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1 ARCHITECTURE DETAILS

For the textual encoder, we use the first three layers of a
pretrained BERT model [Devlin et al.||2019] to extract the
text encoding of the attributes mentioned in the instruction.
We feed each attribute (color or shape) individually through
a BERT model and use the 768-dimensional output feature
corresponding to the [CLS] token as the textual encoding.
The first token of every sequence is always a special classi-
fication token ([CLS]). The final hidden state corresponding
to this token is often used as the aggregate sequence repre-
sentation for classification tasks [Devlin et al., 2019]. We
then project this vector to a more compact 32-dimensional
vector. The projection module comprises of a linear layer
followed by ReLU non-linearity, Layer Norm [Ba et al.,
2016] and another linear layer.

The visual encoder is a CNN model comprised of three con-
volutional layers, each followed by ReLU non-linearity. The
output of the final convolutional layer is flattened and passed
through a linear layer followed by ReLU non-linearity to
obtain a 512-dimensional vector. Similar to the text-encoder,
we use a non-linear projection module to project the visual
representation of the image, x € R5!2, to the individual
shape and color representations v°, v € R32,

The policy obtains the 32-dimensional state-embedding
from 4 x |O|-dimensional object tuple by passing through a
projection layer. It consists of two linear layers separated by
a ReLU non-linearlity. Similarly, the agent’s position em-
bedding is obtained by learning an embedding layer that en-
codes the agent’s position p € [0, 5) into a 16-dimensional
vector. Finally, the 16-dimensional instruction embedding
is obtained by passing the 2-dimensional instruction tuple
through a similar projection layer. These three features are
concatenated to form a 64-dimensional input to the recur-
rent policy. For the policy, we use a single layer GRU [Cho
et al.,[2014] with a 64 dimensional hidden state. The policy
is parameterized by a GRU [Cho et al.| [2014]]. The GRU
output is used to produce a softmax distribution over the
action space A and an estimate of the value function.

2 HYPER-PARAMETERS

Next, we list down the important hyper-parameters associ-
ated with training the RL policy.

Hyperparameter Value
PPO
Clip parameter (Schulman et al.|[2017]] 0.2
Rollout timesteps 128
Epochs 2
Value loss coefficient 0.5
Discount factor () 0.99
GAE parameter () 0.95
Normalize advantage False
Training
Optimizer Adam
(81, B2) for Adam (0.9,0.999)
Learning rate 1.0e~*
Gradient clip norm 0.2
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