performers compared to LR, XGB and Bi-
LSTM. CEHR-BERT outperformed the second best
model MedBert by the same margin throughout the
course of this few-show learning experiment. Notice-
ably, CEHR-BERT fine-tuned with 5% of the train-
ing data could achieve an AUC of nearly 0.78 and the
PR-AUC of almost 0.29, whereas other models only
achieved the AUCs between 0.60 and 0.76 and PR-
AUCs between 0.12 and 0.26 despite using up to 80%
of the training data. Furthermore, the same trend
can be observed for other prediction tasks as well,
shown in Figures 8, 9 and 10. The only exception
is in hospitalization, where CEHR-BERT and LSTM
were the first and second best performing models;
whereas, other BERTs marginally improved the per-
formance compared to frequency based models.

5.3. Ablation studies

To better understand the contributions of time to-
kens, time/age embeddings and VTP, we conducted
a number of ablation studies. We pre-trained sev-
eral variations of BERT by excluding one component
at a time, then conducted the evaluation described
in Disease prediction, and reported results for each
variation in Table 4. The best value is highlighted in
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Table 3: Average AUC and PR-AUC values and standard deviations for three baseline models and three
BERT based models across 4 prediction tasks

LR XGB LSTM R-BERT BEHRT MedBert CEHR-BERT

t2dm hf
PR 24.8±0.8% 24.8±0.5% 25.8±0.7% 28.1±1.5% 27.1±1.7% 27.37±0.6% 32.3±1.0%
AUC 76.7±0.3% 76.5±0.5% 77.4±0.5% 78.0±0.9% 77.5±0.5% 78.19±0.1% 80.7±0.6%

hf readmit
PR 36.3±0.7% 37.6±1.3% 33.3±0.5% 37.1±0.6% 37.4±0.9% 38.0±0.5% 38.6±0.1%
AUC 64.2±0.7% 64.0±0.3% 61.7±0.2% 65.0±0.5% 65.1±0.4% 65.8±0.2% 66.3±0.2%

discharge
home death

PR 46.7±0.7% 48.5±0.8% 49.1±1.8% 46.7±1.2% 50.7±0.5% 51.4±0.5% 52.7±0.4%
AUC 93.4±0.1% 93.5±0.3% 93.8±0.2% 93.6±0.2% 94.0±0.1% 94.2±0.1% 94.6±0.1%

hospitalization
PR 26.9±0.5% 29.0±0.3% 30.0±0.4% 28.0±0.5% 29.4±0.2% 29.5±0.3% 31.1±0.4%
AUC 72.9±0.1% 74.0±0.1% 75.1±0.2% 74.4±0.3% 74.7±0.1% 74.6±0.1% 75.9±0.1%

bold in each row. We discuss the contribution of each
component separately in the following sections. We
also provided the size of each BERT network and the
pre-training time in Table 9 so the practitioners could
choose the appropriate model based on the use-case.

5.3.1. Assessment of time tokens

To understand the effectiveness of time tokens, we
compared our patient representation described in
Data processing and patient representation to the ex-
isting ones adopted by BEHRT and MedBert. Med-
Bert used a patient representation that only con-
tained the medical concepts and did not include any
other artificial tokens. BEHRT used a variation of
the MedBert patient representation, where the SEP
token was inserted between neighboring visits. Fig-
ure 5 shows an example of these different EHR repre-
sentations for a patient’s medical history. To perform
a fair comparison, we applied the same architecture
(described in Methods) to pre-train using these two
patient representations, and then we tested the model
performances following the same evaluation proce-
dure described in Disease prediction. We will refer
to these two BERTs as B-BERT (trained using the
BEHRT representation) and M-BERT (trained using
the MedBert representation) to distinguish between
them. Table 4 shows that CEHR-BERT improved
the performances in all tasks as compared to the
other patient representations except that M-BERT
performed slightly better in terms of PR-AUC in dis-
charge home death. Our results indicate that em-
bedding ATTs can effectively capture the temporal
information of structured EHR data. One plausible
explanation is that ATTs may be treated like any
other tokens such that when BERT utilizes them in
the self-attention mechanism, those tokens function

like a place holder for preserving temporal informa-
tion, which is then propagated through to the last en-
coder. In addition, we trained another CEHR-BERT
variation where we removed VS and VE tokens and
only kept the ATT tokens, (which we will be refer to
as V-BERT). The performance of V-BERT dropped
compared to CEHR-BERT, and was comparable to
that of B-BERT (SEP token inserted between vis-
its), suggesting that VS and VE play an important
role in explicitly defining the boundary of a visit, so
that ATT tokens would just function like a regular
SEP token without their presence.

5.3.2. Assessment of visit type prediction

VTP was designed in this study as a substitute for
the original second learning objective NSP to leverage
the unique characteristics of structured EHR data.
To understand its contribution, we excluded VTP
and pre-trained BERT, and then followed the stan-
dard evaluation. This BERT will be referred to as
NS-BERT. The comparison between NS-BERT and
CEHR-BERT in Table 4 demonstrates the improved
performances across all prediction tasks attributed to
VTP with the exception of hospitalization, where NS-
BERT slightly outperformed CEHR-BERT but both
remained largely similar. Such minor differences may
be due to random variation of 4-fold evaluation. The
underlying assumption of VTP was that concepts as-
sociated with different visit types follow different dis-
tributions. Therefore, incorporating VTP into BERT
could help learn the representation of concepts. To
better understand this, we reported the top 10 most
frequent concepts stratified by visit type and do-
main in Table 11 in Additional Figures and Analyses,
which shows that the concept distributions are indeed
distinct between visit types. For example, the most
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Table 4: Average AUC and PR-AUC values and standard deviations for ablation studies

M-BERT B-BERT NS-BERT NT-BERT ALT-BERT V-BERT CEHR-BERT

t2dm hf
PR 29.9±1.0% 30.6±0.5% 31.8±1.3% 28.2±0.2% 29.3±0.5% 28.6±0.8% 32.3±1.0%
AUC 79.2±0.3% 79.5±0.5% 80.2±0.6% 78.5±0.4% 76.7±0.2% 78.6±0.1% 80.7±0.6%

hf readmit
PR 34.1±0.6% 37.4±0.9% 38.3±0.6% 39.3±0.7% 33.3±0.8% 38.6±0.4% 38.6±0.1%
AUC 62.6±0.3% 65.1±0.2% 65.8±0.1% 66.4±0.3% 61.6±0.7% 65.9±0.2% 66.3±0.2%

discharge
home death

PR 53.1±0.5% 52.0±1.0% 52.0±0.7% 52.5±0.8% 31.6±3.0% 52.6±1.3% 52.7±0.4%
AUC 94.4±0.3% 94.4±0.1% 94.3±0.1% 94.2±0.3% 87.3±0.9% 94.4±0.1% 94.6±0.1%

hospitalization
PR 30.0±0.7% 30.4±0.5% 31.3±0.7% 30.8±0.6% 23.4±0.5% 30.6±0.4% 31.1±0.4%
AUC 74.9±0.3% 75.3±0.3% 76.1±0.2% 75.2±0.2% 69.2±0.4% 75.3±0.3% 75.9±0.1%

1 M-BERT: CEHR-BERT trained on MedBert patient representation
2 B-BERT: CEHR-BERT trained on BEHRT patient representation
3 NS-BERT: CEHR-BERT without the second learning objective
4 NT-BERT: CEHR-BERT without the time/age embeddings
5 ALT-BERT: modified CEHR-BERT where concept, time and age embeddings are summed together
6 V-BERT: modified CEHR-BERT where VS and VE are removed from the patient sequence

frequent concepts associated with inpatient visits re-
late to childbirth or severe conditions that require
immediate hospitalization, while the top outpatient
concepts normally pertain to chronic conditions such
as hypertension and type 2 diabetes that may not
require immediate medical attention but long-term
management. Currently, the threshold for masking
visit tokens is set to 50%, but we plan to investigate
different thresholds to optimize the performance.

5.3.3. Assessment of time/age embeddings

At the input layer, concept, time, and age em-
beddings are concatenated together, and fed into
a FC layer to form temporal concept embeddings,
which is then used as the input for CEHR-BERT.
To understand the impact of this transformation, we
pre-trained a BERT named ALT-BERT, where we
summed time embeddings, age embeddings and con-
cept embeddings to form temporal concept embed-
dings instead of using a FC layer. Table 4 shows that
the performance of ALT-BERT was lower compared
to that of CEHR-BERT, suggesting that our tempo-
ral concept embeddings transformation is more effec-
tive than the summation of time/age/concept embed-
dings. This confirms existing empirical evidence that
summing is more rigid than feeding a concatenated
product into another the FC layer in terms of fitting
the model to the training data.
Furthermore, we wanted to know the impact of us-

ing time/age embeddings. Therefore we pre-trained
another BERT named NT-BERT, where we disabled
all components related to time/age embeddings and

only used the concept embeddings. We added the
positional encoder (used by Rasmy et al. (2021); Li
et al. (2020)) to give the model a basic sense of tem-
porality. Table 4 shows that without time/age em-
beddings, NT-BERT did perform slightly better in hf
readmit than CEHR-BERT; however, CEHR-BERT
outperformed NT-BERT in all other tasks. In par-
ticular, PR-AUC for NT-BERT in t2dm hf dropped
by 4% compared to CEHR-BERT (from 32.3±1.0%
to 28.2±0.2%). Therefore, the benefit of performing
the transformation for generating temporal concept
embeddings likely outweighs the cost.

6. Discussion

6.1. Understanding artificial time tokens

To understand the functional role of ATTs, we ex-
tracted the base embeddings of ATTs and computed
2D features using PCA for visualization. Figure 6
shows that ATTs were arranged from right to left in
increasing order of time intervals, where the right-
most and leftmost tokens represent the shortest and
longest time intervals respectively. Specifically, the
ATT week tokens (includingW0,W1, andW2) formed
a cluster on the right bottom, and month tokens (in
the form of Mn e.g. M1) seemed to present a linear
relationship. In addition, the VS and VE tokens were
located far away from time tokens because they rep-
resent the start and the end of a visit rather than time
intervals, corroborating that their semantics are fun-
damentally different from time tokens. The analysis
supported our assumption that BERT can derive se-
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mantics of ATTs and show meaningful relationships
between them, thereby learning the hidden knowl-
edge that different time tokens are associated with
different groups of concepts.

6.2. Inflated patient sequence

Due to the use of ATTs, we artificially inflated the
length of patient sequences, and as a result involun-
tarily cut-off some records from patient sequences.
Whereas, in other sequence models (M-BERT, and
Bi-LSTM) we used patient sequences as-is. We calcu-
lated the median length (defined as the median num-
ber of concepts) as well as 95% sequence length (de-
fined as the number of concepts at 95% percentile) of
the patient sequences for different BERT representa-
tions across 4 disease prediction tasks, which is shown
in Table 10. Among all tasks, patient sequences for
t2dm hf and hospitalization patients have the short-
est patient sequences; whereas, hf readmission has
the richest medical history. Among all patient rep-
resentations, CEHR-BERT has the longest sequence
due to the use of ATTs, and B-BERT has the second
longest sequence due to the use of SEP. This raised
the question of whether cutting off early records in
patient sequences could have contributed to the per-
formance boost in evaluations. To address this con-
cern, we re-ran the hf readmission analysis using a
shorter observation window of 180 days for all models
except CEHR-BERT. The motivation was to simulate
a scenario where early records were omitted and only
the latest records were included. The performance
of this modified evaluation was reported in Table 8.
It showed that model performances did not improve
but dropped when compared to the original evalua-
tion in Table 3 and cutting off the early records in
patient sequences did not improve the performance.
This comparison suggests the performance gain by
CEHR-BERT is attributed to the use of ATT to-
kens.

7. Future work

In this work, we used a context window of 300 for
pre-training and conducting experiments. Although
we can increase the context window to the BERT se-
quence limit of 512, patients may have more clinical
concepts in their medical histories than the sequence
length supported by BERT. To address this limita-
tion, we plan to employ a sliding window strategy,
in which we can apply BERT to extract the contex-

tualized embedding representations for each region
scanned by the sliding window. Then the regional
representations could be combined via a 1D convolu-
tion layer or LSTM to generate the final patient rep-
resentation. Although VTP seems to have improved
the results by a small margin, it is not clear whether
the improvement could be attributed to random vari-
ation, so we need to investigate VTP in the follow-up
analysis. Furthermore, we want to include labs to the
patient sequence as labs offer an extensive amount of
useful information. However, embedding the lab data
would require a different strategy as labs are contin-
uous features unlike the discrete data types included
in this study. Finally, we will investigate whether or
not our methods of incorporating time could be gen-
eralized for other models as well.

8. Conclusion

To the best of our knowledge, this is the first study
that focuses on incorporating time into BERT for
use on structured EHR data, including multiple el-
ements for representing temporal information and
leveraging multiple domains of clinical care. CEHR-
BERT outperforms existing state of the art BERT-
based approaches across a number of different pre-
diction tasks. Based on our results, incorporating
time tokens into the patient sequence and combin-
ing time/age embeddings with concept embeddings
seem to synergistically boost the performance more
than any individual modification alone. Therefore,
including both into the final CEHR-BERT architec-
ture seems to be the most effective way of capturing
the temporal information of structured EHR data.
This study was developed using the OMOP common
data model, and as a result can be expanded to run
on the OHDSI network in order to replicate these re-
sults beyond a single database.
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Abdelaali Hassaine, Rema Ramakrishnan, Dexter
Canoy, Yajie Zhu, Kazem Rahimi, and Gholam-
reza Salimi-Khorshidi. BEHRT: Transformer for
Electronic Health Records. Scientific Reports 2020
10:1, 10(1):1–12, apr 2020. ISSN 2045-2322. doi:
10.1038/s41598-020-62922-y. URL https://www.

nature.com/articles/s41598-020-62922-y.

Matthew McDermott, Bret Nestor, Evan Kim, Wan-
cong Zhang, Anna Goldenberg, Peter Szolovits,
and Marzyeh Ghassemi. A comprehensive EHR
timeseries pre-training benchmark. ACM CHIL
2021 - Proceedings of the 2021 ACM Conference
on Health, Inference, and Learning, pages 257–278,
apr 2021. doi: 10.1145/3450439.3451877.

Kenney Ng, Steven R. Steinhubl, Christopher
DeFilippi, Sanjoy Dey, and Walter F. Stewart.

248

https://www.nature.com/articles/s41598-018-24271-9
https://www.nature.com/articles/s41598-018-24271-9
/pmc/articles/PMC5001761/ /pmc/articles/PMC5001761/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001761/
/pmc/articles/PMC5001761/ /pmc/articles/PMC5001761/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001761/
/pmc/articles/PMC5001761/ /pmc/articles/PMC5001761/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001761/
/pmc/articles/PMC5788312/ /pmc/articles/PMC5788312/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788312/
/pmc/articles/PMC5788312/ /pmc/articles/PMC5788312/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788312/
/pmc/articles/PMC5788312/ /pmc/articles/PMC5788312/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788312/
/pmc/articles/PMC6013959/ /pmc/articles/PMC6013959/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013959/
/pmc/articles/PMC6013959/ /pmc/articles/PMC6013959/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013959/
/pmc/articles/PMC6013959/ /pmc/articles/PMC6013959/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013959/
https://arxiv.org/abs/1907.05321v1
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
https://www.nature.com/articles/s41598-020-62922-y
https://www.nature.com/articles/s41598-020-62922-y


CEHR-BERT

Early Detection of Heart Failure Using Electronic
Health Records: Practical Implications for Time
before Diagnosis, Data Diversity, Data Quantity
and Data Density. Circulation. Cardiovascular
quality and outcomes, 9(6):649, nov 2016. doi:
10.1161/CIRCOUTCOMES.116.002797. URL
/pmc/articles/PMC5341145//pmc/articles/

PMC5341145/?report=abstracthttps://www.

ncbi.nlm.nih.gov/pmc/articles/PMC5341145/.

Xueping Peng, Guodong Long, Tao Shen, Sen Wang,
Jing Jiang, and Michael Blumenstein. Temporal
Self-Attention Network for Medical Concept Em-
bedding. Proceedings - IEEE International Con-
ference on Data Mining, ICDM, 2019-November:
498–507, sep 2019. doi: 10.1109/icdm.2019.00060.
URL https://arxiv.org/abs/1909.06886v1.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word rep-
resentations. NAACL HLT 2018 - 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference, 1:
2227–2237, feb 2018. URL https://arxiv.org/

abs/1802.05365v2.

Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao,
and Degui Zhi. Med-BERT: pretrained con-
textualized embeddings on large-scale structured
electronic health records for disease predic-
tion. npj Digital Medicine 2021 4:1, 4(1):1–
13, may 2021. ISSN 2398-6352. doi: 10.1038/
s41746-021-00455-y. URL https://www.nature.

com/articles/s41746-021-00455-y.

Junyuan Shang, Tengfei Ma, Cao Xiao, and Jimeng
Sun. Pre-training of Graph Augmented Trans-
formers for Medication Recommendation. IJCAI
International Joint Conference on Artificial Intel-
ligence, 2019-August:5953–5959, jun 2019. URL
https://arxiv.org/abs/1906.00346v2.

Yang Xiang, Jun Xu, Yuqi Si, Zhiheng Li, Laila
Rasmy, Yujia Zhou, Firat Tiryaki, Fang Li, Yaoyun
Zhang, Yonghui Wu, Xiaoqian Jiang, Wenjin Jim
Zheng, Degui Zhi, Cui Tao, and Hua Xu. Time-
sensitive clinical concept embeddings learned from
large electronic health records. BMC Medical
Informatics and Decision Making, 2019. ISSN
14726947. doi: 10.1186/s12911-019-0766-3.

Jinghe Zhang, Kamran Kowsari, James H. Harri-
son, Jennifer M. Lobo, and Laura E. Barnes. Pa-
tient2Vec: A Personalized Interpretable Deep Rep-
resentation of the Longitudinal Electronic Health
Record. IEEE Access, 6:65333–65346, oct 2018.
doi: 10.1109/access.2018.2875677. URL https:

//arxiv.org/abs/1810.04793v3.

249

/pmc/articles/PMC5341145/ /pmc/articles/PMC5341145/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341145/
/pmc/articles/PMC5341145/ /pmc/articles/PMC5341145/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341145/
/pmc/articles/PMC5341145/ /pmc/articles/PMC5341145/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341145/
https://arxiv.org/abs/1909.06886v1
https://arxiv.org/abs/1802.05365v2
https://arxiv.org/abs/1802.05365v2
https://www.nature.com/articles/s41746-021-00455-y
https://www.nature.com/articles/s41746-021-00455-y
https://arxiv.org/abs/1906.00346v2
https://arxiv.org/abs/1810.04793v3
https://arxiv.org/abs/1810.04793v3


CEHR-BERT

Appendix A. Prediction Tasks

A prediction task can be phrased as the following,
“among a particular group of people, who will go on
and experience some event”. One can think of this
problem as defining a target cohort that represents
the initial group of people, and an outcome cohort
that represents the subset of the initial group who
will experience a particular event, e.g. among the
type 2 diabetes patients, who will go on and develop
heart failure. Both target and outcome cohorts can
be defined as a group of people who satisfy certain
inclusion criteria for a certain period of time. Typi-
cally, a cohort definition includes a cohort entry event
and a set of inclusion criteria (an exclusion criterion
can be thought of as an inclusion criterion with 0 oc-
currence). Specifically, the cohort entry event defines
the index date, at which the patients enter the co-
hort, and the inclusion criteria add more constraints
to the cohort if applicable, such as the requirements
of certain diagnosis, medications, procedures or tem-
poral relationships among criteria, and etc. In ad-
dition, a prediction window needs to be specified for
generating the ground truth labels for the given tar-
get and outcome cohorts, if the outcome index date
falls between the index date of the target cohort and
the prediction window, we will declare the case to be
positive, and otherwise negative.

In terms of prediction time range, we use observa-
tion window, hold-off window and prediction window
to collect data in different time periods. One pa-
tient’s medical history is built on an event sequence.
Each event represents one medical engagement within
a visit. It could be condition occurrence, medica-
tion exposure, procedure occurrence and measure-
ment etc. In this paper, we only focus on the first
three types of events. We extract features using data
from the observation window followed by a hold-off
window to avoid same target concepts being included
into feature construction. The prediction window is
right after the index event. And the goal is to pre-
dict the occurrence of any outcome event. With the
datasets, we could train, test and validate the model.
Figure 2 visualizes the cohort definition that is con-
structed based on all events in patient medical his-
tory.

We validate our model by applying it to 4 down-
stream prediction problems. Table 5 lists the cohort
definition parameters for the prediction tasks.

Figure 2: Cohort Definition and Prediction Windows

A.1. Feature Engineering

Frequency based features were used for LR and XG-
boost, and generated as the following 1) International
Classification of Diseases (ICD) ICD-9 or ICD-10
codes were rolled up to 2 or 3 digit codes for proce-
dure and diagnosis depending on where the dot char-
acter is in the code e.g. 44.98 and I50.0; 2) for proce-
dure records encoded by Current Procedural Termi-
nology (CPT), they were rolled up to the second level
from the root; 3) all medications were rolled up to
the ingredient level; 4) for the codes that couldn’t be
rolled up, the original codes were kept; 5) the frequen-
cies of the rolled-up codes were calculapted within the
observation window.

A.2. Type 2 Diabetes Mellitus patients who
developed Heart Failure

The target cohort consists of patients who had T2DM
(type 2 diabetes mellitus) in the medical history. The
index event of T2DM is patient encounters with con-
dition concept ids or medication exposures of anti-
diabetes medications. We also exclude any patients
with pre-existing T2DM, type 1 diabetes, diabetes in-
sipidus, gestational diabetes, secondary diabetes and
neonatal diabetes.

The outcome cohort is a subset of the target co-
hort who developed heart failure during the predic-
tion window. We defined Heart Failure cohort as
patients who were diagnosed with heart failure, at
least one lab test with high BNP results, received any
treatment including mechanical circulatory support,
artificial heart associated procedure, diuretic agent,
vasoactive agent or dialysis procedure.

For each of the criteria, we construct a concept set
with a group of OMOP concept ids. In Table 6 &
Table 7, we list all related concept sets and concept
ids from OMOP vocabulary.
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Table 5: Cohort Definition Parameters

cohort name index event inclusion criteria outcome
event

observation
window

hold-off
window

prediction
window

t2dm hf Type 2 Dia-
betes Mellitus
condition oc-
currence or
medication
exposure

No pre-existing
diabetes, type 1
diabetes, diabetes
insipidus, gesta-
tional diabetes,
secondary dia-
betes, neonatal
diabetes

Heart Fail-
ure

unbounded 0 unbounded

hf readmit Heart Failure
condition oc-
currence

At least one HF
treatment, lab test
or medication ex-
posure

Readmission
(In-patient
visit)

360 days 0 30 days

discharge home
death

Discharge to
home

Following an in-
patient visit

Death 360 days 0 360 days

hospitalization EHR start Number of visits
between 2 and 30

In-patient
visit

540 days 180 days 720 days

A.3. Heart Failure patients who were
readmitted within 30 days

The target cohort contains patients who were admit-
ted into hospital due to heart failure . The index
event is an inpatient visit with a heart failure diag-
nosis (316139). Patients in the target cohort who
were readmitted into hospital within 30 days will be
in the outcome cohort. The concept ids of inpatient
visits are 9201 and 262. In this case, the prediction
window is 30 days.

A.4. Patients who were discharged and died
within one year

The target cohort is patients who had an inpa-
tient visit and were discharged to home. The out-
come cohort is patients who died within one year af-
ter being discharged. The index event is inpatient
visit with visit concept id as 9201 or 262 and dis-
charge to concept id is home or other nursing facil-
ities. The outcome event is death. The prediction
window is 360 days.

A.5. Hospitalization

The hospitalization cohort has a special structure
showed in Figure 3 than the generalized cohort struc-
ture. The index event is when the patient had the
first visit in the hospital. And the observation win-
dow is post the index event. The outcome event is
an inpatient visit. We only include patients who had

visit occurrences between 2 to 30 during the observa-
tion window to make sure patients had enough data
points and also remove any outliers.

Figure 3: Hospitalization Cohort Definition and Pre-
diction Windows

Appendix B. Additional Figures and
Analyses
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Table 6: T2DM Cohort Related Concepts

Domain Concept Set OMOP concept ids

Condition

T2DM 443238, 201820, 442793, 4016045
pre-existing T2DM 40769338,43021173,42539022, 46270562
type 1 diabetes 201254, 4019513, 40484648
diabetes insipidus 30968, 438476
gestational diabetes 4058243
secondary diabetes 195771
neonatal diabetes 193323

Medication

Metformin 1503297
Chlorpropamide 1594973
Glimepiride 1597756
Glyburide 1559684
Glipizide 1560171
Tolbutamide 1502855
Tolazamide 1502809
Pioglitazone 1525215
Rosiglitazone 1547504
Sitagliptin 1580747
Saxagliptin 40166035
Alogliptin 43013884
Linagliptin 40239216
Repaglinide 1516766
Nateglinide 1502826
Miglitol 1510202
Linagliptin 40239216
Acarbose 1529331

Insulin

35605670, 35602717, 1516976, 1502905,
46221581, 1550023, 35198096, 42899447,
1544838, 1567198, 35884381, 1531601,
1588986, 1513876, 19013951, 1590165,
1596977, 1586346, 19090204, 1513843,
1513849, 1562586, 19090226, 19090221,
1586369, 19090244, 19090229, 19090247,
19090249, 19090180, 19013926, 19091621,
19090187
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Table 7: Heart Failure Cohort Related Concepts

Domain Concept Set OMOP concept ids

Condition Heart Failure 316139

Medication
Diuretic Agent

4186999, 956874, 942350, 987406, 932745,
1309799, 970250, 992590, 907013

Vasoactive Agent 1942960

Measurement
High B-type Natriuretic Peptide
(BNP) > 500 pg/mL

4307029

NT-proBNP > 2000 pg/mL 1594973

Procedure Mechanical Circulatory Support

45888564, 4052536, 4337306, 2107514,
45889695, 2107500, 45887675, 43527920,
2107501, 45890116, 40756954, 4338594,
43527923, 40757060, 2100812

Artificial Heart Associated Procedure

4144390, 4150347, 4281764, 725038, 725037,
2100816, 2100822, 725039, 2100828, 4337306,
4140024, 4146121, 4060257, 4309033,
4222272, 4243758, 4241906, 4080968,
4224193, 4052537, 4050864

Table 8: Average AUC and PR-AUC values for LR, XGB, LSTM, BEHRT, and MedBert for hf readmission
using the 180-day observation window

LR XGB LSTM BEHRT MedBert

PR-AUC 36.6±0.7% 37.1±0.6% 36.3±0.1% 37.2±0.3% 31.7±0.4%
AUC 64.7±0.3% 64.1±0.7% 64.2±0.4% 65.0±0.3% 59.5±0.1%

Table 9: Trainable and Non trainable parameters counts for M-BERT, B-BERT, NS-BERT, ALT-BERT,
V-BERT and CEHR-BERT.

M-BERT B-BERT NS-BERT ALT-BERT V-BERT CEHR-BERT

Trainable Parameters 9083060 9083060 8811380 9044596 9085108 9085364
NonTrainable Parameters 0 0 0 0 0 0
Time to pre-train per epoch 8.5h 8.5h 7.5h 8.5h 8.5h 8.5h
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Figure 4: Patient sequence representation and artificial time tokens

Table 10: Patient sequence lengths for 3 BERT representations across 4 disease predictions

HF readmission Discharge home Death T2DM HF Hospitalization

median length
CEHR-BERT 123 64 21 19
b-bert 98 47 15 12
m-bert 86 38 13 9

95% length
CEHR-BERT 608 330 366 108
b-bert 520 257 246 78
m-bert 481 223 189 66
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Figure 5: EHR Representation of patient medical history
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Figure 6: 2d visualization of the Artificial Time Tokens added to CEHR-BERT. The base embeddings of
those tokens were extracted from CEHR-BERT, and PCA was run to extract the 2d features for
visualization.
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Figure 7: AUC and PR-AUC at different training percentages for all the models for few-shot learning task
for hf readmission are plotted against

Figure 8: AUC and PR-AUC at different training percentages for all the models for few-shot learning task
for discharge home death are plotted against
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Figure 9: AUC and PR-AUC at different training percentages for all the models for few-shot learning task
for hospitalization are plotted against

Figure 10: AUC and PR-AUC at different training percentages for all the models for few-shot learning task
for hf readmission are plotted against
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Table 11: Top 10 most frequent condition concepts associated with each visit type

Visit Type Rank Condition Concepts Patient
Count

Percentage
of the Visit
Type Pa-
tients

Outpatient Visit
1 Essential hypertension 310794 13.00%
2 Abdominal pain 172393 7.21%
3 Chest pain 164499 6.88%
4 Hyperlipidemia 160068 6.70%
5 Finding related to pregnancy 140044 5.86%
6 Joint pain 117134 4.90%
7 Dyspnea 114580 4.79%
8 Low back pain 114031 4.77%
9 Pure hypercholesterolemia 113437 4.75%
10 Unplanned pregnancy 110584 4.63%

Inpatient Visit
1 Single live birth 279820 35.01%
2 Essential hypertension 150002 18.77%
3 Finding related to pregnancy 121545 15.21%
4 Postpartum finding 100345 12.55%
5 Delivery normal 66666 8.34%

6
Late effect of medical and surgical care
complication

63224 7.91%

7 Congestive heart failure 55631 6.96%
8 Coronary arteriosclerosis 53763 6.73%
9 Hyperlipidemia 51459 6.44%

10
Diabetes mellitus without
complication

51069 6.39%

Emergency Room
and Inpatient Visit

1 Essential hypertension 64914 30.09%
2 Finding related to pregnancy 43878 20.34%
3 Single live birth 41606 19.29%
4 Hyperlipidemia 39051 18.10%
5 Acute renal failure syndrome 34763 16.11%
6 Postpartum finding 30382 14.08%
7 Anemia 24841 11.51%
8 Urinary tract infectious disease 23831 11.05%
9 Chest pain 22768 10.55%
10 Dehydration 22402 10.38%

Home Visit
1 Essential hypertension 144 45.71%
2 Malaise 97 30.79%
3 Constipation 89 28.25%
4 Major depression, single episode 61 19.37%
5 Cough 52 16.51%
6 Dementia 43 13.65%
7 Dementia with behavioral disturbance 42 13.33%
8 Disorder due to infection 42 13.33%
9 Slow transit constipation 41 13.02%
10 Hyperlipidemia 40 12.70%
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Visit Type Rank Condition Concepts Patient
Count

Percentage
of the Visit
Type Pa-
tients

Office Visit
1 Essential hypertension 62118 5.83%
2 Hyperlipidemia 36152 5.76%

3
Gastroesophageal reflux disease
without esophagitis

26766 5.61%

4 Vitamin D deficiency 26442 4.65%
5 Cough 25727 4.48%
6 Pure hypercholesterolemia 21321 4.38%
7 Obesity 20555 4.23%
8 Chronic pain 20091 4.07%
9 Dyspnea 19387 4.01%
10 Fatigue 18656 3.73%

Health
examination

1 Chronic pain 369 16.83%
2 Shoulder joint pain 248 11.31%
3 Musculoskeletal finding 172 7.84%
4 Low back pain 158 7.20%
5 Interstitial lung disease 126 5.75%
6 Pain in right knee 124 5.65%
7 Pain in left knee 110 5.02%
8 Postoperative state 103 4.70%
9 Difficulty walking 93 4.24%
10 Lumbago with sciatica 89 4.06%

Emergency Room
Visit

1 Abdominal pain 153538 13.77%
2 Essential hypertension 123530 11.08%
3 Chest pain 99274 8.91%
4 Viral disease 95402 8.56%
5 Headache 94671 8.49%
6 Fever 92601 8.31%
7 Cough 89758 8.05%
8 Acute upper respiratory infection 88679 7.96%
9 Acute pharyngitis 74356 6.67%
10 Asthma 73301 6.58%
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