Supplementary: Statistical Mechanical Analysis of Neural Network Pruning

Rupam Acharyya' Ankani Chattoraj*> Boyu Zhang*'! Shouman Das’® Daniel Stefankovi¢'

'Computer Science Dept., University of Rochester, Rochester, New York, USA
1Brain anf Cognitive Science Dept., University of Rochester, Rochester, New York, USA
'Mathematics Dept., University of Rochester, Rochester, New York, USA

A GE INTWO LAYER NETWORK

For the theoretical analysis we consider the following assumptions from [2]

(A1) If £ = (x1,...,xy) is an input then z; € N(0,1). Also, N — oo.
(A2) Both the teacher and the student networks have only one hidden layer.

(A3) M, K denotes the number of hidden nodes for the teacher and student network respectivelyand XK > M and K = Z-M
where Z € ZT.

(A4) The activation in the hidden layer is sigmoidal for both teacher and student network.
(AS5) The output € R (i.e., regression problem).

(A6) The order parameters satisfy the ansatz as in (S58) - (S60) of [2].

(A7) No noise is added to the labels generated by the teacher network, i.e., o = 0.

With the above assumptions, authors of [2] gave a closed form of the GE as follows:

eg = f1(Q) + fo(T) — f3(R,Q.T) )]
where,
f1(Q) = ;;;vivk arcsin vig: QQ\;I —= )
fa(T) = i%vzvfn aresin = Tj’% - 3)
f3(R,Q,T) = % zn: v;v’ arcsin Nix: in% —= )

where Q, R, T are the order parameters as defined in main text. We also have the assumption (3] about the relation between
number of edges and nodes kept after pruning.

For node and edge pruning comparison, we choose the parameters k,, and k. (see Table I such that the total number of
parameters of the networks remain same, i.e., they satisfy,

ki lim ke

K:NAOCN:(% (5)

where ¢ € [0, 1] is a constant.
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Table 1: Notations used in Theorems

Notations Explanations Notations Explanations Notations Explanations
n number of inputs N dimension of the input ny number of nodes in layer [
P it node in layer [ 1<i<m) aﬁj activation of v} on j7 input M number of teacher
hidden nodes
eij edge from v! to v;“ wl J weight of e! J K number of student
1<i<mand1l<j<ng) 1<i<mand1l<j<n1) hidden nodes
kn number of student hidden nodes ke number of incoming edges of a v* second layer weight
kept after node pruning hidden node kept after edge pruning of teacher network

B PROPERTIES OF DPP KERNEL

In main text we see that each node in the hidden layer of a student network carries certain amount of information about the
training data and it is captured in a vector form. We create an information matrix by accumulating the information vectors
of these hidden nodes. For simplicity of theoretical analysis, we have considered the kernel as the inner product of the
information matrix. In the thermodynamic limit, the inner product is divided by the input dimension. Formally, if h; and h;
are the information at 7*" hidden node and j*" hidden node respectively, then

where n is the total number of training examples. It can be seen that the analysis for the kernel defined in main text is similar.
Note that all analyses are for the student network trying learn from the teacher network. Refer to main text for details of
notations.

Lemma 1. Assume (Al) - (A7). Then the expected kernel of DPP Node for the hidden layer is the order parameter Q).

Proof of Lemmal(l] For the two-layer teacher-student setup, the hidden layer gets information (h1, ..., hx) from the input
layer, where h; = (hi1, ..., hin) and hj(= t] w;) is the information at ;" hidden node on j*" input data (¢;). Hence,

n n n n
h;rhj = Z hirhji, = Zt{’wl . tfwj = Zwthk -tfwj = Zw?(tktz)wj
k=1 k=1 k=1 k=1

But for the given input distribution (i.i.d. Gaussian), E[t;t]] = Inxy. Hence, Jmn E[L;;] = [lm E[+1nTh;] =
Jim - Lwl'w; = Q;;, and we have the lemma. O

From [2]] we know that () is a block diagonal matrix where each “block" (or “group” used interchangeably henceforth) refers
to the set of student hidden nodes that represent (explian/learn) one particular teacher hidden node.

C PROOF OF THE THEOREMS

Theorem 1. Assume (Al) — (AT). Let k,, < M nodes are selected by the DPP Node pruning method,

2
PPN () = (o) | B2 (1_ ;) 4 Mk o
and
~DPPNode (v*)?2
€k (F) = (M = kn) x =~ .

Theorem 2. Assume (Al) — (A7). Then for k, < M we have,

]Ef [ekR:nd Node(f)] > GanPP Node(f/) (8)



and

]Ef [ékR:,nd Node(f)] > ékD,,PP Node(f/) (9)

and,

6£;np Node(f/) > ngnPP N()de(f/)7 (10)

i.e., DPP node pruning outperforms random node pruning in the above setup. Here the expectation is taken over the the
subsets of hidden nodes of size k,, chosen u.a.r.

Proof of Theorem[I|and[2] Let Hr = {hi1 yoeeshiy } be the set of selected nodes by DPP Node pruning method. Recall
from [2]) that every student hidden node specializes in learning a teacher node. Denote ¢(h) to be the teacher node learnt
by h. S,, C Hpg be the set of selected hidden nodes of the pruned network which learnt the m!" teacher node , i.e.,
S = {h € Hp|t(h) =t} (t, is the m*" teacher node). Hence, prn = |{1(|S,,| > 0)|1 < m < M}| is the number of
teacher nodes explained by the pruned network and W.L.O.G. we can assume that ¢y, ..., t,,, are those set of teacher nodes.
Letly, ..., L, be the number of student nodes in the pruned network which learn the corresponding teacher node. Note
that, f’:l' li = ky and [; < Z (where Z is the number of student nodes dedicated to learn a single teacher node in the
unpruned network) for all . Applying Lemma [2]directly we can see that the GE for the pruned network is

v’ [Z (%)

=1

*\2
. (M—pgn)(v ) (11

The first part of is the GE for the group whose corresponding teacher node is partially explained and the second part
accounts for the GE due to unexplained teacher nodes (number of such teacher nodes are M — prn). From Lemmaﬂ]we
know that the expected kernel matrix for DPP Node pruning is the order parameter () and it becomes a block diagonal
matrix after the training converges, where size of each block is Z (which is also the number of student nodes dedicated to
learn a single teacher node in the unpruned network). Because of the block diagonal property of the DPP kernel matrix, at
most 1 student hidden node will be chosen from each block, i.e., [; = 1 Vi. Hence, prn = k,,. From Lemmawe can see
that the GE of node pruned network only depends on the number of student node survived in each block after pruning, and,
for DPP node pruning, it is always 1 (given k,, < M). This is why there is no expectation in the GE term. So for DPP node
pruning the GE is,

2
6anPPNode(f) — (U*)Q |j%n (1 _ ;) + M g kn‘| )

Each of the k,, student nodes in the pruned network learns a different teacher node. Consider one such teacher node and call
it ¢;. In the unpruned network, there are Z student hidden nodes which learn a single teacher node ¢;, only one of which
survives after DPP node pruning. The first part of the error is due to the removal of student nodes (Z — 1 student nodes
for each ¢;). However, these errors can be retrieved by reweighting the survived student node. On the contrary, there are
M — k,, teacher nodes which don’t have any representative (some student hidden node from the set of student nodes which
specialized in this particular teacher node) in the pruned network. And the error (second part of the GE) due to those nodes
can not be retrieved even after reweighting. Hence, the GE after reweighting becomes,

(M—kn)x%

Thus, we have the Theoremm

Next, we will prove Theorem 2] We will show, for any network pruned by Random Node, the GE is more than the expected
GE of DPP Node pruning. Recall the randomly pruned network f discussed in the beginning of the proof. From Lemma2]



we can see that for node pruning the GE only depends on the number of nodes survived in each block. From we have,

6]&171(1 Node (f)

_ (M = k) ()? kn +Z > <;>2 (112)
z(M k” S (1—;)2 (12)

(M — k) (v")? <v*>2 1)?
- ML REOT (1_)
GkDPPNOde(f)

where follows from the inequality below:

(i = 1) ()" + (v)? (1 — li)2 =1 (v")* [1 + 1 2] > (v°)? (1 — 1)2

6 6 Z 6 z?  Z 6

which proves the first part of Theorem 2} The proof for the reweighted network is similar.

In case of importance node pruning, the nodes with lowest absolute value of outgoing edges are dropped. Following [2] the
outgoing weights of all the hidden teacher nodes are equal (we call it v*). Also, from Lemma [3| we see that the sum of the
weights of the outgoing edges of the student nodes which learn the same teacher node add up to the outgoing edge weight of
the corresponding teacher hidden node. Moreover, we assume the ansatz v; = v; when ¢, j € G, where G, denotes the set
of student nodes which learn the same teacher node ¢,,. Hence, we can see that all the outgoing edges are approximately
similar. We also verify this fact experimentally. Therefore, this defines an approximately uniform distribution on the set of
hidden nodes. Hence, this is almost same as random node pruning and so the result follows from Theorem 2} O

Remark 1. The comparison between performance of importance node pruning and DIVNET depends on the fact that all
the outgoing edges of the teacher hidden nodes are equal. However, when the outgoing weights are not equal the importance
pruning first selects student hidden nodes from a group whose corresponding teacher node has the highest weight. Once
all the student nodes are selected from that group then it selects the group whose corresponding teacher node has second
highest outgoing edge weight and the process continues. Because of this approach, even without reweighting a complete
information about the teacher node is preserved in the pruned network. However, in DPP node pruning one candidate
from each group (representing a particular teacher node) is selected first. But if a member is selected from a group then
the reweighting method can recover the complete lost information for the corresponding group. Hence, DIVNET is able
to preserve information about more number of teacher hidden nodes than importance pruning which results in better
performance.

Theorem 3. Assume (Al) — (A7). Consider the random edge pruning method with parameter Jim_ % =c(herecisa
constant between 0 and 1). Then the GE efiond Edge (E[f]) is,

M@w*)?[1 . c 1 .
—arcsin —— + (1 — —= ) arcsin ——
1+c 1+c¢

T Z Z
(13)

s
+ — — 2arcsin
6

il

Proof of Theorem[3] In this theorem, we will give the GE of the expected network pruned by the Random Edge method.
Pruning is performed on the edges between input layer and the hidden layer. Hence, the order parameter changes. From
Lemmald] we have the order parameters of the expected network (call these ', R',T"). However, the weights of the second



A GE of DPP Node - GE of Rand Edge B GE of DPP Node(+rwt) - GE of Rand Edge(+rwt)
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Figure 1: (A) Difference between the GE of DPP node pruning and Random edge pruning for 4 > Z > 30. The matrix
consist of only nonzero entries which proves that random edge pruning performs better than DPP node pruning when
parameter count is same. (B) Difference between the GE of DPP node pruning with reweighting and Random edge pruning
with reweighting for 4 > Z > 30. The matrix consist of only negative entries which proves that random edge pruning can
never perform better than DPP node pruning when reweighting is applied in the second layer.

5]

2

layer remain unchanged. Putting these values in (), (3) and (@) we have,
S anarsin
= — ) wu,arcsin
T VI QL1+ @
M (v* 2 2 *)2
= @) arcsin ——— M)
™ 1+c¢ A

4

— arcsin

arcsin
[ 1+c¢ 1+e¢

and,

R;
R.Q.T) == § ; in
f3(R',Q', v;v) arcsin Ve
_2M(v) c

arcsin —— (15)
2(1+¢)

Therefore, the GE of the expected network after Random Edge pruning is,

M(’U*)2 C2

) M(U* )2
arcsin

zZr

s c
+ — — 2arcsin — arcsin
14+c 6 2(1+c¢) 1+e¢ 1+c¢

[arcsin

This proves the first part of the theorem. O

Theorem 4. Assume (A1) — (AT7). Let ky, and c satisfy @), and 0 < ¢ < + and Z > 4. Then

G,ETLPP Node (f) > 6i%and Edge (E [f]) , (16)

i.e., Random edge pruning outperforms DPP node pruning in the above setup.

Proof of Theorem[d] Theorem|T]and [3| provide the closed form of the GE after DPP node pruning and random node pruning
respectively. Using this closed form we plot ef 77 Node( ) — gfand edge( f) in Figure|l| A. Here k, and c satisfy (3, i.e.,
parameter count is same after two kinds of pruning. We can see for Z > 4 this value is > 0 given 0 < ¢ < 1.0/Z, which
proves the theorem. O

Remark 2. Our results hold for Z > 4, where Z is the number of student nodes which learn the same teacher node. This is
because in DPP node pruning at most 1 student node survives per group. As a result for larger Z the lost information per

group is higher (in the scale of (1 — %)2)-



Next we state the impossibility result as discussed inmain text. We will show that, no reweighting scheme in the second
layer for random edge pruning which is based on scaling can beat DPP node pruning after reweighting. Formally we have
the following:

Theorem 5. Assume (A1) — (AT). Let ky, and c satisfy (8), and 0 < ¢ < % and Z > 4. Assume the reweighting scheme for
random edge in second layer such that, 0; = Av;. Then VA € R we have,

ékDPP Node (f) S éfa’nd Edge (E [f]) (17)

n

Proof of Theorem[5] From Theorem [T|we know that the GE after rewighting the DPP node pruned network is

(U*)2 - M(’U*)2
o (M —ky) = — (1 Zo) (18)

where c satisfies (3). Now for the given reweighting scheme in the hypothesis the GE for random edge pruning will be,

M (v*)? ) ( 1 ) c ( 1 > 2 ) T . .
— = | A* [ = arcsin + (1— — ) arcsin + — —2Aarcsin ——— 19
T Z 1+e¢ Z 1+c¢ 6 V2(1+¢) 1)

can be viewed as a quadratic equation of A whose minimum correspond to the best reweighting scheme in the scaling
family. In Figure B we compare this minimum with (T8)). Formally we plotted ékD, LP P Node () _ gland Edge (| [ £]) Tt

can be seen that this value is —ve forall 0 < ¢ < %, which implies GE of reweighted DPP node pruned network is always
lower than reweighted random edge pruned network. O

D PROOF OF LEMMAS

Lemma 2. Assume (Al)-(A7). Let t1, . .., tyr denote the teacher hidden nodes and ly, . . . |l denote the number of student
hidden nodes in a node pruned network which learnt the corresponding teacher node. If Z%Zl Iy < M, then the GE of

this node pruned network is,
(v*)2 i . - 2
6 A

m=1

Proof. Let G4, ..., G be the subsets of student nodes such that all student nodes in G, learn the m*" teacher node. From
the assumption we have, |G,,,| = Z for all m. After pruning, a subset P,,, C G, is chosen, and |P,,| = l,,,. Denote the
order parameters of the pruned network as Q', R', T". For node pruning we can see that

o {Qik if Im s.t. h; € P, and hy, € P,
ik —

0 otherwise

Also, for the unpruned network we have

Qi = 1 ifdmst. h; € G, and by € Gy,
ik 0 otherwise



Now from () we can break down the GE into three parts. From ), (3) and (@) we have,.

1 !
f1(Q) = =) v arcsin I ’
fz,; VI+Qh/1+ Q5

M
1 1
— E E V; Vg arcsin —, (20)
™ 2

n=14,kEP,

M 2
(v*)? li
_ M 21
27 @n
(20) follows from the fact that h; and hy, belong to the same group G,,. So we have,
i _ 1
VIFQL/T+Qn V2v2 2

We can also see that (ZT) follows from LemmaE]and the ansatz v; = v; when ¢, j € G,,. The order parameters 75,,,, doesn’t
change after pruning, and so we have,

Tnm

1
fo(T') = p Z vivk arcsin

n,m

M
=52 ()’ (22)
n=1
And similarly,
2 R/
R.Q'\T) = =) wv! arcsin m
P QI = 2 v e i T
M
2 . 1
= vy, Z v; aresin o,
n=1 iceP,

N

M
Sup > v (23)
n=1

1€ Py,

Then from 21),(22) and 23) the GE of node pruning is,

<[00y

m=1

(24)

Hence we have the lemma. O

Intuitively, this lemma states that for teacher hidden node ¢,, if /,, student hidden nodes survive after node pruning, then the
fraction of information lost due to the deletion of nodes is 1 — 17" where Z is the number of student nodes learn a particular
teacher node in the unpruned network.

Lemma 3. Let v* denotes the weight of the second layer of the teacher network and {v1, - -+ , vk } be the weights of the
student network after convergence. Then in the noiseless case for all n we have,

vt = E v;

i€Gp



Proof of Lemma(3] From (536) of [2] we have,
dv -
= Zv Ix(i,n) Zvjlg(i,j)
j=1

N
:ﬁz;arcs1n§ v - E v
JEGn

Hence, a fixed point (in terms of v;’s) of the ODE is,

{(v1,...,vK)| Z v; =v",V1<n< M)}
1€Gy
O
Intuitively, this lemma states that the sum of the outgoing edges of the student hidden nodes which learn a particular teacher

hidden node is approximately equal to the weight of the outgoing edge of that teacher hidden node.

Lemmad. Let Q, R, T are the order parameters of the unpruned network, and Q', R', T’ are the respective order parameters
after applying the Random Edge pruning where c fraction of the edges are kept. Then we have the following:

E[Q}] = {CQ““ S

Qi otherwise

. E[R/st] = CRSt
* Ty = Tin

Proof. In case of Random Edge pruning each edge is kept with probability c. Then we have,

2
st NE C:Wijg X C Wit = C *5 WisWit = CQst

and
1 N
ss N Z - CQQSS
Similarly,
N
E[R,,] = Z ¢ wiswy; = cRg

The teacher node is not affected by the pruning. So 7" is not modified by the pruning process. This proves the lemma. [

Intuitively, this lemma states that the order parameters of the pruned network using random edge pruning is a scaled version
of the order parameters of the unpruned networks. However, the scaling of diagonal elements are different from that of
off-diagonal elements (for more see Figure[3] A).

E SIMULATION DETAILS

In total, 10 rounds of simulations are run for each of the 5 pruning methods, and we report the average and standard
deviations (as error bars). The standard deviations are negligible (in the magnitude of 10~3). A round is the entire process of
generating a new teacher network with datasets, training the student from scratch, performing pruning and finally testing with
the pruned network. For DPP and random methods, we sampled 100 masks per round and reported the average performance
in each round. Given M = 2 and K = 6, we tried pruning with [1, 2, 3,4, 5] nodes (and the equivalent number of edges)
left in the student, respectively. We keep the total number of weights same to compare different pruning methods. The
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Figure 2: Order parameters after different node pruning methods in the teacher student setup. For this example, number
of student hidden nodes M = 2 and number of teacher hidden nodes K = 6. From [3]] we know that the first 3 student
nodes (call 1% group) learn one teacher node, and the next 3 (call 2"¢ group) learn the second teacher node. Recall that
ky, is the number of student hidden nodes survived after node pruning. In this figure each row represents a particular node
pruning method and each column (Q, R) shows results for different choices of k,, (left to right goes from most pruned
to unpruned network). (A) In case of random node pruning when k,, = 2, two student node survives from the 2"¢ group
after pruning. As a result, information about the 1%% teacher node is completely lost in the pruned network. (B) Importance
pruning keeps a student hidden node depending on its outgoing edge weights. The outgoing edge weights of each group is
almost equally distributed among themselves, and they sum up to the second layer weight of corresponding teacher node
(see Lemma 3)). As all the group size is equal (3 for this example), importance node pruning first selects node from the
group whose corresponding second layer teacher weight is highest. In our example, it is the second group and hence for
k, = 1,2, 3, it selects node from the second group. Once a group is exhausted, it then selects from another group according
to the aforementioned policy and so on. (C) For DPP node pruning when k,, = 2, two student hidden nodes are chosen
from different groups which preserve information about both the teacher nodes. It can also be shown that, in case of node
pruning, if at least one representative from a group survives after pruning, then the reweighting can recover the complete
information about that block. Hence, in teacher student framework DPP node pruning performs the best among the node
pruning methods especially after reweighting.

Importance Random

PP

node-to-edge ratio, given N = 500, K = 6, and M = 2,is [1 : 83,2 : 166, 3 : 250,4 : 333,5 : 417]. This is calculated,
for the teacher-student setup (single output node) specifically, as k. = W We grid-searched 7 in the range of
[0.1,0.2,0.3,0.4,0.5,0.6,0.7] and found 0.50 to be the optimal. We used 8 = 0.3 for all DPP node kernel calculations in
all simulations.

F HYPERPARAMETERS FOR REAL DATASETS

Besides the hyperparameters and setup we proposed in Section 5.2 on the synthetic dataset, we report the hyperparameters
used for the results on the MNIST and CIFAR10. As stated in Section 5.2, we used that exact same experiment setup
(network architectures, error thresholds, etc.) as in [3]] for fair and consistent comparisons. We used SGD optimizers, a
learning rate of 0.001, and a momentum of 0.9 for traning on both datasets. For MNIST, the training batch size was 1000.
For CIFAR1DO0, the training batch size was 128. All pruning methods were performed 10 times, and we report the means
and standard deviations in Figure ] (with reweighting).

The node-to-edge ratio for pruning, which keeps the number of parameters in the pruned network the same, is [397 :
614,472 : 921,548 : 1228,623 : 1536,699 : 1843,774 : 2150,849 : 2457,925 : 2764] for CIFAR10 and [256 :
156,287 : 235,317 : 313,348 : 392,378 : 470,409 : 548,439 : 627,470 : 705] for MNIST, given the network architecture
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Figure 3: Order parameters after different edge pruning methods in the teacher student setup. For this example, number
of student hidden nodes M = 2 and number of teacher hidden nodes K = 6. From [J3]] we know that the first 3 student
nodes (call 1% group) learn one teacher node, and the next 3 (call 2"¢ group) learn the second teacher node. Recall that
k. is the number of incoming edges for each student hidden nodes survived after edge pruning. In this figure each row
represents a particular edge pruning method and each column (Q, R) shows results for different choices of k. (left to
right goes from most pruned to unpruned network). (A) In case of random edge pruning, the expected order parameters
have the form described in Lemmad] (B) Order parameters for importance edge pruning. For importance edge pruning,
the edges with lowest absolute values are removed. As the input dimension goes to infinity, the order parameters of the
pruned network are close to that of the unpruned network (k. = 500). In particular, for any fix k., let Qz’jp be the order

parameter of the pruned network when importance pruning is used. Q;‘j”d is defined similarly. Our simulations show
that, HQ“”p”‘"ed — Q| < ||Qurpruned — Q2| This is why the blocks in the () matrix are the brightest in case of

importance pruning. Hence, importance edge pruning performs the best without reweighting.

Importance Random

in Table 1 of [3]]. These ratios correspond to 20% to 90% of the edges left for each node, as shown on the x-axis of Figure@
These node-to-edge ratios are calculated based on the conversion equation in Section 5.2. We used 8 = 10/|T'| where |T'| is
the size of the training dataset for all DPP node and edge kernel calculations on real data, following the choice of [3]].

G TABLES AND FIGURES

Table 2] shows the experimental results on the synthetic data with the setup discussed in main text. For all the node-to-edge
ratios in @), given K = 6 and M = 2, we calculated the mean square GEs for both the noiseless and noisy case (¢ = 0.25).
We sampled 100 masks per simulation, and there are in total 10 rounds of simulations. As mentioned earlier, DPP methods
are stable, and the standard deviations are in the magnitude of 10~ for all ratios.
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Figure 4: Comparing different edge pruning methods with DPP Node pruning method on the MNIST (A) and CIFAR10
(B) dataset. Horizontal axis represents the percentage of remaining parameters in 15¢ layer after pruning. The vertical axis
shows corresponding test error. Both magnitude based edge pruning method (importance pruning) and baseline random edge
pruning method outperforms DPP Node pruning which confirms TheoremE| and the conjecture proposed in [[L].

Table 2: The mean square GE on synthetic data for all pruning methods. The left-most row indicates the percentage of
parameters left in the network. For specific node-to-edge ratio, see[5} The upper table shows the noiseless case, and the
lower shows the noisy case (¢ = 0.25). We also observed the implicit regularization effects of pruning proposed by [3]

% OF PARAMETERS DPP NODE RAND. EDGE RAND. NODE | IMP. EDGE | IMP. NODE
17.0% 3.737+ 0.009 | 3.451+0.011 | 3.978 £ 0.016 1.911 3.760
33.0% 2.310+£ 0.012 | 2.3004+ 0.015 | 2.800 £ 0.035 0.814 2.719
50.0% 1.438+ 0.015 | 1.4024+0.006 | 1.748 £ 0.036 0.311 1.540
67.0% 0.740+ 0.017 | 0.730+ 0.006 | 1.046 +0.018 0.110 0.721
83.0% 0.258+ 0.008 | 0.204+ 0.005 | 0.540 £0.010 0.040 0.360

ORIGINAL TEST L0SS: 0.051 (NOISELESS)
17.0% 4.000+£ 0.005 | 3.769+ 0.012 | 4.188 £ 0.001 1.963 4.167
33.0% 2.622+ 0.015 | 2.558+ 0.011 | 3.041 £+ 0.024 0.905 2.910
50.0% 1.633+0.002 | 1.675+0.010 | 2.023 £ 0.035 0.450 2.031
67.0% 0.890£ 0.018 | 1.007+£ 0.007 | 1.269 4+ 0.022 0.271 1.144
83.0% 0.3944 0.001 | 0.490+ 0.003 | 0.643 4+ 0.002 0.253 0.659
ORIGINAL TEST L0sSS: 0.241 (o = 0.25)
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