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Abstract

Symptom checkers have emerged as an impor-
tant tool for collecting symptoms and diag-
nosing patients, minimizing the involvement of
clinical personnel. We developed a machine-
learning-backed system, SmartTriage, which
goes beyond conventional symptom checking
through a tight bi-directional integration with
the electronic medical record (EMR). Condi-
tioned on EMR-derived patient history, our sys-
tem identifies the patient’s chief complaint from
a free-text entry and then asks a series of dis-
crete questions to obtain relevant symptomatol-
ogy. The patient-specific data are used to pre-
dict detailed ICD-10-CM codes as well as med-
ication, laboratory, and imaging orders. Pa-
tient responses and clinical decision support
(CDS) predictions are then inserted back into
the EMR. To train the machine learning compo-
nents of SmartTriage, we employed novel data
sets of over 25 million primary care encounters
and 1 million patient free-text reason-for-visit
entries. These data sets were used to construct:
(1) a long short-term memory (LSTM) based
patient history representation, (2) a fine-tuned
transformer model for chief complaint extrac-
tion, (3) a random forest model for question
sequencing, and (4) a feed-forward network for
CDS predictions. In total, our system supports
337 patient chief complaints, which together
make up > 90% of all primary care encounters
at Kaiser Permanente.

Keywords: Symptom checker, natural lan-
guage processing, clinical decision support,
Electronic Medical Record, health care, deep
neural networks, transformers, decision trees,
random forests

1. Introduction

In recent years, there has been a broad prolifera-
tion of online symptom checkers and medical triage
solutions as many patients seek web-based medical
guidance prior to engaging with their health care
provider (White and Horvitz, 2009; Semigran et al.,
2015; Chambers et al., 2019; Dunn, 2020). A typical
symptom checker functions by asking patients a se-
quence of questions and generating a set of possible
conditions and treatment options. Symptom checkers
vary by their operational range – some target specific
populations (e.g. pediatrics) or disease states (e.g.
influenza), while others have broader scopes (e.g. low
acuity primary care) (Kellermann et al., 2010; Price
et al., 2013; Buo; Ada; Inf; Bab; Med).

The need for high quality symptom checkers grew
with the COVID-19 pandemic, which caused a signif-
icant decrease in utilization of primary and urgent
care (Gelburd, 2020). Suddenly, many millions of
people are seeking diagnostic assistance online and
up to 90% of primary care visits have shifted to vir-
tual care. The transition to (in some cases) major-
ity virtual care represents an opportunity for greater
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symptom checker usage and an imperative for tight
integration into the health care operational workflow.

Symptom checkers with actionable outcomes can
provide a host of benefits. Computer assisted triage
of low acuity patients can decrease clinician patient
load, while decision support for ordering of appropri-
ate laboratory testing (including COVID-19 testing,
(Greenhalgh et al., 2020; Judson et al., 2020)), med-
ications, and imaging studies, can eliminate unnec-
essary visits. With advanced decision support and
documentation assistance, patient visits themselves
are enhanced as the clerical load (e.g. documenta-
tion, coding, ordering) is decreased.

Obtaining maximal benefit from symptom checkers
requires a tight integration with the Electronic Med-
ical Record (EMR). An integrated system can uti-
lize knowledge gleaned directly from the patient and
can also leverage historically relevant patient medical
information. In addition, symptom checker output
that is manipulable and represented in appropriate
locations within the EMR can help facilitate clinical
workflow and improve quality of care.

In this paper we present SmartTriage, a symptom
checker that is tightly integrated with the EMR and
which has a broad scope covering 337 presenting chief
complaints. We use machine learning to bootstrap
question sequencing and decision support predictions
through training on two novel data sets. The first
data set contains nearly one million patient gener-
ated free-text reasons-for-visit entries, each of which
is mapped to a discrete chief complaint. The sec-
ond data set is a collection of 25 million patient en-
counters including progress notes as well as discrete
diagnoses and orders.

Three machine learning models enable Smart-
Triage. Our chief complaint extraction model (CC
model) uses a fine-tuned bi-directional transformer
neural network (BERT) to process patient free-text
reason-for-visit entries (Devlin et al., 2019a). A
collection of over 3000 random forest models were
trained to produce highly informative question se-
quences (QS model). Finally, a feed-forward network
was created to produce clinical assessments (Assess-
ment model), taking into account all historical data
and all questions answered. The CC and the Assess-
ment models use a long short-term memory (LSTM)
based patient history representation (Hochreiter and
Schmidhuber, 1997). In this paper we also empha-
size the role of medical history on the model perfor-
mance, as it is valuable but often unutilized informa-
tion source about the patient.

SmartTriage has been piloted in a single urgent
care facility and is currently being piloted across the
Kaiser PermanenteSouthern California Region in vir-
tual visits (phone, video) as a pre-visit symptom
checker. Details about the production integration can
be found in Appendix B.

2. Methods

2.1. Content authoring

Clinical concepts from the UMLS are by their na-
ture very detailed and clinically focused (Bodenrei-
der, 2004). The level of detail often implies that mul-
tiple concepts exist to capture the same idea in differ-
ent contexts. Figure 1 shows three concepts derived
from a clinical narrative including the phrase “c/o
pain after eating.” The concepts describe gastric con-
tents backing up into the esophagus - “Heartburn”
as the sign or symptom, “Gastroesophageal reflux”
as the finding on exam, and “reflux” as a patholog-
ical process in general. Although there are context
clues in medical notes, clinicians will often use these
phrases or variants to imply the same idea, and our
NLP engine will produce one or more of these con-
cepts for the same span of clinical text.

In order to prepare a high quality training data
set for our QS and Assessment models, we employed
many man-hours of clinical review to collapse all of
the items found by our NLP engine into meaningful
“main idea” groups. In large part, the groups con-
tained perfectly synonymous concepts; in some cases,
however, we grouped items that were not perfectly
synonymous but implied the same concept. Figure 1
shows the three UMLS concepts “Heartburn”, “Gas-
troesophageal reflux” and “reflux” grouped together
into a container “Acid reflux” concept. Our pilot
system contains more than 3K distinct SmartTriage
Content Management System (ST-CMS) concepts.

SmartTriage is both patient and provider facing,
and thus we had the dual challenge of authoring our
grouped concepts such that they would be under-
standable to patients as questions and to providers
as clinical concepts. An example of authored pa-
tient and provider facing content can be seen in
the “Example SmartTriage Session” portion of Fig-
ure 1. Here we combine a canned phrase with patient
friendly language to inquire about the symptom, and
serve back to the EMR an appropriate clinical phrase
and sense (positive or negative) to capture the pa-
tient’s response.
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Figure 1: Diagram of concept life cycle. Extracted
raw UMLS concepts are further processed
and grouped into a single ST-CMS concept.
For each ST-CMS concept we author sepa-
rate physician and patient-friendly descrip-
tions.

Showing questions to patients and bringing pa-
tient answers into the EMR to be placed into a
progress note requires tagging each question/concept
with metadata describing how it should be displayed
to patients and where it should go in the clinical
note. Figure C.1 shows the system we built to man-
age all of our content called the Content Manage-
ment System (CMS), including concept groupings,
patient facing text, provider facing text, and ques-
tion metadata. Groupings are managed by establish-
ing a parent-child “synonym” based relationship with
functionality to add, remove, and change the parent.
Each concept may have a range of response types,
from simple yes/no to multi-select to free text, and

the CMS allows that to be configured. Authoring
questions may include pre-text (a stem), the question
itself, and post-text, all of which are editable. Meta-
data or question “attributes” control where in the
clinician documentation the patient responses will go
and how the patient’s response is meant to be inter-
preted by the ML components of the SmartTriage sys-
tem, a parameter called “response evaluation type.”
Finally, the CMS creates a preview of the question
as it would be seen by the patient for validation of
phrasing and question configuration.

2.2. Chief Complaint and Assessment models

The neural networks used in the Chief Complain and
Assessment models were implemented using Tensor-
flow 2.3 (Abadi et al.). For all models we used Adam
optimizer (Kingma and Ba, 2015). Model archi-
tecture are schematically represented in Figure D.2.
Medical history component uses the same architec-
ture for both assessment and chief complain models
but are trained separately with each model.

Medical history input cleaning Medical history
input data was limited to items occurring at least
5000 times in the Encounters data set.

Chief Complain model target cleaning The
discrete chief complaints selected by clinical person-
nel were further manually reviewed and grouped into
337 discrete chief complaints which were used as tar-
gets for the chief complaint model as well as inputs
for the Question Sequencing and Assessment models.

Assessment model target cleaning For each
target value t and chief-complaint c, the Bayesian lift
of t appearing given c was calculated, i.e. lift[t|c] =
P[t|c]
P[t] . Targets with a value lift[t|c] ≤ 2 were filtered
out.

Assessment model loss weighting Loss for each
output layer was weighted differently by performing
a random search, limited to 10 combinations, over
a 5% sample of the data, where each of the loss
terms (Ldiag, Lmed, Llab, and Limg) was weighted
by w ∈ {0.5, 0.9, 1.0, 2.0, 3.0}. The different weight
combinations were sorted by the PR-AUC of all four
output types, and the combination with highest rank
in its worst performing output type was selected.
The highest performing weighting function found was
L = 3 · Ldiag + Lmed + 0.9 · Llab + 0.9 · Limg.
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2.3. Question Sequencing model

Data cleaning Similarly to the assessment model,
question selection uses Bayesian lift to filter the tar-
get prediction. For ICD-10-CM diagnoses we calcu-
lated the Bayesian lift that a diagnosis t given the

chief-complaint ci.e. lift[t|c, a, s] = P[t|c]
P[t] . Target with

lift[t|c, a, s] ≤ 2 were filtered out. Furthermore, for
every cohort of chief complaint, age-bin, and sex,
we filtered out diagnoses and concepts that appeared
fewer than 100 times. For each cohort, we further
limited the input to the 1000 most-common concepts,
and limited the prediction targets to the 50 most-
common diagnoses (note that the assessment model,
which is used for the final differential diagnosis pre-
diction, does not have this limit).

Training ML question sequencing We use the
encounter data set (Section A.2) to train the ML
question sequencing model. For maximal inter-
pretability, appropriateness, and ability to handle
large feature spaces (> 1000 features per model) we
chose to train a random forest model for each com-
bination of chief complaint, age-bin, and biological
sex. The models were trained independently using
ST-CMS concepts and assertions (derived from NLP
on progress notes) as features and relevant ICD-10-
CM diagnoses as labels. ICD-10-CM diagnoses was
chosen as a prediction target because they offer a
broad proxy for patient disease states and are coded
by medical professionals for every encounter in our
data set. However, ICD-10-CM also introduce some
bias as coding behaviors may be influenced by reim-
bursement dynamics and compliance to certain stan-
dard of care guidelines (e.g. a patient with cough and
other upper respiratory issues may be coded as R05 or
J06.9 depending on whether the treating physicians
wants to prescribe antibiotics). The random forest
models are trained with 100 estimators, feature sub-
sampling of 10%, and a max depth of 15. The model
was implemented using sci-kit learn 0.23 (Pedregosa
et al., 2011) RandomForestClassifier algorithm.

Selecting next ML question At inference time
we take a vote from the random forest using Algo-
rithm 1. For every tree in the forest we traverse
the nodes until we find a ST-CMS concept for which
there is no assertion and extract the relevant ques-
tion qi. For each question we calculate a weight, wqi

that is the number of trees that are split on a concept
asked by qi. The candidate question is validated us-
ing two rules. First, we check in the knowledge base
(KB) if there is another question that should be asked

(for example, for chief complaint “foot problem” be-
fore asking “How long have you had ankle pain?” we
check for the presence of “ankle pain”). If the answer
to the prerequisite question is asserted as “absent”
then the weight of the target question is set to 0.
If the answer to the prerequisite question is asserted
as “certain” then the question will not be modified.
If the prerequisite question has not been answered
then an additional boolean flag decides if the prereq-
uisite question is first asked (e.g. question “How long
have you had ankle pain?” is replaced by “Do you
have ankle pain?”) or if the question can be asked
without changes. We then sum the weights of all
questions that are mapped to the same prerequisite.
Second, we check candidate questions for “inappro-
priate” questions (e.g. some insomnia sequences that
include sleep apnea may result in questions related to
coughing that physician subject matter experts de-
cided should not be asked). The highest weighted
question at the conclusion of all ML and rule-based
steps is then asked.

3. Results

3.1. Data sets

SmartTriage is built on historical EMR data from
two novel data sets. The first is based on a collection
of patient reasons-for-visit entries and the second is
based on a collection of primary care encounters. Fig-
ure A.1 shows how the data sets were acquired.

When a patient schedules an appointment online
they are prompted to enter a free-text reason-for-
visit. At the time of the encounter, a discrete chief
complaint is chosen by the intake personnel. The
combination of patient entered text, the discrete chief
complaint(s), and 1 year of patient history from the
EMR form the Patient-Reason for-Visit data set,
which contains 907,170 encounters involving 595,692
unique patients (see Appendix A.1).

During a primary care encounter a progress note
is typically generated containing the patient’s his-
tory of present illness, past medical history, a re-
view of systems, a physical exam, and an assess-
ment and plan. The encounter may also result in a
set of discretely coded outcomes such as ICD-10-CM
codes for diagnoses, medication prescriptions, and
laboratory or imaging orders. We use an in-house
developed natural language processing (NLP) engine
(Torii et al., 2015; Fan et al., 2013) to extract Unified
Medical Language System (UMLS) clinical concepts
from progress notes (Bodenreider, 2004). The UMLS
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Algorithm 1: Random forest voting

Input : Feature set X, random forest F
Output: Question candidates Q and their

weights W

1 Initialize Q,W ← ∅
2 foreach Decision tree e ∈ F do
3 Traverse e using features x ∈ X until

reaching node n that is either a leaf
node or cannot be split using X

4 if n is not a leaf node then
5 Let q be question to obtain feature

x that splits n
6 Q← Q ∪ {q}
7 end

8 Initialize Q̃← unique(Q)

9 foreach q̃i ∈ Q̃ do
10 wq̃i ←

∑
j

δ(qj , q̃i)

11 W ←W ∪ {wq̃i}
12 end

13 return Q̃,W

concepts were then further processed using our con-
tent authoring process (see 2.1) and mapped to pa-
tient and physician facing text. The extracted dis-
crete concepts, encounter outcomes, and 1 year of pa-
tient history from the EMR form the Encounters data
set, which contains 25,047,535 encounters involving
4,110,052 unique patients (see Appendix A.2).

3.2. Machine learning components

There are three machine-learning-based components
in SmartTriage. In order of operation, the Chief
Complaint (CC) model takes patient history as well
as a patient entered free-text reason-for-visit and gen-
erates predictions for the discrete chief complaint.
The Question Sequencing (QS) model uses the dis-
crete chief complaint, patient history, and patient
responses, to interactively ask a series of questions
with discrete response choices. Finally, the Assess-
ment model employs all of the collected information
to generate predictions for diagnoses as well as med-
ication, laboratory, and imaging orders.

3.3. Chief complaint extraction

Architecture A feed-forward neural network was
constructed to combine pre-trained free-text embed-
dings with patient age (discretized into age groups,

see groups in Table A.1), biological sex, and pa-
tient medical history. As multiple discrete chief
complaints can be extracted from a given patient-
generated reason-for-visit, the output of the model is
a one-vs-rest classification for 337 chief complaints.
We compared several different text embedding ap-
proaches and layer size parameters, for detailed re-
sults see Table 1. The best performing embedding
was a custom fine-tuned BERT model, Chief Com-
plaint (CC) BERT, which was trained on a portion
of the CC data set (anonymous citation). For detailed
network architecture see Figure D.2.

The CC model utilizes patients medical history
from encounters over the preceding 365 days. The
history is composed of 4 different channels: previ-
ous diagnoses (1,497 distinct values), prescriptions
(1,278), procedures (758), and chief complaints (954).
Data from each historic encounter were placed in the
four channels and channels with no relevant informa-
tion were filtered out. Each channel contained the
last 8 encounters with relevant information sorted
in ascending order by the encounter date. We zero
padded channels in cases where there were data from
fewer than eight encounters. We used a single layer
LSTM to combine medical history into a fixed sized
representation (see Figure 2a) Pham et al. (2017);
Rajkomar et al. (2018). The outputs of the recurrent
layers and the demographic embeddings were then
combined with the pre-trained free-text embeddings.

Text embedding We compared 6 different text
embedding models (see Table 1). Pre-trained models
for text embeddings were obtained from three pub-
licly available sources: BERT-base (Devlin et al.,
2019b), BioBERT (Lee et al., 2019), and Clinical
BERT (Alsentzer et al., 2019). In addition, we fine-
tuned a MD BERT model starting with Clinical
BERT, using both the masked language model and
the next sentence prediction task with 100 million
sentence pairs extracted from patient progress notes
(from encounters unrelated to the Chief Complaint
Dataset). We also fine-tuned Chief Complaint (CC)
BERT on the training portion of the CC Dataset,
starting from MD BERT, using the masked language
model prediction task. To generate BERT-based em-
beddings, we mean-pooled the last 4 layers, yielding
an embedding size of 3,072.

As a baseline, we also trained a version of the CC
model using TF-IDF embeddings. Pre-processing be-
fore TF-IDF vectorization included: (1) transforming
the text to lowercase; (2) removing standard English
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Table 1: Chief complaint model performance using various text embeddings

PR AUC ROC AUC nDCG

TF-IDF baseline 0.4365±0.0002 0.9203±0.0008 0.7070±0.0002
BERT base 0.4210±0.0004 0.9248±0.0007 0.6970±0.0003
BioBERT 0.4194±0.0017 0.9245±0.0005 0.6962±0.0009
Clinical BERT 0.4254±0.0011 0.9248±0.0003 0.6998±0.0010
MD BERT 0.4411±0.0006 0.9260±0.0003 0.7102±0.0003
CC BERT 0.4451±0.0005 0.9254±0.0004 0.7132±0.0004

language stop-words; (3) replacing all numbers with
the generic “#” symbol. The Penn Treebank (PTB3)
tokenizer implemented in NLTK (Bird et al., 2009)
was used to tokenize the text, and unigrams and bi-
grams were then computed. TF-IDF vectors were
created consisting of values for the 50,000 most com-
mon n-grams, with at most 0.5 document frequency
in the training set.

For each model, we generated 5 estimates by train-
ing in 5-fold cross validation. Resulting average and
standard deviation micro Precision Recall Area Un-
der the Curve (PR AUC), micro Receiver Operating
Characteristic Area Under the Curve (ROC AUC),
and Normalized Discount Cumulative Gain (nDCG)
values can be found in Table 1 (Zhang and Zhang,
2009; Järvelin et al.). In terms of PR AUC and nDCG
the best performing embedding was CC BERT, with
statistical significance (p < 0.001). MD BERT per-
formed slightly better than CC BERT in terms of
ROC AUC, though the difference between the meth-
ods was not statistically significant.

Finally, for the model that used CC BERT embed-
dings we performed hyper-parameter tuning to iden-
tify proper dropout rate and size for the feed-forward
layer after contactenating patient text, demographic
embedding, and medical history embedding, see Ta-
ble D.1. We found that while increasing the layer size
somewhat improved performance, the improvements
were minimal for layers larger than 500 units, thus
we used the 500 unit layer with dropout of 0.5 in our
final product.

Medical history contribution We examined the
effect of including patient medical history on CC
model performance by training models with up to 1
year of patient history. We found that both PR AUC
and nDCG increase slightly with inclusion history
(PR AUC without history 0.432, with one year his-
tory 0.445, nDCG without history 0.705, with history

0.713; see Figure 2) by training a baseline model with-
out the medical history input and embedding layers.
The impact of history was skewed, however, which
was revealed by looking at PR AUC changes achieved
for complaints containing free-text terms with preva-
lence greater than 1% (73 terms total). For each of
these terms we bucketed chief complaints containing
the relevant term and compared the PR AUC and
nDCG of both models. For 71 of the groups the model
with history over-performed in terms of PR AUC, and
66 of the groups over-performed in terms of nDCG.
The highest impact of patient history was seen in free-
text reason-for-visit containing words relating to pre-
vious encounters, such as “follow”, “appointment”,
“visit”, and “check” (see Figure 2), where improve-
ment is measured as Metric with history

Metric without history .

Subjective reviewer evaluation Because our
system produces chief complaints that are then pre-
sented back to patients, we needed to ensure that
only appropriate chief complaints are predicted. To
do this we performed a manual review on predictions
for 275 patient generated reason-for-visit. We em-
ployed 3 reviewers which were presented with the
patient text and SmartTriage generated chief com-
plaint predictions. The reviewers were presented up
to 5 predictions with a minimum model output score
of 0.05. They were prompted to holistically evaluate
the helpfulness of the predictions with the following
scoring rubric (Very helpful = 1, Helpful = 2, A little
helpful = 3, Not helpful = 4). The average rating
over all patient reason-for-visit was 1.7 ± 0.8 with
root mean square inter-reviewer disagreement of 0.5.
Of the 825 reviews (275 x 3) only 20 were marked
as “Not helpful” (see Figure 2 for full breakdown).
We also observed model performance as a function of
text length (Figure 2), where we found that the score
deteriorates for reasons > 100 character long. One
explanation for the deterioration is that long patient
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Figure 2: Chief Complaint model performance

reason-for-visit often contain multiple potentially un-
related complaints.

3.4. Question sequencing

Question sequencing occurs after the chief complaint
is established. By asking a series of structured and
ML-derived questions, SmartTriage captures patient
data that can be used to help generate the progress
note. Patient responses are also fed as inputs to the
assessment model. All questions and answers dis-
played to the patient are mapped to ST-CMS con-
cepts (see Section 2.1). Questions may be multi-
select, single-select, yes/no, drop-down (for duration
questions), and free-text. Each answer has an asser-
tion associated with it that is typically drawn from
{“certain”, “absent”, “unsure”}. For duration and
severity questions the assertions are ordinal (number
of days for duration and integer-scale between [0,10]
for severity).

Individual questions in SmartTriage are required
to be interpretable and appropriate. Interpretable
means that we can explain why each question was
asked based on previous answers and patient medical

history. Appropriate means that SmartTriage should
not ask questions whose answers could be inferred ei-
ther from patient history or from the set of previous
patient responses. To satisfy the appropriateness re-
quirement we use a combination of rules and machine
learning, both of which have available information on
the chief complaint, previously answered questions,
patient demographics, and 6-months worth of patient
medical history (previous chief complaints, diagnoses,
laboratory results, and medications; note that this
is different from the CC and the Assessment models
that use 1 year worth of patient medical history).

Architecture Schematic of the QS algorithm is
presented in Figure D.1. At every step the as-
serted ST-CMS concepts (features) are used to in-
fer additional asserted concepts via a rules engine.
For the full set of 337 covered chief complaints, the
initial rule-driven questions are stereotyped to col-
lect a thorough chief-complaint-relevant history of
present illness (HPI) with relatively minimal hard-
coded branching to cover biological sex differences,
timing variations, problem locations, etc. For a sub-
set of 269 chief complaints, after the rule-based HPI
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questions are exhausted ML-derived questions are
asked. The ML questions are subject to additional
“fixer” rules, and can extend the question sequence
up to a set number of total questions.

Figure 3: Question sequencing performance evalu-
ated on ICD-10-CM prediction task.

Medical history contribution We trained the
random forest models with and without patient med-
ical history. Both models achieved a very similar
micro ROC AUC with respect to ICD-10-CM pre-
dictions (0.747 with history vs. 0.737 without his-
tory, 1.3% difference). However, we found that pa-
tient medical history disproportionately affects per-
formance for older patients, with up to 7% higher
performance for patients older than 90 years old,
see Figure 3. We also compared the effect of his-
tory as a function of biological sex, and found that
both male and female patients have a similar de-
pendence on age, see Figure 3. To understand bet-
ter what drives the benefit provided by history, we
examined the ratio in ICD-10-CM prediction micro
ROC AUC with and without history for different

chief complaints. We found that chronic conditions
tend to have the highest improvement when includ-
ing patient medical history information (e.g. “blood
sugar problem” and “diabetes care management” im-
proved by ∼ 20%; “hypothyroidism”, “carpal tunnel
syndrome”, and “chronic pain” by ∼ 15%). Among
acute diseases the “bronchitis” and the “pneumonia”
chief complaints had the highest benefit from patient
history at ∼ 10%. Overall, medical history was more
impactful with older patients because they had more
available patient medical history and a larger chronic
disease burden.

3.5. Patient assessment

The Assessment model is the final ML model in the
SmartTriage workflow, and it uses all of the collected
information to predict the encounter diagnoses (1,240
distinct values) as well as medications (122), labora-
tory (291), and imaging (208) orders.

Architecture Inputs to the Assessment model are
comprised of the discrete chief complaint, patient de-
mographic data, answers from the QS model, and
patient medical history. The Assessment model itself
is a feed-forward neural network (Figure D) with an
LSTM based patient history embedding (Figure D).
Each of the inputs is embedded separately, and then
the embeddings are concatenated together. The com-
bined embbeding is passed through seven ReLU dense
layers of size 1024 with skip connections. The repre-
sentation returned from the second layer is used by
the four one-vs-rest logistic regression output layers.
Comparisons of different model types and architec-
tures are available in Table 2.

After a patient session with SmartTriage, the pa-
tient’s responses and history are provided to the As-
sessment model and diagnoses, medications, labs and
imaging orders are inferred. These inferences are fed
back into the EMR and appear as decision support
suggestions in the clinician workflow we designed for
SmartTriage. If a clinician agrees with a particular
diagnosis suggested, they may toggle it and the diag-
nosis will automatically be added to the set of current
encounter diagnoses. We do not currently support di-
rect ordering of medications, labs, or imaging studies
but that functionality is planned to be implemented
in the near future.
Medical history contribution The impact of pa-
tient medical history on the quality of the Assessment
model is depicted in Table 3. To generate these re-
sults, models with different periods of medical his-
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Table 2: Comparison of assessment model PR AUC, ROC AUC, and nDCG with different model types

Metric Target Logistic regression 1 hidden layer 7 hidden layers

PR AUC

Diagnoses 0.258 0.428 0.432
Medications 0.165 0.317 0.325
Labs 0.178 0.264 0.265
Imaging 0.068 0.187 0.190

ROC AUC

Diagnoses 0.894 0.977 0.979
Medications 0.946 0.988 0.989
Labs 0.925 0.943 0.944
Imaging 0.792 0.871 0.875

nDGC

Diagnoses 0.513 0.596 0.597
Medications 0.210 0.234 0.235
Labs 0.254 0.274 0.275
Imaging 0.110 0.124 0.124

Table 3: Comparison of assessment model PR AUC,
ROC AUC, and nDCG with different
lengths of patient medical history

Metric Target No history 180 d 365 d

PR AUC

Diagnoses 0.400 0.427 0.432
Medications 0.274 0.312 0.325
Labs 0.209 0.258 0.265
Imaging 0.105 0.174 0.190

ROC AUC

Diagnoses 0.978 0.979 0.979
Medications 0.988 0.988 0.989
Labs 0.933 0.943 0.944
Imaging 0.854 0.869 0.875

nDGC

Diagnoses 0.582 0.595 0.597

Medications 0.229 0.233 0.235
Labs 0.262 0.272 0.275
Imaging 0.115 0.122 0.124

tory were trained (no history, half a year of history,
and a full year of patient history). Across the board,
the assessment model incorporating patient medical
history information outperformed the model lacking
such information, with a lift of 8.0%, 18.6%, 26.7%,
and 80.9% in PR-AUC for diagnoses, medications,
labs, and imaging respectively.

4. Discussion

Here we have demonstrated SmartTriage, an auto-
mated system for engaging with patients virtually as
a pre-visit questionnaire in order to provide documen-
tation and decision support to their caregivers. Be-

cause SmartTriage was fully developed in-house, we
were able to address two large short-comings of con-
ventional symptoms checkers: (1) inability to utilize
patient historical information and (2) lack of integra-
tion with an EMR. SmartTriage currently encodes
up to a year of historical patient medical data, which
includes demographic information, previous encoun-
ters, diagnoses, medications, procedures, laboratory
results, and more. This information is used to avoid
asking questions whose answers are already known
(e.g. age, previous diagnoses), and uplifts the perfor-
mance of all ML components utilized in SmartTriage.
The ML components include the natural language un-
derstanding model for obtaining a chief complaint,
the question sequencing model, and the assessment
model for providing decision support.

Integrating with an EMR is crucial as it allows di-
rect feedback from health care providers, and helps
avoid unnecessary repetition for patients and gaps in
continuity of care. SmartTriage’s EMR integration
provides assurance that there is an easily understood
record of the patient’s interactions with the system
while supporting clinicians in their task of generating
documentation, orders, and diagnoses. Further dis-
cussion of the production integration is available in
Appendix B. Figure B.3, B.4 depict our main EMR
integration, with a specially built activity that allows
for manipulation of each reported patient response
(Figure B.3a) and clinical decision support (CDS) el-
ements (Figure B.4). Figure B.3b shows what our
documentation assistance looks like, with text writ-
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ten directly into the current progress note. The pa-
tient view of smart triage can be seen in Figure B.2.

To create our pilot version of SmartTriage, we
bootstrapped the system by using historical clini-
cal encounters as a proxy for patient interactions –
we extracted patient reportable symptoms from clin-
ical notes and employed the symptoms to stand in
for possible answers. While we were able to obtain
good decision support performance and clinically rel-
evant question sequences, we recognize that the re-
sponses provided by patients may differ significantly
from those in our training set in terms of interpreta-
tion (how the patient interprets the authored ques-
tion) and overall question density (how many posi-
tive and negative examples are generated compared
to the statistics found with NLP on clinical notes).
We plan to continually retrain the system utilizing
patient provided responses as more and more patients
go through SmartTriage.

Although the ML components of SmartTriage were
trained on healthcare data specifically from Southern
California, the SmartTriage system itself would likely
operate effectively in other health systems or regions.
A significant effort was made to create comprehensive
history of present illness rule-based (non-ML) ques-
tions to support documentation capture and quality
of care. The chief complaints chosen for the initial
version of SmartTriage are high frequency, primary
care related, and typically have common, high evi-
dence diagnostic and therapeutic outcomes. Consid-
ering the large volume of training data employed to
generate the ML components of SmartTriage, tailor-
ing the ML models to other systems or region spe-
cific populations would likely best be accomplished
by fine-tuning on top of the existing trained models.

As the name implies, SmartTriage is meant to
be a system for triaging patients. Our initial pi-
lots and short-term roll-outs are an intermediate step
to collecting the necessary ingredients for making
high-quality triage decisions possible. By provid-
ing questionnaires to patients who have a forthcom-
ing visit with a health care provider, we ensure that
their data are appropriately reviewed, allowing us to
learn how SmartTriage’s decision support performs in
real encounter situations. Currently, all patients go-
ing through SmartTriage see a medical professional
within 24 hours. Furthermore, as part of the EMR
activity we developed, we ask caregivers to indicate
what the most appropriate venue of care would have
been for the visit, including self-care, a phone or video
visit, an in-person primary care visit, urgent care, or

the emergency department. The triage and decision
support feedback will allow us to continually improve
the SmartTriage system and ultimately position it as
a tool for getting the right kind of care for the right
kind of patient at the right time.
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Appendix A. Data sets

A.1. Reason-for-visit data set

We developed a Patient-Reason-for-Visit data set
consisting of patient-generated reason-for-visit free-
text entries, discrete chief complaints, demographic
information, and patient historical information. The
data set was constructed similarly to (anonymous ci-
tation) but with the addition of one year of historical
information for each encounter. The data set was
collected from Kaiser Permanentepatients in South-
ern California who booked a Primary Care Physician
appointment through our web portal, between Febru-
ary 2018 and June 2020.

Patient medical history contained four informa-
tion types: previous chief-complaints (954 distinct
values), medications (1,276), diagnoses (1,497), and
procedures (758). Medical history was limited to
encounters that took place at most 365 days prior
to the current visit. For each information source,
the last 8 encounters containing relevant information
were kept. The mean number of historic encoun-
ters with previous chief-complaint information is 5.8,
where the mean number of chief-complaints per his-
toric encounter was 1.5. For historic diagnoses the
mean number of encounters with relevant informa-
tion was 6.4, and the mean number of diagnoses per
encounter was 2. For medication information there
were 3.6 encounters on average, where each encounter
contained 2 medications on average. For procedures
the mean number of historic encounters was 4.2, with
1.6 relevant procedures on average.

Of the 1,296,210 encounters retrieved, there were
1,139,585 unique text entries that were assigned
2,050,851 chief complaints (of which 2,362 were
unique). A subset of encounters had very generic
patient text or non-specific chief complaints, and we
used simple string matching to remove such examples.
The resulting data set consisted of 907,170 encoun-
ters for 586,254 members. There were 708,782 unique
free-text entries mapped to a total of 1,250,749 dis-
crete chief complaints, 1,701 of which were unique.
For our model development, we chose to classify a
subset of 337 high frequency chief complaints. The
median reason-for-visit text was 34 characters long,
with a median word count of 6 (4 without stop
words). For the reason-for-visit entries with addi-
tional free-text comments added by intake personnel,
we cropped out comments to enforce the 50 character
limit imposed by the web portal.

Among the patients in the final chief complaint
data set, 335,476 (57%) were female while 250,778
(43%) were male. The average age was 49 years old.
A full breakdown by age and sex can be found in
Tables A.1 and A.2.

The data set was split into a training set of 816,357
encounters and 90,813 test encounters such that the
two sets do not share the same patients or exact sen-
tence matches.

A.2. Encounter data set

To create the content for our platform we employed a
strategy that leveraged our organization’s large pa-
tient membership. The primary input knowledge
source was a set of 25,047,535 historical primary care
encounters with chief complaints, clinical notes and
patient demographics. Our output data source con-
sisted of the resulting ICD10 diagnoses, laboratory
orders, imaging studies, and medications that were
associated with the encounters.

The clinical notes we extracted are largely unstruc-
tured text documents that contain roughly the same
general categories of information - why the patient
was being seen, a brief medical history, a review
of systems and symptomatology, a focused physical
exam, an assessment, and a plan. To access these
critical elements of the patient’s presentation we pro-
cessed all of the notes to extract clinical concepts us-
ing an in-house developed NLP engine. The engine
incorporates, among other sources, the UMLS (Uni-
fied Medical Language System) terminology.

Each note yielded between 10-200 (or more) medi-
cal history items, symptoms, physical exam findings,
and some elements of patient social and family his-
tory. The NLP engine assigns every item a prob-
ability that it is present (positive) or absent (neg-
ative) and identifies the section in the note that
the item came from. For the purposes of Smart-
Triage we limited ourselves to considering items from
the Chief Complaint (CC), History of Present Illness
(HPI), Review of Systems (ROS), and Physical Exam
(PE) sections, and only considered positive or neg-
ative items where the classification probability was
>= 90%.
The resulting 25 million encounter records anno-

tated 4,110,052 patients with unique 2,900 chief com-
plaints and 24,472 ICD-10-CM diagnose codes. Ta-
bles A.3 and A.4 show the full breakdown of HPI,
medical history records, and clinical concepts by gen-
der and age group.
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Figure A.1: Diagram depicting how the patient reason-for-visit and patient encounter data sets are acquired.
For the patient reason-for-visit data set, a free-text reason is entered when the appointment is
scheduled. At the time of the encounter intake personnel choose a discrete chief complaint from
a structured list. For the patient encounter data set, we combine discrete outcomes coded by
the physician with NLP extracted concepts from clinical progress notes. Both data sets are
further bundled with patient history elements including previous chief complaints, diagnoses,
medications, laboratory results, and orders.

Table A.1: Age distribution of patients in the reason-for-visit data set. Percentage of total in parenthesis.

Age group # patients # encounters

0 - 1 15,050 (2.5%) 28,037 (3.1%)
2 - 15 49,356 (8.3%) 81,108 (8.9% )
16 - 20 14,178 (2.4%) 19,306 (2.1% )
21 - 29 98,496 (16.5%) 144,646 (15.9%)
30 - 39 121,733 (20.4%) 184,205 (20.3%)
40 - 49 89,399 (15.0%) 136,482 (15.0%)
50 - 59 81,047 (13.6%) 120,824 (13.3%)
60 - 69 75,059 (12.6%) 113,470 (12.5%)
70 - 79 37,867 (6.4%) 58,310 (6.4%)
80 - 89 11,347 (1.9%) 17,580 (1.9%)
90+ 2,160 (0.4%) 3,202 (0.4%)

Total 595,692 907,170

Table A.2: Biological sex distribution of patients in the reason-for-visit data set. Percentage of total in
parenthesis.

Biological sex # patients # encounters

Female 335,476 (57.22%) 534,940 (58.97%)
Male 250,778 (42.78%) 372,230 (41.03%)
Total 586,254 907,170
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Table A.3: Age segmented statistics for the encounters data set

Age Group Historical UMLS Concepts Severity & Duration HPI Concepts Total

2 - 15 18368(15.71%) 75458(64.53%) 21715(18.57%) 1398(1.20%) 116939
16 - 20 33699(18.25%) 113872(61.67%) 35489(19.22%) 1589(0.86%) 184649
21 - 29 47743(20.48%) 138151(59.25%) 45572(19.55%) 1684(0.72%) 233150
30 - 39 56880(21.25%) 155805(58.22%) 53195(19.88%) 1755(0.66%) 267635
40 - 49 65236(22.22%) 168297(57.33%) 58240(19.84%) 1794(0.61%) 293567
50 - 59 69826(22.63%) 176086(57.07%) 60807(19.71%) 1828(0.59%) 308547
60 - 69 72559(23.51%) 174957(56.69%) 59299(19.21%) 1823(0.59%) 308638
70 - 79 65289(23.19%) 161833(57.48%) 52653(18.70%) 1755(0.62%) 281530
80 - 89 49265(21.82%) 134266(59.45%) 40657(18.00%) 1641(0.73%) 225829
90 + 31415(20.09%) 96605(61.77%) 26882(17.19%) 1492(0.95%) 156394

Table A.4: Biological sex segmented statistics for the Encounters data set

Biological sex Historical UMLS Concepts Severity & Duration HPI Concepts Total

Female 286842(22.63%) 729148(57.53%) 242815(19.16%) 8517(0.67%) 1267322
Male 223438(20.14%) 666182(60.04%) 211694(19.08%) 8242(0.74%) 1109556

Appendix B. Production integration

SmartTriage is currently being piloted across the
Kaiser PermanenteSouthern California Region in vir-
tual visits (phone, video) as a pre-visit symptom
checker. If the pilot is successful, SmartTriage will
likely be rolled out widely throughout our health care
organization, impacting millions of patients. To en-
able production deployment, we had to build multiple
interfaces with existing enterprise systems. A high-
level interaction diagram is presented in Figure B.1.

ETL process for patient history Rather than
directly query the EMR, we maintain a local copy of
the discrete patient history information for members
in our geographic region. We refresh our copy (∼ 500
million rows) as a nightly extraction process.

Encounter start notification We extract all new
appointments every hour and send email notification
24 hours prior to the appointment. If the patient
does not engage within 3 hours of the appointment,
we send a text message to their mobile device.

Webapp API We implemented a custom REST
API to communicate with the enterprise web UI ser-
vice. When the patient clicks on the link in the email
or text message they are redirected to the the en-
terprise patient authentication service, and then pre-
sented with the patient view of SmartTriage (Fig-
ure B.2).

Figure B.1: Interaction overview diagram for Smart-
Triage. 1-2. Appointment is created,
SmartTriage extracts all new appoint-
ments once per hour. 3-4. SmartTriage
interacts with patient to obtain en-
counter specific information. 5. Smart-
Triage inserts patient assessment back
into the EMR. 6. Provider views patient
information and assessment 7. Further
actions by the provider and feedback on
SmartTriage are recorded.
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Inputting data back into the EMR We leverage
existing SOAP APIs to send the patient data back
into the EMR.

Provider facing interface We implemented a
custom UI in the EMR for the clinicians to inter-
act with the SmartTriage data, integrate into patient
chart, and provide feedback to the SmartTriage sys-
tem (see Figure B.3, B.4).

Daily reporting A daily reporting job is used to
extract clinician feedback and collect data for re-
training of the machine learning models.
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Figure B.2: Screen shots from the patient view of smart triage.
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Figure B.3: Provider view of SmartTriage. (a) The EMR activity is what the clinician sees when they open
the patient’s encounter. Each discrete piece of captured data is actionable. (b) The EMR note
is dynamically generated by the data in the EMR activity. Positive symptoms are in red.
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Figure B.4: Provider view of SmartTriage’s Assessment activity. Recommendations for encounter diagnoses,
medications, labs, and imaging studies are provided. Diagnoses can be directly added into the
current encounter.
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Appendix C. Content management system

Figure C.1: Screen shot of the content management system. Concepts can be grouped according to syn-
onymy and authored for the patient (“Translated concept”) and EMR (“Clinical name”). UI
components are built-in to help author meta-data for both the question as it appears to the pa-
tient (question type, stem, etc.) and as it appears to the EMR (component type, system name
or header name when applicable, etc.). The assertion status determines how the answer(s) to
the question is/are formulated when sent to the ML models.
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Appendix D. Machine Learning Component Architecture

Figure D.1: Schematic of a single round in the question selection process.

Table D.1: Chief complaint model performance on validation set comparing hyperparameters

Hidden layer size Dropout rate PR AUC ROC AUC nDCG

100 0.0 0.4356±0.0034 0.9242±0.0002 0.7086±0.0015
100 0.3 0.4311±0.0026 0.9263±0.0003 0.7045±0.0016
100 0.5 0.4084±0.0050 0.9245±0.0001 0.6897±0.0036
500 0.0 0.4423±0.0005 0.9226±0.0015 0.7105±0.0007
500 0.3 0.4535±0.0005 0.9307±0.0006 0.7169±0.0003
500 0.5 0.4508±0.0009 0.9326±0.0003 0.7151±0.0003
1000 0.0 0.4407±0.0001 0.9230±0.0013 0.7103±0.0001
1000 0.3 0.4505±0.0007 0.9325±0.0002 0.7152±0.0001
1000 0.5 0.4549±0.0001 0.9344±0.0001 0.7172±0.0001
2000 0.0 0.4406±0.0003 0.9246±0.0008 0.7104±0.0001
2000 0.3 0.4447±0.0006 0.9330±0.0022 0.7123±0.0002
2000 0.5 0.4535±0.0005 0.9351±0.0004 0.7169±0.0003
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SmartTriage

Figure D.2: Neural network components of SmartTriage a. Chief Complaint Model Architecture b. Assess-
ment Model Architecture c. Medical history embedding
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