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Abstract

We consider the problem where M agents interact
with M identical and independent environments
with S states and A actions using reinforcement
learning for T rounds. The agents share their data
with a central server to minimize their regret. We
aim to find an algorithm that allows the agents
to minimize the regret with infrequent commu-
nication rounds. We provide DIST-UCRL which
runs at each agent and prove that the total cumu-
lative regret of M agents is upper bounded as
Õ(DS

√
MAT ) for a Markov Decision Process

with diameter D, number of states S, and number
of actions A. The agents synchronize after their
visitations to any state-action pair exceeds a cer-
tain threshold. Using this, we obtain a bound of
O (MSA log(MT )) on the total number of com-
munications rounds. Finally, we evaluate the algo-
rithm against multiple environments and demon-
strate that the proposed algorithm performs at
par with an always communication version of the
UCRL2 algorithm, while with significantly lower
communication.

1 INTRODUCTION

Reinforcement Learning (RL) is being increasingly de-
ployed and trained with parallel agents. In many cases,
each agent interacts with identical and independent envi-
ronments. For example, in autonomous cars, the agents do
not share the environment as they are located possibly far
away [Kiran et al., 2020]. Similarly, in ride/freight sharing
services, different RL agents (vehicles) make decisions in
parallel to minimize their costs and maximize the profits
[Al-Abbasi et al., 2019, Manchella et al., 2021]. Further,
consider an example of an e-commerce company using RL
agents in servers for recommending products to customer.

Based on the location of the customer, each customer’s
query may potentially be routed to a particular server (or
agent) [Sankararaman et al., 2019]. Finally in the field of
robotics, parallel robots are often deployed in practice [Hu
et al., 2020, Sartoretti et al., 2019]. From these examples,
we note that every agent would gain by sharing their data
collected, otherwise they would be wasting the knowledge
accumulated by the remaining agents. Such parallel policy
learning with limited amount of communication is the focus
of this paper.

Sharing of data across agents poses a new set of problems
which comes from communicating the samples. If the agents
communicate the observation tuple (state, action, reward,
next state) at every time step, their communication complex-
ity will increase. For various power constrained devices such
as small robots, this luxury might not always be available
[Sankararaman et al., 2019]. In this paper, we aim to work
on the problem to reduce the number of communication
steps while obtaining the same regret bounds as that of an
strategy in which the agents always communicate.

For a system with M parallel agents, the parallel agents
generate M times more data. From the lens of regret anal-
ysis, this setup loosely translates to a setup where a single
agent works for time horizon of MT . For the setup where a
single agent runs for MT steps, the regret is lower bounded
by O(

√
DSMAT and upper bounded by Õ(DS

√
MAT )

[Jaksch et al., 2010, Agrawal and Jia, 2017]. We show that, if
the agents take their actions sequentially and communicate
after every interaction with their respective environments,
then the agents can collectively obtain a regret bound of
Õ(DS

√
MAT ). This results in a faster convergence rate of

O(1/
√
MT ) to the optimal policy as compared to the con-

vergence rate of O(1/
√
T ) when using one RL agent. Note

that in practice, a sequential decision making for parallel
independent agents cannot be guaranteed. Thus, this result
acts as a lower bound to parallel reinforcement learning. In
this paper, we further provide an algorithm, in which agents
work in parallel, that achieves these bounds with limited
communication.
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We consider a setup whereM reinforcement learning agents
interact with M identical environments or Markov Deci-
sion Processes (MDPs) [Sutton and Barto, 2018, Puterman,
1994]. Similar to the examples considered above, the M
environments are independent. We assume that there also
exists a central coordinator (server), although we suggest a
method to relax this assumption. All the agents report their
experiences to the central coordinator which then computes
and shares a policy with the agents. We consider that the cen-
tral coordinator uses a model based algorithm to compute
the policy and each agent stores the number of visitations
made to any particular (state, action, next state) tuple. The
central coordinator also shares the total visitations to each
state-action pair back to all the agents.

Based on this setup, we provide a novel communication effi-
cient DIST-UCRL algorithm. In DIST-UCRL algorithm, the
agents communicate with the central coordinator whenever
any agent visits any state action pair s, a in the current epoch
(since last synchronization) a fraction (1/M ) of the total visi-
tation counts in s, a till last synchronization, instead of every
N ≥ 1 time step. Using this synchronization strategy, for
an MDP with diameter D, number of states S, and number
of actions A, using DIST-UCRL algorithm, we bound the
cumulative regret of M agents for T time horizon scales as
O(DS

√
MAT ) using only O(MAS log2(MT )) synchro-

nization steps1. Note that DIST-UCRL not only achieves
the lower bound regret scaling (Õ(

√
MT )) but also with

limited communication.

To obtain our results, we also derive a concentration bound
on M independent Martingale sequences which can be of
independent interest. To the best of our knowledge, this is
the first work in the direction of obtaining the performance
guarantees using regret analysis for a setup where M agents
interact and collaborate.

We also evaluate our algorithms empirically. We run the
proposed DIST-UCRL algorithm in multiple environments.
We compare the DIST-UCRL algorithm against the modified
UCRL algorithm, following which the agents communicates
after every time step. We show that DIST-UCRL algorithm
obtain similar regret bound with reduced communication.

The rest of the paper is organized as follows. Section 2 sum-
marizes the key related works. Section 3 describes the com-
plete system model. Section 4 describes the DIST-UCRL
algorithm, and the regret guarantees of the algorithm are
provided in Section 5. Section 6 describes a modification of
UCRL2, MOD-UCRL2, and its regret guarantees. Section 7
tests the proposed algorithms in multiple environments, and
Section 8 concludes the paper with some possible directions
for future works.

1We use the term communication round and synchronization
step interchangeably.

2 RELATED WORKS

Optimal planning using Markov Decision Processes has
seen numerous significant contributions in history. Many
algorithms have been proposed to find the optimal policies.
The major algorithms include Q-learning, and policy itera-
tion to find optimal policies [Howard, 1960, Puterman, 1994,
Bertsekas, 1995, Sutton and Barto, 2018]. Fundamentally,
the algorithms work by calculating the utility of taking cer-
tain actions in states that maximizes the utility of the state.
These algorithms provide optimal policy when the transition
probabilities of the Markov Decision Process is known or
an ε-optimal policy if using iterative algorithms [Puterman,
1994].

A large body of work is also done in the setup where the
transition probabilities are not known. The model-based al-
gorithms work by reducing the number samples required to
obtain a close estimate of transition probabilities [Bartlett
and Tewari, 2009, Jaksch et al., 2010]. The model-free al-
gorithms work by directly estimating the utilities obtained
by taking an action in a state [Jin et al., 2018]. These algo-
rithms apply optimism in the face of uncertainty principle
to find a model near the empirical estimates that provides
the highest reward. There are also algorithms that sample
the transition probabilities using posterior sampling and ob-
tain regret bound [Ian et al., 2013, Agrawal and Jia, 2017].
The algorithms suggest that using parallel agents interacting
independent and identical environments will provide tighter
concentration inequalities and hence will help in reducing
the regret.

In the domain of multiple agents using RL, most of the work
is done where the agents interact with a dependent environ-
ment and the decision of one agent impacts all the other
agents. This area is known as Multi-Agent Reinforcement
Learning (MARL) [Gupta et al., 2017, Zhang et al., 2018].
The agents may cooperate with each other, for example, in
the case of autonomous vehicles yielding on a busy road.
Or the agents may also compete with each other, for ex-
ample, in the case of car racing where only one car may
win. Although, we do have multiple agents in our setup, the
environments are independent. Hence, we will refrain from
using MARL terminology in this paper.

With the introduction of deep learning to the field of rein-
forcement learning, many “Deep RL” algorithms have been
provided to minimize the sample complexity to find the
optimal policies [Mnih et al., 2013, Schulman et al., 2015,
Mnih et al., 2016, Schulman et al., 2017, Haarnoja et al.,
2018]. Recently, various algorithms are using parallel actors
to learn better policies using deep reinforcement learning
[Nair et al., 2015, Clemente et al., 2017, Horgan et al., 2018,
Espeholt et al., 2018, Assran et al., 2019]. These algorithms
consist of parallel agents that share the entire sequence
of (state, action, reward, next state) tuples after every n
epochs, and update a common neural network with the gra-
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dients computed from possibly parallel learners. Compared
to these works, we consider a model based setup to obtain re-
gret guarantees with only O(MAS log2(MT )) number of
synchronization rounds with a common controller learning
the policy.

Recently, in the area of Bandits [Lattimore and Szepesvári,
2020], there has been a thrust on distributed bandits with re-
duced number of communication rounds. Various algorithms
have been proposed to minimize the regret for setups where
the agents synchronize a central coordinator [Kanade et al.,
2012, Hillel et al., 2013, Wang et al., 2019, Dubey and Pent-
land, 2020]. Recently, Wang et al. [2019] showed that it is
possible to obtain optimal regret guarantees with number of
rounds that are independent of T in stochastic Multi-Armed
Bandits and Linear Bandits. Further, Dubey and Pentland
[2020] considered a linear bandit setup and aimed to protect
the privacy of the agents collaborating along with mini-
mizing the number of communications rounds. Moreover,
[Chawla et al., 2020, Sankararaman et al., 2019] considered
a gossiping setup to communicate only the index of the best
arm, thus reducing not only the number of communication
rounds, but also the number of bits in each communication
round. Similar to the bandit setup, we also attempt to find
rigorous regret guarantees of the DIST-UCRL algorithm
and a bound on the number of communication rounds.

3 SYSTEM MODEL

Let [K] be the set of K elements, or [K] = {1, 2, · · · ,K}.
We consider an MDPM = (S,A, P, r̄), where S = [S]
is the set of finite states and A = [A] is the set of finite
actions. P denotes the transition probabilities, i.e., on taking
action a ∈ A in state s ∈ S, the next state s′ ∈ S follows
distribution P (·|s, a). Also, on taking action a ∈ A in state
s ∈ S , an agent receives a stochastic reward r drawn from a
distribution over [0, 1] with mean r̄(s, a).

We consider M agents in the system, each interacting with
M identical environments. Let i ∈ [M ] be the indexing
for agents and their corresponding environment. For an
agent i, at time step t, let si,t denote the state of the agent,
ai,t be the action taken by the agent, and ri,t denote the
reward obtained by the agent on taking action ai,t in state
si,t. We assume that the M environments are independent.
Mathematically, ∀ i ∈ [M ] and ∀ t ≥ 1, we have,

P(si,t+1|s1,t, a1,t, · · · , sM,t, aM,t, ) = P(si,t+1|si,t, ai,t),

and we take a similar assumption over the rewards ri,t as
well. This means, the distribution of the next state si,t+1 and
the rewards ri,t of agent i ∈ [M ] are conditioned only on
the knowledge of the current state and action (si,t, ai,t) of
the agent i and is independent of the other states and actions
of the remaining agents.

Let policy π : S → A be a function to determine which

action to select in state s ∈ S . Note that each policy induces
a Markov Chain on the states S with transition probabilities
Ps,s = P (·|s, π(s)). After defining a policy, we can now
define the diameter of the MDPM as:

Definition 1 (Diameter). Consider the Markov Chain in-
duced by the policy π on the MDPM. Let T (s′|M, π, s)
be a random variable that denotes the first time step when
this Markov Chain enters state s′ starting from state s. Then,
the diameter of the MDPM is defined as:

D(M) = max
s′ 6=s

min
π

E [T (s′|M, π, s)] (1)

We assume that the MDPM has a finite diameter which
means that there is a policy, such that following that policy
all s ∈ S communicate with each other.

Any agent i ∈ [M ] starting from an initial random state
si,1 = s follows an algorithm A till T time steps to collect
a cumulative reward of Ri. Also, let ρi denote the average
reward of the agent following algorithm A . Or,

Ri(M,A , s, T ) =
∑T

t=0
ri,t (2)

ρi(M,A , s) = lim
T→∞

1

T

∑T

t=0
E [ri,t] (3)

Let there be an algorithm A which always selects action
according to a stationary policy π : S → A. Then, we
denote ρ(M,A , s) = ρ(M, π, s). The optimal average re-
ward does not depend on the state [Puterman, 1994, Section
8.3.3], and hence for the optimal policy π∗ which maximizes
the average reward ρ(M, π, s) we have,

ρ∗(M) := ρ∗(M, s) := maxπ ρ(M, π, s). (4)

Further, the optimal average reward satisfies [Puterman,
1994, Theorem 8.4.7],

ρ∗ + v(s) = r̄(s, a∗) +
∑

s′
P (s′|s, a∗)v(s′) ∀s ∈ S

(5)

where a∗ = π∗(s), and v(s) is called the bias of the state s
and it denotes the extra reward obtained from starting in the
state s. Note that v(s) is not unique since if v(s) ∀ s satisfy
Equation (5), then so does v(s) + c for all c ∈ R and hence,
the bias is translation invariant.

We aim to maximize the cumulative reward collected by all
the agents. Hence, we want to develop an algorithm that,
starting from no knowledge about the system, learns a policy
that minimizes the regret. The regret of an algorithm A , for
starting state s, and running for time T , is defined as:

∆(M,A , s, T ) := ρ∗MT −
∑

i∈[M ]
Ri(M,A , s, T )

We will now present our algorithm DIST-UCRL that
uses upper confidence bounds to bound the regret
∆(M, DIST-UCRL, s, T ) with high probability with only
O(MAS log2(MT )) communication rounds.
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Algorithm 1 DIST-UCRL at agent i

1: Input: S,A,M
2: Set parameters Pi(s, a, s′) = 0∀(s, a, s′) ∈ S ×A×S

and r̂i(s, a) = 0∀(s, a) ∈ S ×A.
3: for Epochs: k = 1, 2, · · · do
4: Set νi,k(s, a) = 0∀(s, a) ∈ S ×A.
5: πk, Nk = SYNCHRONIZE(Pi, r̂i, t)
6: while νi,k(s, a) < max(1, Nk(s, a))/M∀(s, a) and

Synchronization not requested do
7: Play action ai,t = πk(si,t), observe reward rt and

next state si,t+1.
8: Set νi,k(si,t, ai,t) = νi,k(si,t, ai,t) + 1,

Pi(si,i,t, ai,t, st+1) = Pi(si,t, ai,t, si,t+1) + 1,
r̂i(si,t, ai,t) = r̂i(si,t, ai,t) + rt.

9: Set t = t+ 1.
10: end while
11: Request synchronization
12: end for

Algorithm 2 SYNCHRONIZE at central node

1: Input: Pi, r̂i from all agents i ∈ [M ], t.
2: for (s, a) ∈ S ×A do
3: Set N(s, a) =

∑
i

∑
s′ Pi(s, a, s

′).

4: Set p̂(s, a, s′) =
∑

i Pi(s,a,s
′)

max{1,N(s,a)}

5: Set ˆ̄r(s, a) =
∑

i r̂i(s,a)

max{1,N(s,a)}

6: Set r̃(s, a) = ˆ̄r(s, a) +
√

7 log(2MSAt)
2 max{1,N(s,a)}

7: Set d(s, a) =
√

14S log(2MAt)
max{1,N(s,a)}

8: end for
9: Set π = EXTENDED VALUE ITERATION(p̂, d, r̃, 1√

Mt
)

10: Return π,N

4 DIST-UCRL ALGORITHM

We consider that each agent runs an instance of the DIST-
UCRL algorithm. The DIST-UCRL algorithm running at
agent i is described in Algorithm 1. The algorithm proceeds
in epochs indexed as k = 1, 2, · · · . The start of every epoch
also coincides with the synchronization step where every
agent communicates with the central node to share data
and update policies. This also implies that the number of
synchronization rounds required by the algorithm are the
same as the number of epochs for the algorithm runs.

Algorithm 1 running at agent i, maintains two counters,
νi,k(s, a) and Pi(s, a, s

′). νi,k(s, a) counts the number
of visitations to state action pair (s, a) in epoch k, and
Pi(s, a, s

′) counts the instances when the agent moves to
state s′ on taking action a in state s. The agent also stores
r̂i(s, a) as the cumulative reward obtained in (s, a).

Let Nk(s, a) =
∑M
i=1

∑k−1
k′=1 νi,k(s, a) be the total number

of visitations till the start of epoch k for all agents. And

hence, Nk(s, a) = 0 at k = 1 for all s, a ∈ S × A. At the
start of every epoch k ≥ 1, the agents obtains the policy
for epoch k and total visitations to any state action pair
Nk(s, a). We will denote the time step at which epoch k start
and agents synchronize of the kth time with tk. At t = 1,
the algorithm synchronizes all the agents for the very first
time, or t1 = 1. Later, a new epoch is triggered whenever
any of the agent requests for synchronization2. An agent
i requests synchronization whenever νi,k(s, a) becomes at
least 1/M of Nk(s, a) for any state action pair. We assume
that every agent is able to receive the synchronization signal
instantly and stop further processing of the current epoch.
The algorithm calls SYNCHRONIZE algorithm every time
after a new epoch starts and updates the policy πk and
Nk(s, a) values. Every agent now selects actions according
to the policy πk in the epoch k.

The SYNCHRONIZE algorithm is described in Algorithm
2. This algorithm calculates the estimates of the transition
probability p̂(·|s, a) and the mean rewards ˆ̄r(s, a) using the
samples from all the M agents. We now consider a set of
all plausible MDPs M (t) that exist in the neighborhood of
the estimated MDP M̂ = (S,A, p̂, ˆ̄r). The mean rewards
r′(s, a) and the transition probabilities p′(s, a) for all the
MDPs in the set M (t) satisfies:

|ˆ̄r(s, a)− r′(s, a)| ≤

√
7 log(2MSAt)

2 max{1, N(s, a)}
(6)

‖p̂(·|s, a)− p′(·|s, a)‖1 ≤

√
14S log(2MAt)

max{1, N(s, a)}
(7)

After obtaining M (t), Algorithm 2 calls the EXTENDED
VALUE ITERATION algorithm which then computes the opti-
mal policy for the optimistic MDP M̃t in the set M (t). The
optimistic MDP satisfies ρ∗(M̃) = supM∈M (t) ρ

∗(M). As
described in [Jaksch et al., 2010], it is not trivial to directly
find the optimistic MDP in M (t). Hence, we consider an ex-
tended MDPM+

t which is constructed with the same state
space and a continuous action space (a, q(·|·, a)) ∈ A×Pt,
where Pt is the set of transition probabilities for action
a ∈ A that satisfies Equation (7). When M (t) contains the
true MDPM, the diameter of the extended MDPM+

t is
bounded by D as the policy for which all states communi-
cate with each other for MDPM also ensures that all states
communicate in the extended MDPM+

t as well.

The EXTENDED VALUE ITERATION algorithm (Algorithm
3) follows the design of the Extended Value Iteration of
UCRL2 algorithm by Jaksch et al. [2010]. As described
by Jaksch et al. [2010], EXTENDED VALUE ITERATION
(EVI) obtains a policy π that is ε-optimal for the extended
MDPM+

t and in turn the optimistic MDP M̃. Algorithm
3 calculates the values of the states of the extended MDP

2The synchronization request can be sent to server, which will
in turn pause and synchronize the entire system.
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Algorithm 3 EXTENDED VALUE ITERATION

1: Input: p̂, d, r̃, ε.
2: Set u0(s, a) = 0, u1(s) = maxa r̃(s, a), i = 1.
3: Set π(s) = arg maxa r̃(s, a)
4: while maxs{ui(s) − ui−1(s)} − mins{ui(s) −
ui−1(s)} ≥ ε do

5: Sort s′1, · · · , s′S such that ui(s′1) ≥ · · · ≥ ui(s′S).
6: Set p(s1) = min{1, p̂(s′|s1, a) + d(s1, a)/2}
7: Set p(sn) = p̂(s′|sn, a), n = 2, 3, · · · , S.
8: Set l = 1
9: while

∑
s p(s) > 1 do

10: Set p(sl) = max{0, 1−
∑
sn 6=sl p(sn)}

11: Set l = l − 1
12: end while
13: i = i+ 1
14: ui(s) = maxa {r̃(s, a) +

∑
s′ p(s

′)ui−1(s′)}
15: π(s) = arg maxa {r̃(s, a) +

∑
s′ p(s

′)ui−1(s′)}
16: end while
17: Return π

M+
t . The extended value iteration calculates the utilities of

the states and the actions that achieve this utility. Note that
unlike the extended value iteration in UCRL2 algorithm,
we consider Algorithm 3 to be converged when we have
maxs(ui+1−ui(s))−mins(ui+1−ui(s)) ≤ ε = 1/

√
Mt.

This is because we now have M times more samples till
any time step t as compared to the UCRL algorithm. The
EVI, at start of epoch k, returns a policy πk that satisfies
ρ(M̃, πk) ≥ ρ∗(M̃tk)− 1/

√
Mtk.

We also note that the central controller is not necessarily
required if the agents are in a completely connected net-
work, they can share there data with each other and run the
algorithms for the central controller by themselves. Further,
the completely connected assumption can also be relaxed
by considering a setup where all agents forward the mes-
sages they get. This allows the broadcast of the information.
Hence, the proposed algorithm can be generalized to any
network structure as long as all the agents are connected via
some path.

5 RESULTS FOR DIST-UCRL

After describing the algorithm, we now bound the regret of
the DIST-UCRL algorithm. We show that the regret bound
holds with high probability. We bound the regret incurred
by the DIST-UCRL algorithm in the form of following
theorem.

Theorem 1. For a MDPM = ([S], [A], P, r) with diame-
ter D, for any starting state s, the regret of the DIST-UCRL
algorithm, running on M agents for T time steps, is upper
bounded with probability at least 1− 1

(MT )5/4
as:

∆(M, DIST-UCRL, s, T ) ≤ Õ(DS
√
MAT ) (8)

where Õ hides the poly-log terms in M,S,A, and T .

We let m be the total number synchronizations done by
agents running DIST-UCRL algorithm till time T . Then, we
bound m deterministically in the following theorem.

Theorem 2. The total number of communication rounds m
for dist-UCRL2 up to step T ≥ SA/M is upper bounded as

m ≤ 1 + 2MAS +MAS log2 (MT ) (9)

Proof. We use the fact that when νi,k(s, a) ≥ Nk(s, a)/M
for some state action pair (s, a) and for some agent i,
the total visitation count Nk+1(s, a) is at least Nk(s, a) +
νi,k(s, a) = Nk(s, a)(1 + 1

M ). This gives an exponential
growth for the total visitation count of any state action pair.
Also, since the total visitation count for all state action
pairs is upper bounded by MT , using Jensen’s inequality
we bound the number of epochs in logarithmic order of
MT . A complete proof is provided in the supplementary
material.

We now state the lemmas required for the proof of the Theo-
rem 1. The first three lemmas are used to handle the stochas-
tic nature of the algorithm and environment. The first lemma
provides concentration bounds on the `1-deviation of the
transition probabilities p̂(·|s, a) for any (s, a).

Lemma 1. The `1-deviation of the true distribution and the
empirical distribution using n samples, over the next states
given the current state s and action a is bounded by

P (‖p̂(·|s, a)− P (·|s, a)‖1 ≥ ε) ≤ 2S exp (−nε
2

2
) (10)

Proof. The proof follows on the lines of [Weissman et al.,
2003, Theorem 2.1], using the distribution as transition
probabilities.

Lemma 2 (Hoeffding’s Inequality, [Hoeffding, 1994]). Let
{Xt}Tt=1 be i.i.d. random variables in [0,1]. Then, we have,

P (

T∑
t=1

Xi,t ≥ ε) ≤ exp

(
−2ε2

T

)
(11)

The next lemma provides concentration bounds on the sum
of M independent Martingale sequences for length T .

Lemma 3. Let {Xi,t}Tt=1 be a zero-mean Martingale se-
quence for i = 1, · · · ,M adapted to filtration {Ft}Tt=0.
Then, if {Xi,t}Tt=1 and {Xj,t}Tt=1 are independent for all
i 6= j and |Xi,t|Xi,t−1| ≤ c for all i, t, we have,

P

(
T∑
t=1

M∑
i=1

Xi,t ≥ ε

)
≤ exp

(
− 2ε2

MTc2

)
(12)
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Proof Sketch. We prove this lemma similar to the proof
of Azuma-Hoeffding’s Inequality [Hoeffding, 1994]. A de-
tailed proof is provided in the supplementary material.

We now bound the growth rate of the total number of vis-
itations to state action pair (s, a),

∑M
i=1 νi,k(s, a), in any

epoch k. If the total visitations are large, then the agents
will incur large regret from a possibly sub-optimal policy.
Hence, we have the following lemma:

Lemma 4. For any epoch k, we have,∑M

i=1
νi,k(s, a) ≤ Nk(s, a) +M − 1 (13)

Proof. Note that agent i requests for synchronization,
and triggers a new epoch, whenever νi,k(s, a) =
dNk(s, a)/Me ≤ Nk(s, a)/M + (M − 1)/M . Summing
over all the agents i gives the bound.

Lemma 5 (Lemma 19 [Jaksch et al., 2010]). For any se-
quence of number z1 ≤ z2 ≤ · · · ≤ zn with zk ≤∑k−1
k′=1 zk′ =: Zk, we have,

n∑
k=1

zk
Zk
≤ (
√

2 + 1)Zn (14)

The last lemma states that the span of the bias of the optimal
policy defined as maxs v(s)−mins v(s) is bounded by the
diameter D.

Lemma 6 (Remark 8 from Jaksch et al. [2010]). The span
of the bias v : S → R of the optimal policy π for any MDP
M is upper bounded by its diameter D(M), or,

sp(v) = max
s
v(s)−min

s
v(s) ≤ D(M) (15)

After stating all the necessary lemmas, we are now ready
to prove the regret bound of the DIST-UCRL algorithm
or ∆(M, DIST-UCRL, s, T ). We provide a detailed sketch
here and provide the complete proof in the supplementary
material.

Proof Sketch of Theorem 1. We break the regret expression,
into 4 different sources of regrets as:

1. Regret from deviating from expected reward: Note
that regret compares the expected optimal gain ρ∗ with
the observed rewards ri,t. Since, ri,t is a random variable
between [0, 1], the agents suffer a regret if the observed
rewards are lower as compared to the mean. Hence, we
use Hoeffding’s inequality [Hoeffding, 1994] to bound the
regret generated by the randomness of the observed rewards.
This gives us regret bounded by Õ(

√
MT ).

2. Regret from deviating from the expected next state:
The algorithm, when transitioning to the next state, expects

a bias given the current state. However, the bias of the real-
ized state may be different and even lower from the expected
bias. Hence, we bound the deviation from the expected bias
as the algorithm moves to states. Starting from state s, the
deviation process is modelled as a zero-mean Martingale
sequence of the states visited by an agent i. Also, we have
M independent agents interacting with M independent en-
vironment. We use Lemma 3 to bound the total deviation of
the realized bias and the expected bias. This gives us regret
bounded by Õ(D

√
MT ).

3. Regret from not optimizing for the true MDP:
For epoch k, we run an 1√

Mtk
-optimal policy for an

optimistic MDP from the set of MDPs M (tk) for∑
i∈[M ]

∑
s,a νi,k(s, a). The transition probabilities and the

mean rewards of MDPs in M (tk) satisfy Equation (7) and
Equation (6). When the true MDP M lies in M (tk), we
bound the regret because of the incorrect MDPs by the prod-
uct of the diameter of the set Ptk , the diameter D of the
MDPM, and the number of visitations to any state action
pair s, a in epoch k using Lemma 6. All we need to do now
is to bound the sum of the product for all epochs. We do
so by using Lemma 4 and Lemma 5. This gives us regret
bounded by Õ(DS

√
MAT ).

4. Regret when the estimated MDP is far from the true
MDPM: We use Lemma 1 to bound the `1 distances of
the estimated transition probability and the true transition
probability given any state action pair. Further, we also use
Hoeffding’s inequality (Lemma 2) to bound the distance
of the true mean rewards and the estimated rewards. Tak-
ing union bounds over all time steps till T , we obtain the
bound for all possible values of N(s, a). Further, taking
union bounds over all state and actions provide the desired
concentration bounds for all states and actions. Finally, we
take the union bounds for all values of t ≥ (MT )1/4. This
gives the total bound on probability that the true MDPM
lies in M (tk) as:

P (M /∈M (t)) ≤ 1

(MT )5/4
∀ t ≥ (MT )5/4. (16)

Now summing over all the regret sources, we get the regret
bound of the DIST-UCRL algorithm.

The proof of the Theorem 1 and Theorem 2 suggests that
the analysis could potentially be extended to various other
algorithms that follow the epoch completion condition from
the UCRL-2 Algorithm of [Jaksch et al., 2010].

6 NAIVE APPROACH: MOD-UCRL2
FOR MULTIPLE AGENTS

The proposed DIST-UCRL algorithm does not require the
agents to work sequentially, and hence the M agents can
truly work in parallel. For comparison of the proposed al-
gorithm and completeness, we also consider an extension
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of UCRL2 algorithm by Jaksch et al. [2010] for M parallel
agents which we call MOD-UCRL2. In the MOD-UCRL2
algorithm, we assume that all the agents communicate to a
centralized server at each time step t, and the server decides
the actions for the agents at each time t. Thus, the commu-
nication rounds for MOD-UCRL2 algorithm is O(T ), while
the regret analysis is not apriori clear, and is the focus of
this section. We also note that even though this algorithm
is an easy extension of UCRL2, the analysis of regret is
not straightforward, and uses the approach that was used to
prove the regret guarantees of DIST-UCRL because of the
presence of M agents.

At every time step t, every agent i ∈ [M ] observes
its state si,t and sends it to the server. The server af-
ter receiving all the states, process the requests sequen-
tially in the order s1,t, s2,t, · · · , sM,t. The central server
runs an instance of the UCRL2 algorithm with state se-
quence s1,1, s2,1, · · · , sM,1, s1,2, · · · , and the correspond-
ing action sequence a1,1, a2,1, · · · , aM,1, a1,2, · · · . The
UCRL2 algorithm, running at the server, proceeds in epoch
with epoch 1 starting with (i, t) = (1, 1). We consider
an epoch k contains observations for {(ik, tk), (ik, tk) +
1, · · · , (̄ik, t̄k)} for some ik, tk, īk, t̄k. The server maintains
counters νk(s, a) denoting the number of times a state action
pair s, a is visited in the epoch k, and counter Nk(s, a) de-
noting the number of times a state action pair s, a is visited
before the start of the epoch k as:

νk(s, a) =
∑(̄ik,t̄k)

(i,t)=(ik,tk)
1{si,t = s, ai,t = a} (17)

Nk(s, a) =
∑k−1

k′=1
νk′(s, a) (18)

The server updates an epoch k whenever νk(s, a) =
max{1, Nk(s, a)} for some s, a. Following the UCRL2 al-
gorithm, the server updates the policy at the beginning of
every epoch using the observations collected till the begin-
ning of the epoch. The complete algorithm is provided in
the supplementary material.

Note that in the MOD-UCRL2 algorithm, the agents only
behaves as interfaces to the M independent environments,
and is essentially not practical because of the sequential
interface. In the following result, we formally state the result
that the regret is upper bounded by Õ(DS

√
MAT ).

Theorem 3. For a MDPM = ([S], [A], P, r) with diam-
eter D, for any starting state s, the regret of the MOD-
UCRL2 algorithm, running on M agents for T time steps,
is upper bounded with probability at least 1− 1

(MT )5/4
as:

∆(M,MOD-UCRL2, s, T ) ≤ Õ(DS
√
MAT )

where Õ hides the poly-log terms in M,S,A, and T .

Proof Outline. Similar to the proof of Theorem 1, we again
consider the four sources of regret. Then, breaking the regret

into episodes when the MOD-UCRL2 algorithm updates
policy, we obtain the required bound. The complete proof is
provided in the supplementary material.

7 EVALUATIONS

In this section, we analyze the performance of the proposed
DIST-UCRL algorithm empirically. We test the DIST-UCRL
algorithm in multiple environments and also vary the num-
ber of agents in all the cases to study the regret growth with
respect to M . Further, we also evaluate the average number
of communication steps used by the DIST-UCRL algorithm
till time step T .

We first run the DIST-UCRL algorithm for the RiverSwim
environment, which is a standard benchmark for model-
based RL algorithm [Ian et al., 2013, Tossou et al., 2019]
with 6 states and 2 actions. Next, we construct an extended
RiverSwim environment with 12 states and 2 actions. Fi-
nally, we use a Grid-World environment [Sutton and Barto,
2018] for a 7 × 7 grid which amounts to 20 states and 4
actions.

We compare the DIST-UCRL algorithm against the MOD-
UCRL2 algorithm. We also compare with the standard
UCRL2 algorithm for M = 1. Note that for the case of
M = 1, both, DIST-UCRL algorithm and the MOD-UCRL2
algorithm reduces to the UCRL2 algorithm.

We run 50 independent iterations of the algorithm. We plot
the average per-agent regret, ∆(M, DIST-UCRL, s, T )/M ,
over the 50 iterations and the error bars for both DIST-UCRL
and MOD-UCRL2 algorithm in Figure 1. We vary the num-
ber of agents M as 1, 4, and 16 to reduce clutter in figures.
From Figure 1(a) and Figure 1(c), we note that the per-agent
regret decreases approximately by a factor of 2 for every
4-fold increase in the number of agents. This is expected
and was indeed the goal.

Note that in Figure 1(b), the per-agent regret falls from being
linear in UCRL2 (M = 1) to significantly sublinear as the
number of agents were increased to M = 4 and M = 16.
For the extended RiverSwim environment with 12 states, the
diameter is approximately 5×104. Hence, the available time
horizon of T = 105 was not sufficient for UCRL2. However,
distributed RL algorithms still observed a sub-linear regret
by collating their knowledge. This further demonstrates the
advantage of deploying multiple parallel agents in complex
environments to enhance exploration.

We also empirically evaluate the number of communication
rounds required by the DIST-UCRL algorithm. Note that
the number of communications for MOD-UCRL2 algorithm
is same as the total length for which the algorithm runs.
Hence, we only plot the number of communications rounds
required for the DIST-UCRL algorithm. We vary the number
of agents M in multiples for 2 and starting from M = 2
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Figure 1: Average cumulative regret per agent under various communication strategies. The empirical regret of the DIST-
UCRL algorithm and MOD-UCRL2 algorithm are almost identical which is expected from the regret analysis of the two
algorithms.
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Figure 2: Total number of communication rounds required for the DIST-UCRL algorithm for multiple number agents across
various environments.

agents. We again run the experiment for 50 independent
iterations and plot the average number of synchronization
rounds till time step t.

We plot the number of communication rounds of the DIST-
UCRL algorithm in Figure 2. We observe that the number
of the synchronization rounds increase very slowly with
t. Further, as suggested from Theorem 2, the number of
synchronization rounds are increasing in M . However, we
note that for large values of t, the increase in the number
of communication rounds is sub-linear. This is because for
the bound on the number of communication rounds, we take
pessimistic estimates on the increase on the visitation counts
Nk(s, a) where only one agent i updates total Nk(s, a) by a
factor of (1 + 1/M) only when the agent i triggers the syn-
chronization round for s, a. However, in practice, Nk(s, a)
grows faster than (1 + 1/M), as the synchronization rounds
triggered for other state action pairs and other agents also
contribute towards Nk(s, a).

8 CONCLUSION

In this work, we considered the problem of simultaneously
reducing the cumulative regret and the number of commu-
nication rounds between M agents. The M agents inter-
act with M independent and identical Markov Decision

Processes and share their data to learn the optimal policy
faster. To this end, we proposed DIST-UCRL, an epoch-
based algorithm, following which the agents communicate
in the beginning of every epoch. The data collected from
the M agents allows obtaining tighter deviation bounds and
hence a smaller confidence set. Further, the agents trigger
an epoch only after collecting sufficient samples in every
epoch. This allows us to bound the regret of the DIST-UCRL
algorithm as Õ(DS

√
MAT ) and the number of commu-

nication rounds as O(MAS log2(MT )). To analyze our
algorithm, we also provide a concentration inequality for
M independent Martingale sequence of equal length which
may be of an independent interest. We also evaluate the
algorithm empirically and found that the average per-agent
regret decreases as O(1/

√
M).

For comparison, we consider an extension of the UCRL2
algorithm for M parallel agents working in round-robin
sequence, and denote this algorithm as MOD-UCRL2. We
show that this algorithm also achieves the same regret bound
as DIST-UCRL algorithm, while withO(T ) communication
rounds. The regret guarantee required the techniques devel-
oped for DIST-UCRL. The evaluation results demonstrate
the effectiveness of the proposed DIST-UCRL algorithm in
achieving the same regret bound as MOD-UCRL2, while
with lower communication. Thus, the proposed DIST-UCRL
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algorithm can be utilized in training multiple parallel power
starved devices using reinforcement learning.
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