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Figure 1: We propose a sequential sampling and reconstruction co-design framework for accelerated MRI that adapts to
a target during acquisition. Here, we visualize the sampling policy and final reconstruction of rotated knees in a single-coil
imaging setting with 8x acceleration (8x subsampling). The first four columns show the cumulative k-space measurements
selected by the proposed learned sampler (pink) in acquisition steps 1 through 4 (during a 4-step acquisition). The fifth column
shows the final image recovered by the proposed learned reconstructor, and the last column is the ground truth. This example
illustrates how our model has learned to adapt to different k-space distributions: the final sampling patterns in the fourth
column contain visible directional structure that aligns with the x-space power spectrum. Rotated anatomical images, such as
these rotated knee images, were not included in the training set (or quantitatively evaluated test set).

Abstract able to adapt during acquisition in order to cap-
ture the most informative measurements for a
particular target (Figure 1). Experimental re-
sults on the fastMRI knee dataset demonstrate
that the proposed approach successfully utilizes
intermediate information during the sampling

Accelerated MRI shortens acquisition time by
subsampling in the measurement k-space. Re-
covering a high-fidelity anatomical image from
subsampled measurements requires close coop-
eration between two components: (1) a sam-

pler that chooses the subsampling pattern and
(2) a reconstructor that recovers images from
incomplete measurements. In this paper, we
leverage the sequential nature of MRI mea-
surements, and propose a fully differentiable
framework that jointly learns a sequential sam-
pling policy simultaneously with a reconstruc-
tion strategy. This co-designed framework is
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process to boost reconstruction performance.
In particular, our proposed method can out-
perform the current state-of-the-art learned k-
space sampling baseline on over 96% of test
samples. We also investigate the individual and
collective benefits of the sequential sampling
and co-design strategies.

Keywords:  accelerated MRI, end-to-end
training, active acquisition, medical imaging.



1. Introduction

Magnetic Resonance Imaging (MRI) is a widely used
imaging technology for clinical diagnosis and biomed-
ical research. MRI is non-invasive, requires zero radi-
ation, and can result in images with strong tissue con-
trast and excellent quality. However, a central chal-
lenge of MRI is its slow acquisition process. Standard
MRI scans can take up to half an hour as measure-
ments in k-space are being collected, especially during
research studies (Zbontar et al., 2018). This long ac-
quisition time leads to high cost, patient discomfort,
and significant reconstruction artifacts when patients
move. Thus, there is strong motivation to accelerate
the MRI acquisition process.

One way to accelerate MRI is to collect fewer mea-
surements and reconstruct anatomical images from
only partial k-space data. This acceleration requires:
(a) a carefully designed k-space subsampling pat-
tern to collect informative measurements, and (b)
a reconstruction method that accurately recovers
high-quality images from undersampled data. Cur-
rent MRI protocols collect measurements over time
using static subsampling patterns that were designed
a priori. To further accelerate a scan, we are inter-
ested in sequential sampling patterns that adapt to
a target based on intermediate information collected
during acquisition.

A high-fidelity MRI reconstruction stems from co-
operation between the k-space sampling strategy and
the reconstruction method. Traditionally, MRI sub-
sampling patterns and reconstruction methods have
been largely independently designed. We are instead
interested in co-design, where jointly designing the
two components can synergistically boost reconstruc-
tion quality. Our approach builds on neural network
based co-design frameworks that have shown strong
empirical performance and take advantage of effi-
cient differentiable training (Bahadir et al., 2019; Sun
et al., 2020; Kellman et al., 2019a,b).

In this paper, we propose an end-to-end differen-
tiable framework that successfully combines co-design
and sequential sampling. Specifically, we design an
explicit sequential structure of T' steps, with each
step consisting of a jointly learned k-space sampler
and reconstructor. Comparing our model with prior
work in accelerated MRI, we investigate the individ-
ual and collective benefits of sequential sampling and
co-design. We evaluate the proposed model on the
NYU fastMRI datasets and find that: (1) even a
single sequential step consistently improves perfor-

mance compared to using a pre-designed sampling
pattern; (2) more sequential steps can improve recon-
struction quality, but with diminishing returns; and
(3) a fully differentiable approach enables more effi-
cient and effective co-design than non-differentiable
methods. Notably, despite various published works
on sequential sampling using reinforcement learn-
ing (Bakker et al., 2020; Pineda et al., 2020), we are
among the first to demonstrate consistent and sta-
tistically significant improvement over state-of-the-
art learned non-sequential baseline (Bahadir et al.,
2019) through the use of a fully-differentiable sequen-
tial computation graph.

The paper is organized as follows. In Section 2, we
review past literature in accelerated MRI from the
perspectives of co-design and sequential sampling. In
Section 3, we mathematically formulate the acceler-
ated MRI problem. We then introduce our proposed
framework and its training procedure in Section 4.
Section 5 presents our experimental settings, compar-
isons between our model and other baselines, and ab-
lation studies. Finally, we conclude with a discussion
on future directions of our framework in Section 6.

2. Related Work in Accelerated MRI

Prior work in accelerated MRI can be organized into
four quadrants, split across two dimensions: meth-
ods that (1) independently (and/or manually) design
the sampler and reconstructor versus data-driven co-
design, and (2) specify the sampling pattern prior
to a scan (pre-designed) versus adapt samples to the
target during acquisition. In Section 2, we cover tra-
ditional methods that independently (and/or manu-
ally) design the sampler and reconstructor. In Sec-
tion 2, we discuss previous methods that perform
pre-designed acquisition in a co-design framework.
In Section 2, we introduce recent work on sequen-
tial sampling for accelerated MRI. We conclude in
Section 2 with an overview of methods that attempt
to combine co-design and sequential sampling, but
without end-to-end learning. In this paper, we pro-
pose an end-to-end framework that efficiently com-
bines co-design and sequential sampling, successfully
inheriting the advantages of both approaches.

Traditional Methods Accelerated MRI sampling
patterns implemented on commercial scanners are
motivated by ideas in compressed sensing (CS)
(Candes et al., 2006). Since anatomical images are
sparse in a linearly transformed space, it is pos-
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sible to reconstruct a high-fidelity image with in-
coherent k-space data sampled below the Nyquist-
Shannon rate (Lustig et al., 2008). In the con-
text of 2D CS-MRI, prior work has investigated uni-
form density random sampling, variable density sam-
pling (Lustig et al., 2007), Poisson-disc sampling
(Vasanawala et al., 2011), continuous-trajectory vari-
able density sampling (Chauffert et al., 2014), and
equi-spaced sampling (Haldar et al., 2011). These
sampling patterns are easy to implement, but not
adaptive to specific datasets or target images.

Once sparse k-space measurements have been ac-
quired, an image is typically reconstructed via an op-
timization problem that involves two objectives: the
first encourages a reconstruction that matches the ob-
served data, while the second addresses the ill-posed
nature of the under-determined system through im-
age regularization. Common regularization terms in-
clude total variation (TV) (Bouman and Sauer, 1993)
and the ¢;-norm after a sparsifying transformation
(obtained using wavelets (Lustig et al., 2007; Shigian
Ma et al., 2008) or dictionary decompositions (Ravis-
hankar and Bresler, 2011b; Huang et al., 2014; Zhan
et al., 2015)).

Recently, convolutional neural networks (CNNs)
have demonstrated impressive performance in MRI
reconstruction. Strategies include unrolled networks
(Hammernik et al., 2017; Yang et al., 2016; Schlem-
per et al., 2018; Liu et al., 2021), UNet-based net-
works (Lee et al., 2017; Hyun et al., 2017), GAN-
based networks (Yang et al., 2018; Quan et al., 2018),
among others (Zhu et al., 2018; Liu et al., 2020; Wang
et al., 2016). These learning methods have achieved
state-of-the-art performance on public MRI challenge
datasets (Zbontar et al., 2018). In our proposed co-
design model, we employ a convolutional UNet for
image reconstruction.

Co-design The goal of co-design is to jointly iden-
tify the optimal sampling and reconstruction strate-
gies. This is an NP-hard combinatorial optimiza-
tion problem due to the discrete nature of the sam-
pling pattern. Theoretically, one could identify an
optimized reconstructor for every possible sampling
strategy, and then pick the overall strategy that per-
forms best. However, this brute-force optimization
approach is not practical, as it requires enumerat-
ing an exponential number of possible sampling com-
binations. Early work formulated the co-design as
a nested (or bi-level) optimization problem and al-

ternated between optimizing a sampler and a recon-
structor (Ravishankar and Bresler, 2011a).

More recently, deep learning has enabled a data-
driven solution to the co-design problem, where the
sampler and reconstructor can be jointly learned
through end-to-end training. For example, Bahadir
et al. (2019); Weiss et al. (2020b); Zhang et al.
(2020) proposed co-design frameworks for 2D Carte-
sian k-space sampling and Weiss et al. (2020a); Wang
et al. (2021) applied co-design to 2D radial k-space
sampling.!  These methods have shown superior
performance over previous baselines that combine
an individually-optimized sampler and reconstructor
pair (Bahadir et al., 2019; Weiss et al., 2020b; Zhang
et al., 2020; Sun et al., 2020; Wang et al., 2021). How-
ever, these methods do not take advantage of the
sequential nature of data collection during an MRI
scan, and only solve for a generic sampling pattern
for an entire dataset.

Sequential Sampling Since MRI scanners acquire
measurements over time, recent work has modeled
the sampling process in the context of sequential de-
cision making. Sequential decisions enable the sam-
pling pattern to adapt to different input images by
choosing the next k-space sample based on prior
measurements. Reinforcement learning (RL) meth-
ods have primarily been employed for this purpose.
For example, Bakker et al. (2020); Pineda et al.
(2020) formulate the sampling problem as a Partially
Observable Markov Decision Process (POMDP) and
use Policy Gradient (Baxter and Bartlett, 2001)
and DDQN (van Hasselt et al., 2016) methods, re-
spectively. These RL methods heavily rely on a
pre-trained reconstructor, which leads to a training
mismatch (and thus potentially suboptimal perfor-
mance), since the reconstructor was trained with a
sampling strategy that does not match the strategy
eventually employed by the RL-learned sampler. Fur-
thermore, these RL methods are difficult and costly
to train, as they are non-differentiable. As a con-
sequence, in the context of accelerated MRI, these
methods either fail to be adaptive to different input
images or have only limited improvement over simple
baselines (Bakker et al., 2020; Pineda et al., 2020).

Co-design & Sequential Sampling Approaches
that seek to combine co-design and sequential sam-
pling strategies have been proposed, however with

1. Differentiable co-design of discrete sensing and reconstruc-
tion methods has also been successfully applied to other
imaging domains as well (Sun et al., 2020).
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only limited success thus far. The work of (Jin et al.,
2019) draws inspiration from AlphaGo (Silver et al.,
2016) and trains a sampler to emulate the policy
distribution obtained through a Monte Carlo Tree
Search (MCTS); the reconstructor is trained during
alternating optimization steps. However, according
to the results in (Bakker et al., 2020), the MCTS
method in (Jin et al., 2019) has limited improvement
over simple baselines, and is outperformed by the se-
quential sampling method in (Bakker et al., 2020)
without co-design. This poor performance may be
due to the overall MCTS framework not being end-
to-end differentiable. Alternatively, (Zhang et al.,
2019) proposes a framework that trains a ResNet
to reconstruct the anatomical image simultaneously
with an evaluator network that is trained to select the
most uncertain measurement in k-space. Although
the authors demonstrate how this framework can be
used to sequentially choose the next sample, it is
not explicitly trained end-to-end and is outperformed
by (Pineda et al., 2020), which does not use co-design.
This training-testing mismatch limits the potential
improvement of sequential sampling. In contrast,
we design a fully differentiable end-to-end framework
that leverages the sequential nature of k-space MRI
acquisition during both training and testing.

3. MRI Fundamentals

MRI acquires measurements in the Fourier space (i.e.
k-space). Let y € CM*N be the complex-valued ma-
trix representing the full k-space data of an M x N
target image x € RM*N_ In the case of no noise,
the true image can be simply recovered through an
inverse Fourier transform: x = F~1(y). However, in
accelerated MRI scanning, only a subset of k-space
samples, ¥, are measured:

y=Moy=Mo F(x), (1)
where © indicates element-wise multiplication and
M € {0, 1}M*N is a binary sampling mask.

We can compute a zero-filled image reconstruc-
tion by applying an inverse Fourier transform to the
under-sampled k-space, where zeros occupy the un-
observed s-space samples: & = F~1(§). This zero-
filled reconstruction contains aliasing artifacts, and
a reconstruction algorithm is often used to recover a
clean target image (Bahadir et al., 2019; Zhang et al.,
2019; Bakker et al., 2020; Hammernik et al., 2017;
Wang et al., 2016). We define the acceleration factor

« as the ratio between the total number of possible
k-space samples K and the number of acquired mea-
surements (i.e., « = K/> M).

4. Method

Figure 2 summarizes the co-design framework for our
sequential sampling and reconstruction model. We
partition the x-space sampling budget into T' steps.
In this paper, a model with T' sequential steps is de-
noted as “T-Step Seq”. At each step, t, the pipeline
applies a reconstructor, A, (), and a sampler, my(-).
The goal of the reconstructor is to remove aliasing
artifacts that appear in the zero-filled reconstruction,

' ()

The goal of the sampler is to intelligently select which
k-space samples to observe next, based on previ-
ously observed measurements and a preliminary re-
construction:

)Et == Aw ()A(t)

Mt-i-l ~TY (yta yta Mt)

3

s.t. Z (Mt-‘rl - Mt) =5 ( )
where §; and y; = F(X:) denote the k-space rep-
resentation of the zero-filled image (X:) and the re-
constructed image (X;), respectively, M; is a binary
mask representing the sampling pattern collected up
until step ¢, and S is the sampling budget at each
step.

We model the sampler, my(-), and reconstructor,
A (+), as neural networks, and co-optimize the net-
work weights, 6§ and w, by minimizing the image re-
construction error between the final step reconstruc-
tion X7 and the ground truth target image x:

0", w* = arg%liqle(iT,x), (4)
where D is an image distance metric, such as the
structural similarity index measure (SSIM) (Wang
et al., 2004) or peak signal-to-noise ratio (PSNR). We
choose to share sampler and reconstructor weights
across all T' steps. The sampler and reconstructor
are described in more detail in Sections 4.1 and 4.2,
respectively.

4.1. Sampler

In the design of the sampler my(-), following prior
work, we consider two types of k-space sampling:
1D line sampling and unconstrained 2D point sam-
pling (Bahadir et al., 2019; Bakker et al., 2020; Zhang
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Figure 2: Overview of the proposed sequential sampling framework. Low-frequency samples are pre-selected and
measured in k-space. The subsampled k-space is transformed into a zero-filled image, which is fed into a reconstruc-

tor Aw(-) to produce an intermediate image reconstruction (Equation (2)).

The intermediate reconstruction and

measurements are passed into a sampler network 7y (-), which outputs a discrete probability distribution representing
suggested samples for the next iteration. An action is sampled from this distribution (Equation (3)), and the corre-
sponding k-space measurements are acquired. The sampling and reconstruction process is repeated for T' steps. The
sampler and reconstructor are neural networks learned via end-to-end training with a loss on the final reconstructed

image. Weights are shared across all T" acquisition steps.

et al., 2019; Zbontar et al., 2018). Figure 3 illus-
trates these two sampling scenarios, which enable dif-
ferent levels of sampling flexibility. 1D line sampling
represents one of the most widely used k-space sam-
pling strategies on commercial scanners due to its fast
acquisition time (Lustig et al., 2007). In 2D point
sampling any measurement on the M x N frequency
grid in k-space can be acquired. Unconstrained 2D
point sampling represents an upper bound on sam-
pling flexibility and is often explored as a method-
ological building block. We note that our sequential
sampling framework is generic and applicable to other
patterns, such as radial sampling (Block et al., 2007).

1D Line Sampling

Pre-selected
Measurements

DC

Figure 3: Visualizations of two types of k-space sampling
patterns: 1D line sampling and 2D point sampling. White
regions are sampled from a uniform distribution over the
space of possible actions. The center low-frequency sam-
ples are pre-selected in all experiments before any further
sampling. DC corresponds to the (0,0) frequency.

As low-frequency k-space measurements contain
the most information about large-scale anatomical
structure, it is common practice in accelerated MRI
to fix a small number of low-frequency k-space sam-
ples to always be collected (Zhang et al., 2019; Bakker
et al., 2020; Pineda et al., 2020). We follow this strat-
egy by allocating % of the total sampling budget to
the central low-frequency region in all experiments.

Neural Sampler Architecture The action space
at each step ¢ is the set of possible sampling indices
(i.e., K = N in the line sampler and K = N x M
in the point sampler). As shown in Equation (3),
the input to the sampler is the past k-space mea-
surements, y;_1, k-space reconstruction, y;_ 1, and
sampling mask, M;_;. The output is a binary sam-
pling mask M; € {0,1}*. New samples acquired at
time step ¢ are indicated by M; — M;_;.

To enable exploration of the sampling xk-space, an
intermediate output of the network-based sampler is
a heatmap P; € [0, 1]K, which defines the probablity
that a sample will be selected at acquisition time t.
In order to ensure that P; is between 0 and 1, a soft-
plus and normalization are applied.?2 Additionally, to
avoid reacquiring previous measurements, the sam-

2. To help enforce the sampling budget constraint in Equa-
tion (3), Py is also rescaled to obtain the desired average
value following Bahadir et al. (2019).
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pling probability of previously acquired lines is set to
Zero:

P, =P, ®(1-M;1) (5)

Inspired by the stochastic strategy in Bahadir et al.
(2019), we sample from the distribution P} to obtain
the k-space sampling mask M; for acquisition step t:

(6)

where U is a vector of IV independent realizations of
the uniform distribution on the interval [0, 1]. We use
rejection sampling to guarantee the exact number of
specified k-space samples is obtained at each step t.

The indicator function 1y<p is not differentiable,
which hinders the training of the model through back-
propagation. In this paper, we follow Bengio et al.
(2013); Zhang et al. (2020) and use a straight-through
estimator that applies the indicator function in the
forward pass to generate the binary sampling mask
M, 11, while approximating its gradients by treat-
ing the binary indicator function as a sigmoid during
back-propagation. In this way, we are able to capture
binary sampling in real MR scanning, while retaining
useful gradients for end-to-end training.

We instantiate the 1D line sampler as a Multi-
layer Perceptron (MLP) with five layers separated
by ReLU activation functions. In the 2D point sam-
pler we replace the MLP with a 8-block convolutional
UNet network design with ReL'U activation functions.
We find the convolutional architecture more efficient
on the higher dimensional action space. Further de-
tails of the network architectures for both samplers
are included in Appendix A.

M; = ly<p; + My,

4.2. Reconstructor

Our proposed co-design sequential framework learns
the parameters of a reconstructor, A,,(+), jointly with
the sampler. The only requirement for the recon-
structor is that it is differentiable with respect to pa-
rameters w. We model the reconstructor as a neu-
ral network. Although many networks have been
proposed for MR image reconstruction (Hammernik
et al., 2017; Schlemper et al., 2018; Yang et al., 2016;
Sriram et al., 2020), in this paper, we adopt a stan-
dard 8-block U-Net architecture (Ronneberger et al.,
2015) following Bahadir et al. (2019); Bakker et al.
(2020); Zbontar et al. (2018). The input to the re-
constructor at each time ¢ is the complex-valued zero-
filled image, X;, and the output is a single channel
real-valued image, X;. The UNet reconstructor con-
tains four downsampling blocks and four upsampling

Acceleration 4x 8% 16 x

Random 90.40 £ 0.02 87.43 £ 0.05 84.25 £ 0.00
Spectrum 92.39 £ 0.01 90.38 £ 0.01 88.37 £ 0.01
LOUPE 92.44 4+ 0.01 90.60 £ 0.03 88.73 £ 0.04
Ours 92.91 + 0.01 91.07 £+ 0.02 89.10 £+ 0.03

Table 1: SSIM comparison of 2D point sampling for 4x,
8x, and 16X accelerations. Our 4-step sequential model
outperforms the previous approaches when tested on the
fastMRI knee test set. For each model, we compute the
test average and standard deviation obtained across three
trained models with independent initialization.

blocks, each consisting of two 3x3 convolutions sepa-
rated by ReLU and instance normalization (Ulyanov
et al., 2016). Our framework is agnostic to the spe-
cific reconstructor architecture.

5. Experimental Results

5.1. Setup and Implementation Details

We evaluate our sequential sampling and recon-
struction method on the NYU fastMRI open
dataset (Zbontar et al., 2018)3. The dataset provides
RAW single-coil k-space measurements for knee im-
ages, with 973 training set volumes and 97 validation
set volumes (Zbontar et al., 2018). We follow the
setup of (Pineda et al., 2020) and split the original
validation set into a new validation set with 48 vol-
umes and a test set with 49 volumes, which results
in 34,742 2D slices for training, 1,785 slices for vali-
dation, and 1,851 slices for testing. To save on com-
putation, we crop the k-space to the center 128x 128
region, as is done in Bakker et al. (2020); Zhang et al.
(2019).

We use the structural similarity index mea-
sure (SSIM) for our model’s training loss and primary
evaluation metric, following Sriram et al. (2020);
Pineda et al. (2020); Bakker et al. (2020). The
SSIM metric has been found to correlate well with
expert evaluations (Knoll et al., 2020). SSIM is com-
puted using a window size of 7x7 and hyperparme-
ters k1 = 0.01, ko = 0.03 following the fastMRI chal-
lenge’s official implementation. We use the Adam op-
timizer (Kingma and Ba, 2014) and train our model
for 50 epochs with a learning rate of le — 3 for 2D
point sampling experiments and 5e — 5 for 1D line
sampling experiments. The learning rate is decreased
by half every ten epochs. Training each model takes
at most one day on a single RTX 2080Ti GPU.

3. https://fastmri.org/
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4-Step Seq. (Ours) Ground Truth

4x Reconstructions

Figure 4: Visualizations of example reconstructions with an 4x acceleration for 1D line sampling. Two zoomed-in
image patches are shown along with the cumulative k-space measurements selected by each policy. Our sequential
approach often provides more accurate reconstructions with detailed local structures. More visualizations are included
in the Appendix D.
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Figure 5: Histograms of pair-wise SSIM differences between our sequential models and LOUPE (Bahadir et al., 2019)
on all 1,851 test images. Positive numbers indicate improvement over LOUPE. The results are acquired by averaging
three runs of 4x accelerated 2D point subsampling. More sequential steps lead to a bigger advantage over LOUPE,
with the 4-step sequential model outperforming LOUPE on 96.96% of samples. This performance pattern holds for
the 1D line scenario and other acceleration factors as well, as shown in Appendix C. More quantitative results are
given in Table 3.

5.2. Results 2D Point Sampling Table 1 includes the quanti-
tative comparisons between our method and other

In Figure 1, we visualize our framework’s sequential baselines for 4x, 8x, and 16x accelerations. We

sampling masks and final reconstruction for rotated
knees in the 8x acceleration setting. Starting from
pre-selected measurements, our model sequentially
samples 2D k-space measurements based on previous
observations. Here, we demonstrate that our model is
able to accurately estimate and leverage the k-space
structure during the sequential sampling steps. In
particular, the final sampling patterns contain visible
directional structures that align with the true k-space
power spectrum induced by knee rotation. This high-
lights the adaptivity of our sequential model, as no
rotated anatomical images were included in the train-
ing set.

consider the following baselines: (1) Random (Gam-
per et al., 2008): randomly select points from a
uniform distribution, (2) Spectrum (Vellagoundar
and Machireddy, 2015): select points with the
largest k-space magnitude over the training set, (3)
LOUPE (Bahadir et al., 2019): select points prior to
acquisition using a distribution learned via co-design.
In each baseline, the reconstruction network has been
trained with the specified sampling policy. Please re-
fer to Appendix B for the implementation details of
these baseline methods. Our 4-step sequential model
achieves the best reconstruction performance across
different acceleration ratios. A paired t-test between
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Methods Random Equispaced

Evaluator

PG-MRI LOUPE 4-Step Seq. (Ours)

SSIM 85.95 + 0.05 86.86 £ 0.06

85.99 + 0.04

87.97 £ 0.09 89.52 £ 0.02 91.08 £+ 0.09

Table 2: The SSIM comparison of 1D line sampling with a 4x acceleration factor. Our 4-step sequential model
outperforms the previous approaches when tested on the fastMRI knee test set. A paired t-test shows a statistically
significant difference between our 4-step sequential model and LOUPE (Bahadir et al., 2019), with a p-value smaller

than 10739,
models with independent initialization.
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97 -T-- 1D
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Figure 6: Comparison between our sequential model and
the LOUPE model on the fastMRI knee test set. Our
sequential model outperforms LOUPE for all accelera-
tion ratios with an improvement comparable to 25% of
the benefit of doubling the number of k-space measure-
ments. The performance of our sequential model in the
1D line sampling case significantly outerforms LOUPE
but plateaus after 2 sequential sampling steps, possibly
due to the restricted action space of 1D line sampling.
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Figure 7: Histograms of pair-wise SSIM comparison on
all 1,851 test images with a different number of sequen-
tial steps (7'), using 2D point sampling with a 4x accel-
eration factor. The relative error between the 4-step and
1-step (left) or 2-step(right) demonstrates that additional
sequential steps help to boost performance, but with di-
minishing returns as T increases.

our method and the previous state-of-the-art pre-
designed sampling approach, LOUPE (Bahadir et al.,
2019), indicates a statistically significant difference in
performance, with a p-value less than 107169 for all
acceleration ratios. By inspecting Figure 6, one can

For each model, we compute the test average and standard deviation obtained across three trained

see that our 4-step model outperforms LOUPE for
all acceleration ratios, with an improvement compa-
rable to 25% of the benefit of doubling the number of
K-space measurements from 8x to 4x.

1D Line Sampling Table 2 compares our model
to previous methods for the 1D line sampling with
a 4x acceleration factor. The baselines we con-
sider include: (1) Random: randomly select &-
space lines from a uniform distribution, (2) Equis-
paced (Haldar et al., 2011): select equidistant lines,
(3) Evaluator (Zhang et al., 2019): sequentially se-
lect lines following a learned evaluation function, (4)
PG-MRI (Bakker et al., 2020): sequentially select
lines using conditional distribution trained by a pol-
icy gradient algorithm, (5) LOUPE (Bahadir et al.,
2019): select lines prior to acquisition using a dis-
tribution learned via co-design. The implementa-
tion details of these baselines are included in Ap-
pendix B. Our 4-step sequential framework signif-
icantly outperforms prior methods, with an SSIM
improvement of roughly 1.6 over the previous state-
of-the-art learning-based method, LOUPE (Bahadir
et al., 2019). A paired t-test also indicates a highly
statistically significant boost in performance com-
pared to LOUPE with a t-score of 64.01 and a p-value
smaller than 1073%°, Note that our differentiable
end-to-end framework also significantly outperforms
a sequential reinforcement learning optimization ap-
proach, PG-MRI (Bakker et al., 2020).

Figure 4 shows sample images reconstructed using
the approaches mentioned above. Using the same
number of k-space samples, our 4-step sequential
model most accurately recovers important anatom-
ical structures and details. The orange and blue
patches under each reconstruction highlight certain
regions where our method significantly outperforms
other baselines.

Adaptive versus Pre-designed Sampling Fig-
ure 5 shows histograms of pair-wise SSIM differ-
ences on each test sample, computed between our
sequential method and the previous state-of-the-art
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LOUPE. Here we introduce a non-sequential baseline
referred to as “non-seq,” which uses the same network
architecture as our sequential model but replaces the
prior k-space measurements used as input with a ran-
dom tensor. The “non-seq.” baseline demonstrates a
performance comparable to LOUPE in Figure 5, Fig-
ure 6, and Table 3. However, more sequential steps
consistently lead to an higher percentage of improved
samples. Thus we can conclude that the improvement
is not merely due to a better framework architecture
but the adaptive sampling strategy of our approach.

Number of Sequential Steps We further ablate
the impact of the number of sequential steps. For
the case of 2D point sampling (Figure 6), the ac-
curacy consistently increases as the number of se-
quential sampling steps increases. To further under-
stand the improvements seen with additional sequen-
tial steps, we perform a pair-wise SSIM comparison
between our sequential models; Figure 7 shows the
result of 2D point sampling with a 4x acceleration
ratio. Additional sequential steps boost the recon-
struction performance for almost all subjects, with
diminishing returns as T increases. Table 3 shows
quantitative results that compare the percentage of
test samples that outperform the LOUPE baseline.
On 2D point sampling, our 4-step sequential model
outperforms LOUPE roughly 97%, 89%, and 77% of
the time for the 4x, 8x and 16x acceleration factors,
respectively.

Co-design Ablation We demonstrate the advan-
tage of co-designing the sampler and reconstructor in
Table 4. Specifically, we pre-train a reconstructor us-
ing a uniform sampling policy and demonstrate the
improvement in performance that occurs when jointly
learning the reconstructor weights with the sampler.
Co-designing the reconstructor with the sampler sig-
nificantly improves performance, with an increase of
2.33-2.51 SSIM for 2D point sampling with a 4x ac-
celeration factor.

6. Conclusion

Accelerating the MRI acquisition process has the
potential to reduce patient discomfort, increase
throughput, and expand the use of MRI worldwide.
In this paper, we have proposed an end-to-end se-
quential sampling and reconstruction framework for
accelerated MR imaging. We leverage the sequen-
tial nature of MRI acquisition and design a model
with explicit sequential structure that jointly opti-
mizes a neural network-based sampler simultaneously

Acceleration 4x 8% 16 x

Non-Seq. 74.05 £ 2.56 60.18 & 3.03 46.98 + 8.58
1-Step Seq. 77.42 £ 7.89 57.05 + 4.36 51.09 + 4.16
2-Step Seq. 88.74 + 0.45 83.04 £+ 3.78 56.42 £ 4.62
4-Step Seq. 96.96 + 0.73 92.62 + 0.46 76.91 + 2.29

Table 3: The percentage of test samples that outperform
the LOUPE (Bahadir et al., 2019) baseline, demonstrat-
ing the performance of our framework as a function of
the number of sequential sampling steps (7') for 2D point
sampling. The percentage average and standard devia-
tion are obtained using results from three trained models
with independent initialization.

Co-design 1-Step Seq. 4-Step Seq.
Yes 92.66 + 0.06 92.91 + 0.01
No 90.33 + 0.01 90.40 £+ 0.02

Table 4: Ablation results showing the advantage of co-
design with a 4x acceleration ratio and 2D point sam-
pling. When co-design is specified as “Yes” the recon-
struction network has been jointly optimized with the
sampler. Otherwise, the sampler was optimized with a
fixed reconstructor that was pre-trained with a random
sampling policy.

with a network-based reconstructor. In our experi-
ments, this simple framework outperforms previous
state-of-the-art MR sampling approaches for up to
nearly 97% of the test samples on the fastMRI single-
coil knee dataset. In the future we plan to expand
our general framework to handle more realistic ex-
perimental settings. In particular, by replacing our
discrete 2D sampler with one that samples from a
continuous 2D trajectory space, we can model more
complex but feasible trajectories. Other future di-
rections include incorporating uncertainty quantifica-
tion (Zhang et al., 2019; Sun and Bouman, 2020) and
integrating with tasks such as anatomical registra-
tion (Balakrishnan et al., 2019) or image segmenta-
tion (Hesamian et al., 2019) to arrive at more unified
end-to-end frameworks. Overall, our results suggest
that future methods for MRI sampling can benefit
from the collaboration of sequential sampling and co-
design via end-to-end learning.
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Appendix A. Model Architectures

A.1. Reconstructor

In Figure 8, we provide the network diagram for
the reconstructor. As stated in the main paper, we
use the standard U-Net architecture following Ba-
hadir et al. (2019); Zbontar et al. (2018); Bakker
et al. (2020). The input to the reconstructor is the
complex-valued zero-filled image, and the output is
a single channel real-valued image. The initial con-
volutional layer has 64 channels, which are doubled
after every downsampling layer. The reconstructor
uses skip-connections, depicted as white horizontal
arrows, that concatenate feature maps at different
levels for easier optimization.

A.2. Samplers

Figure 9 shows the detailed architecture of our neu-
ral samplers. On the top, we show the sampler ar-
chitecture for 1D line sampling setting, which is a
five-layer Multilayer Perceptron with 512 channels in
the hidden layers. The input to the sampler includes
past k-space measurements, y;, x-space reconstruc-
tion, y;, previous sampling mask, M;, and a uniform
random matrix U. The output is a binary sampling
mask M, generated through stochastic binarization
with the random matrix U. The bottom shows the
2D point sampling architecture. For the 2D setting,
the sampler uses a U-Net architecture (Ronneberger
et al., 2015). Inputs and outputs are the same as the
1D line sampler.
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Structure of the Reconstructor, 4,(:), in the Proposed Framework
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reconstructor for all of our models.
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Structure of the 1D Sampler, mg(+), in the Proposed Framework
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and output a heatmap which is rescaled and binarized into the final sub-sampling mask at the next iteration.
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Appendix B. Baseline Details
B.1. Random

Uniform random undersampling is a widely used &-
space sampling pattern that utilizes stochastic under-
sampling for creating incoherent artifacts that can
be easily recognized and removed through post-
processing techniques (Gamper et al., 2008). In our
implementation, we first pre-select the central low-
frequency k-space region and then uniformly sample
from the remaining lines or points until exhausting
the sampling budget. We pair this sampler with a U-
Net reconstructor trained with this random sampling
pattern for 50 epochs. The reconstructor architec-
ture and training schedule are the same as those of
our sequential models.

B.2. Equispaced

Equispaced undersampling is another widely used 1D
line sampling baseline (Zbontar et al., 2018). Lines
are sampled equidistantly from each other with an
offset to achieve the desired sampling budget. We
chose the equispaced baseline due to its ease of imple-
mentation on existing MRI scanners (Zbontar et al.,
2018).

B.3. Spectrum

Spectrum is a data-driven x-space sampling approach
introduced in Vellagoundar and Machireddy (2015).
The spectrum method utilizes the fact that k-space
samples with higher power often contain more infor-
mation about the image’s large-scale structure. To
identify the k-space samples, we average the magni-
tude spectrum of all fully-sampled k-space data in the
training set.We then select samples with the largest
average power, which will form the final subsampling
mask. We pair this sampler with a U-Net reconstruc-
tor trained using measurements acquired according
to this learned sampling pattern.

B.4. LOUPE

LOUPE (Bahadir et al., 2019) is the state-of-the-art
single-shot sampling method. It jointly optimizes an
undersampling pattern along with an image recon-
struction network. We follow the official implemen-
tation in Bahadir et al. (2019) but replace the bina-
rization function in the subsampling mask generation
with a straight-through estimator following Bengio

et al. (2013); Zhang et al. (2020). The same modifi-
cation is applied to our method as described in Sec
4.1. The reconstructor architecture and other hyper-
parameters are the same as those of our sequential
methods.

B.5. PG-MRI

PG-MRI (Bakker et al., 2020) formulates the k-space
sample selection as a partially observable Markov de-
cision process and learns a sequential sampling pol-
icy using the policy gradient algorithm (Baxter and
Bartlett, 2001). According to their evaluations, PG-
MRI outperforms multiple baseline approaches, in-
cluding uniform random (Gamper et al., 2008), equi-
spaced sampling (Zbontar et al., 2018) and another
Monte-Carlo tree search based reinforcement learn-
ing approach (Jin et al., 2019). We use the author’s
official code for our implementation. The reconstruc-
tor is pre-trained using the uniform random policy.
We then plug the pre-trained reconstructor into the
pipeline to evaluate the image reconstruction reward
for sampling policy training. All other hyperparame-
ters are the same as the original paper (Bakker et al.,
2020).

B.6. Evaluator

Zhang et al. (2019) proposed a greedy acquisition
framework that trains a ResNet to reconstruct the
anatomical image simultaneously with an Evaluator
network trained to select the most uncertain mea-
surements in k-space. As there is no official code
available for Zhang et al. (2019), we use the reimple-
mentation in Pineda et al. (2020). The reconstructor
uses a cascade ResNet architecture with four cascade
blocks, each composed of three residual bottleneck
layers (He et al., 2016) followed by a data consis-
tency layer (Schlemper et al., 2018). The evaluator
contains four convolutional blocks, and each consists
of a 4 x 4 convolution, instance normalization, and a
LeakyReLU activation layer (Maas et al.). We use a
batch size of 128 and train the model for 200 epochs
with a learning rate of le — 4 using the Adam opti-
mizer (Kingma and Ba, 2014).
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Figure 10: Histograms of pair-wise SSIM differences on all 1,851 test images using 1D line sampling with 4x
acceleration factor. We calculated the improvement of our model with different sequential steps over LOUPE.
Our sequential model and non-sequential baseline significantly outperform LOUPE for most subjects.
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Figure 11: Histograms of pair-wise SSIM differences on all 1,851 test images using 1D line sampling with
4x acceleration factor. We calculated the improvement of the Evaluator (left), PG-MRI (middle), and our
best sequential model (4-step sequential) (right) over LOUPE. Our 4-step sequential model significantly
outperforms LOUPE, while the other two baselines are substantially worse than LOUPE for most subjects.

Appendix C. Further Analyses C.2. Pair-wise Comparison for 2D Point
Sampling
C.1. Pair-wise Comparison for 1D Line

. In Figure 12, we show the SSIM improvement distri-
Sampling

bution for different methods compared to the LOUPE
baseline. The histograms across each row show that,
for all three accelerations factors, the non-sequential
) ) ) model has marginal improvement over the LOUPE

Figure 10 and Figure 11 show the SSIM improve- paceline: in contrast, our sequential model signifi-
ment distribution on the test set. Here, we com- antly outperforms LOUPE as we increase the num-
pare our method with the previous sequential sam- .. of sequential sampling steps. By inspecting Fig-
pling approach Evaluator (Zhang et al., 2019) and ;6 12 down each column, our models demonstrate
PG-MRI (Bakker et al., 2020) by measuring their im- increasingly larger advantages over LOUPE as the

provements over the state-of—thf)—&f‘ﬁ single-shot sam- ). her of sampled measurements increases from 16x
pling baseline LOUPE (Bahadir et al., 2019). Our ¢, 4 (i.e. the acceleration factor decreases).

model outperforms LOUPE for 97.19% of the tar-
gets while both previous sequential sampling base-
lines perform substantially worse than the LOUPE
baseline, with only 1.58% and 5.64% of the subjects
outperforming LOUPE for Evaluator and PG-MRI,
respectively. This highlights the importance of com-
bining co-design and sequential sampling in an end-
to-end fashion for MR k-space sampling.

We report extended pair-wise SSIM comparisons for
1D line sampling on the test set.
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Figure 12: Histograms of pair-wise SSIM differences on all 1,851 test images using 2D line sampling with
4x (first row), 8x (second row), and 16x (third row) acceleration factors. We calculated the improvement
of our model with different sequential steps over LOUPE in each column. For all three acceleration factors,
our sequential model outperforms the non-sequential baseline and LOUPE on an increasing percentage of
test samples as the number of sequential steps increases. Our sequential models also have increasingly larger
advantages over LOUPE as the number of sampled measurements increases (i.e., the acceleration factor
decreases).
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Appendix D. Additional
Reconstruction
Examples

We present some additional reconstruction examples
in Figure 13 and Figure 14.
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Random Evaluator LOUPE 4-Step Seq. (Ours)  Ground Truth

4x Reconstructions

Masks and k-space

4x Reconstructions

Masks and k-space

Figure 13: Visualizations of the reconstructions of the 394" (top) and 1083 (bottom) test images with an
acceleration factor of 4x for 1D line sampling. Zoomed-in image patches highlight our significant improve-
ment over previous methods. We find that our learned masks for the 1D line sampling case usually consist of
adjacent low-frequency samples. However, only a few of the learned samples have their conjugate symmet-
ric points sampled as well. Our learned policy appears to leverage the conjugate symmetry of the k-space
and trade off taking more measurements with taking fewer measurements with higher SNR (by effectively
sampling the same measurement twice).
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Random Spectrum LOUPE 1-Step Seq. (Ours) 4-Step Seq. (Ours)  Ground Truth

4x Reconstruction

Mask or k-space

8x Reconstruction

Mask or k-space

Figure 14: Visualizations of the reconstructions of the 1355 test sample with an acceleration factor of 4x
(top) and 8x (bottom) for 2D point sampling. A zoomed-in image patch is shown along with the cumulative
k-space measurements selected by each policy. Orange arrows point out the regions where our sequential
approach provides more accurate detailed local structures.
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