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Abstract

Conditional independence (CI) is a fundamental
concept with wide applications in machine learn-
ing and causal inference. Although the problems
of testing CI and estimating divergences have been
extensively studied, the complementary problem
of generating data that satisfies CI has received
much less attention. A special case of the genera-
tion problem is to produce conditionally indepen-
dent predictions. Given samples from an input data
distribution, we formulate the problem of gener-
ating samples from a distribution that is close to
the input distribution and satisfies CI. We estab-
lish a characterization of CI in terms of a general
divergence identity. Based on one version of this
identity, an architecture is proposed that leverages
the capabilities of generative adversarial networks
(GANs) to enforce CI in an end-to-end differen-
tiable manner. As one illustration of the problem
formulation and architecture, we consider applica-
tions to notions of fairness that can be written as
CIs, specifically equalized odds and conditional
statistical parity. We demonstrate conditionally in-
dependent prediction that trades off adherence to
fairness criteria against classification accuracy.

1 INTRODUCTION

Conditional independence (CI) is a fundamental probabilis-
tic notion that has applications in causal inference and ma-
chine learning. In causal inference, CI tests are used to
efficiently narrow down the space of causal graphs compati-
ble with the given data, not only in observational but also
in interventional settings where data from experiments are
available [Yang et al., 2018]. In machine learning, CI tests
are used as a non-parametric method for feature selection
[Tsamardinos et al., 2003].

Due to its widespread uses, CI testing has been extensively
studied in computer science, statistics, and information the-
ory, as we discuss in Section 1.1. However, much less at-
tention has been paid to the complementary problem of
generating data with a desired CI, which commonly man-
ifests as modifying a given dataset for which the CI is not
satisfied. We pay particular attention to the case where the
two variables that should be conditionally independent are
an outcome variable and sensitive attributes. In this case,
the generation problem becomes conditionally independent
“fair” prediction.

The canonical problem of interest is as follows: Given sam-
ples of (X,Y, Z,W ) drawn from p(x, y, z, w), how can we
generate samples from a distribution p̃(x̃, ỹ, z̃, w̃) such that:
(a) X̃ ⊥⊥ Ỹ |Z̃ and (b) p and p̃ are close in some appropriate
distance measure? In the case of fair prediction, Y is an
“unfair” label and X are sensitive attributes. Here W are
extra variables that do not participate in the CI expression,
but could be important for reducing distance between p and
p̃. This is because W could have information about (say)
Y that is not captured by other variables. To address (a),
we seek an approximate version of the conditional indepen-
dence such that p̃(ỹ|x̃, z̃) is close to p̃(ỹ|z̃) in terms of a
suitable distance/divergence measure. This is a key prob-
lem we address in this paper. The solution is non-trivial
because the CI constraint is only on a subset of variables
(X,Y, Z) while one needs to match p and p̃ in all the vari-
ables (X,Y, Z,W ).

Although generation with CI constraints is a new problem,
if one considers existing ideas in the testing literature, then
enforcing CI could involve obtaining samples from a perfect
conditional sampler for p(y|z) (perhaps using a pre-trained
conditional generator). We discuss some natural strategies
that use this in Section 1.0.1. Some of these run into other
roadblocks besides the difficulty of perfect conditional sam-
pling when Z is high dimensional.

Our central idea rests on a general characterization of CI in
terms of equality between two divergences that involve sam-
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ples from p, p̃, and an imperfect sampler q(y|z) 6= p(y|z).
For bounded variables Y , the only requirement is that q(y|z)
has support overlap with p(y|z) and this can be ensured by
a uniform sampler on the bounded domain. We identify two
key properties of the divergences, separability and strict
convexity, that allow this result to be proven for a large
class of divergences including Jensen-Shannon divergence,
f -divergences, and Bregman divergences.

We develop a neural network architecture for approximate
CI data generation. This is based on a special case of the
characterization above for Jensen-Shannon divergence. We
recall the standard GAN (Generative adversarial networks)
architecture of Goodfellow [2016]. A discriminator is a
parameterized function that computes an approximate dis-
tance measure between two distributions from their samples.
When the discriminator’s parameters are optimized, its out-
put is a proxy for the distance measure. A generative model
transforms a white noise input to produce samples from
a distribution of interest. An adversarial game against the
discriminator forces the generator to produce the desired
distribution. In this context, our architecture (see Figure 1)
has two additional discriminators (corresponding to the two
divergences) and access to an imperfect sampler to enforce
CI, apart from the standard components used to enforce
closeness between p and p̃. Notably, it eliminates any need
for additional pre-trained perfect generative models. The
resulting CI-enforcing GAN enables a trade-off between
how much the CI statement is enforced and how close the
generated data is to the original dataset.

There are several potential applications of conditionally in-
dependent data generation. In this paper, we explore applica-
tions to fairness in machine learning, where many proposed
criteria can be written as CI statements (we mention another
application in Section 5). We focus on two criteria: 1) equal-
ized odds (EO) [Hardt et al., 2016, Zafar et al., 2017], which
requires CI between a predicted outcome Ŷ and protected
attribute S given the true outcome Y , and 2) conditional sta-
tistical parity (CSP) [Kamiran et al., 2013, Corbett-Davies
et al., 2017], a generalization of statistical parity that re-
quires CI of Ŷ and S conditioned on a set of admissible
variablesA that are considered legitimate factors accounting
for dependence between Ŷ and S. We specialize the pro-
posed CI-enforcing GAN architecture to these two criteria.
Using the well-known Adult income dataset, our approach
results in varying degrees of adherence to these criteria by
tuning a hyperparameter, without unduly sacrificing classifi-
cation accuracy. In the case of EO, for which there are many
existing solutions, these results can be regarded as a proof
of concept that the proposed CI generation method works.
For CSP on the other hand, many fewer solutions exist and
our contribution is more significant, being (as far as we
are aware) the first to handle multiple admissible variables
without having to enumerate all their values.

Our contributions: We proceed from general theory to

specific applications, as summarized below:

1. We establish a general characterization of CI in terms
of an identity that holds for a large class of divergences
satisfying separability and strict convexity properties.
This does not require access to samples from a condi-
tional generator for p(y|z).

2. Based on the Jensen-Shannon version of the identity,
we propose an end-to-end differentiable GAN-based ar-
chitecture for the problem of generating samples from
a distribution that approximately satisfies a desired CI
statement while remaining close to a given data distri-
bution.

3. As an illustration of the utility of the architecture, we
explore applications to fair classification in which pre-
dictions are generated to trade off between classifica-
tion accuracy on the original dataset and the criteria of
equalized odds or conditional statistical parity.

1.0.1 Key Technical Issue

We discuss some approaches that invariably rely on a pre-
trained perfect conditional generative model (or a sampler
along with a trained classifier if Y is categorical) to sample
Ỹ from p(y|z). A straightforward approach for enforcing
CI is to try to replace the original Y samples by Ỹ sam-
pled from p(y|z) using the perfect sampler and substitute
this for Y to obtain p̃. This will ensure CI in the subset
X̃, Ỹ , Z̃, after marginalizing over W . However, this ap-
proach generates Ỹ only from Z which is sub-optimal in
terms of distance between p and p̃ since W could capture
additional information about Y that is not captured by other
variables and this information need not be sacrificed nec-
essarily to impose CI. Another related solution would be
to construct a reference distribution pr(x, y, z) such that pr
is the conditionally independent version of p over X,Y, Z,
i.e. pr(x, y, z) = p(x, z)p(y|z), and then contrast p̃ with pr
using another discriminator to compute a distance between
p̃ and pr. The main drawback is that training a perfect condi-
tional generator is difficult when Z is high dimensional and
continuous. This issue has been recognized in the CI testing
literature [Berrett et al., 2020]. In this work, we propose a
different function that enforces CI only needing access to an
imperfect reference sampler q(y|z) 6= p(y|z). For bounded
variables Y , only the support of q(y|z) must overlap with
p(y|z) and this can even be ensured by a uniform sampler
on the bounded domain.

1.1 RELATED WORK

To the best of our knowledge, the current work is unique
in tackling the generation of data satisfying a CI statement
in a differentiable manner. Below we discuss methods for
testing CI and estimating divergences, some of which are
not differentiable.

2051



Conditional Mutual Information Estimation: Estimating
conditional mutual information is a clear approach to testing
CI [Póczos and Schneider, 2012] since two random vari-
ables are (conditionally) independent if and only if their
(conditional) mutual information is zero. Estimation has tra-
ditionally been done by estimating multiple entropy terms
using kernel density estimates [Gao et al., 2016]. Recently,
Belghazi et al. [2018] proposed variational lower bounds for
this task. In Gao et al. [2018], a very general principle for
estimating divergence measures was introduced based on
these variational lower bounds. Hash-based techniques for
divergence estimation have also been used [Noshad et al.,
2019]. However, these estimators are either not differen-
tiable or they provide only a lower bound using a differen-
tiable model. Our technique circumvents the need to obtain
a differentiable upper bound on mutual information. Works
by Alemi et al. [2018], Poole et al. [2019] do derive upper
bounds on mutual information but not conditional mutual in-
formation. Moreover, Poole et al. [2019] require knowledge
of p(y|x) to arrive at their upper bound (see their Figure
1); we do not have this requirement. If p(y|x) is not known,
Poole et al. [2019] provide lower bounds that are a refine-
ment of MINE [Belghazi et al., 2018].

Conditional Independence Testing: Testing CI has been
well-studied as a hypothesis testing problem and is central to
works on causality [Koller and Friedman, 2009, Pearl, 2009,
Peters et al., 2017] and high-dimensional feature selection.
Traditional methods relied on testing correlation between
residuals of Y |Z and X|Z. Works like Zhang et al. [2011],
Gretton et al. [2012, 2008] extended this principle using
kernel spaces; Park and Muandet [2020] do so for condi-
tional distributions. There is a recent line of work that uses
a perfect sampler from conditional distributions to accom-
plish independence testing [Bellot and van der Schaar, 2019,
Candes et al., 2016, Berrett et al., 2020]. Recently, with the
success of neural networks, so-called model-powered ap-
proaches have used strong classifiers to map the problem of
CI testing to nearest neighbor estimation and classification
[Sen et al., 2017]. Inspired by Sen et al. [2017], we provide
a differentiable CI-enforcing method based on GANs. We
would like to note that, generation is a different problem
compared to testing when the focus is only about accepting
or rejecting the null which is the conditionally independent
distribution.

Fairness Criteria and Fair Classification: We mention
more closely related works within the rapidly-growing lit-
erature on fair supervised learning. One line of work [Ed-
wards and Storkey, 2016, Xie et al., 2017, Beutel et al., 2017,
Zhang et al., 2018, Madras et al., 2018, Xu et al., 2018, Song
et al., 2019] aims to achieve fairness through adversarial
means by learning representations that remain predictive of
an outcome Y but are invariant to (i.e. poorly predictive of) a
sensitive attribute S. More recent works [Beutel et al., 2017,
Zhang et al., 2018, Madras et al., 2018, Song et al., 2019]

also address the equalized odds criterion Ŷ ⊥⊥ S |Y and we
compare to Zhang et al. [2018] herein. Similar to our work,
Xu et al. [2018] use GANs to generate data (X̂, Ŷ ) close
to the given distribution of (X,Y ) while satisfying fairness
conditions X̂ ⊥⊥ S and Ŷ ⊥⊥ S. These conditions however
are akin to statistical parity and are not conditional. Song
et al. [2019] make use of bounds on mutual information
similar to those of Alemi et al. [2018], Poole et al. [2019]
cited above. However, Song et al. [2019] also do not address
general conditioning, focusing on demographic parity (not
conditional), equal opportunity (restricting to Y = 1), and
equalized odds, where they exploit the binary nature of Y .

Conditional statistical parity (CSP) was introduced by Kami-
ran et al. [2013] and further discussed by Corbett-Davies
et al. [2017]. The methods of Kamiran et al. [2013] achieve
CSP by stratification and thus work best with a single dis-
crete admissible variable A, i.e. conditioning on a scalar
discrete variable. In contrast, our proposed method can han-
dle multiple admissible variables without the exponential
dependence on dimension entailed by stratification. A gen-
eralization of CSP is stated in Salimi et al. [2019] as a suffi-
cient condition for their causal notion of justifiable fairness.
This is a concrete example of a CI statement being used as a
sufficient condition for a causal fairness definition; connec-
tions to other definitions by Kilbertus et al. [2017], Kusner
et al. [2017], Nabi and Shpitser [2018], Chiappa [2019]
may be possible. Salimi et al. [2019] propose algorithms
based on MaxSAT and non-negative matrix factorization;
the latter approach however has to enumerate all values of
the conditioning variables.

2 A GENERAL CHARACTERIZATION OF
CONDITIONAL INDEPENDENCE

We develop our key theoretical result for random variables
defined over real domains. Let X , Y and Z be three random
variables taking values in X ⊆ Rdx , Y ⊆ Rdy and Z ⊆
Rdz and following a joint distribution PX,Y,Z . To simplify
notation, we will drop the subscripts from P when it is
clear that we are referring to the joint distribution. We are
interested in a measure of conditional dependence of X
and Y given Z. Conditional independence (CI) is written as
X ⊥⊥ Y |Z.

For technical simplicity, we assume that P and other prob-
ability distributions to be introduced are absolutely con-
tinuous with respect to a measure ν and that their Radon-
Nikodym derivatives exist, e.g. dPdν = p. In particular, we
focus on the case where ν is the Lebesgue measure over
Rdx ×Rdy ×Rdz and p is therefore a density function. The
same development holds for discrete distributions with p
representing a probability mass function and ν the counting
measure (and suitably modified proofs).

A divergence D(P,Q) between probability distributions
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P and Q is usually understood to be a non-negative func-
tion D(P,Q) ≥ 0 for all P,Q such that D(P,Q) = 0 if
and only if P = Q. Following the discussion in the pre-
vious paragraph, we will consider D to be a function of
the corresponding Radon-Nikodym derivatives or densities,
i.e. D(p, q) with q = dQ

dν .

Our characterization of CI involves divergences between
the given distribution P of (X,Y, Z) and a distribution Q
of (X,Y ′, Z), where the joint distribution of (X,Z) is the
same as in P while Y ′ ∈ Y follows a conditional distri-
bution QY ′ |Z independent of X , with conditional density
function qY ′ |Z . Thus the marginal density of Q with re-
spect to (Y ′, Z) is qY ′,Z = pZqY ′ |Z and the joint density
is q = qX,Y ′,Z = pX,ZqY ′ |Z . The choice of qY ′ |Z is fairly
flexible and we discuss it in Section 3.3. We use qY ′ | z and
similar notation to denote the conditional density of Y ′ for
a fixed z.

To obtain our characterization of CI formally, we assume
that D has the following additional properties:

Assumption 1 (Strict convexity). D(p, q) is a strictly con-
vex function of either p or q.

Assumption 2 (Separability). Suppose that p and q are joint
densities over X × Y with the same marginal density with
respect to X , i.e. p = pXpY |X and q = pXqY |X . Then
D(p, q) = Ex∼PX

[D(pY | x, qY | x)] is the expectation of
the divergence between conditional distributions of Y .

Theorem 1. Let PX,Y,Z and QX,Y ′,Z be the joint distri-
butions of (X,Y, Z) and (X,Y ′, Z) specified above. If di-
vergence D(p, q) is strictly convex in p (Assumption 1) and
separable (Assumption 2), then

D
(
pX,Y,Z , qX,Y ′,Z

)
= D

(
pY,Z , qY ′,Z

)
⇐⇒ X ⊥⊥ Y |Z.

All proofs can be found in the supplementary material (SM).
IfD(p, q) is strictly convex in q instead of p as in Theorem 1,
then the same result is obtained by switching the arguments
of the divergence.

Corollary 1. If D(p, q) is strictly convex in q (Assump-
tion 1) and separable (Assumption 2), then

D(qX,Y ′,Z , pX,Y,Z) = D(qY ′,Z , pY,Z) ⇐⇒ X ⊥⊥ Y |Z.

We discuss known special cases of Theorem 1 and Corol-
lary 1 in Section 2.2.

2.1 THE DEPENDENT CASE AND A MEASURE OF
DEPENDENCE

We now discuss the case in which X and Y are de-
pendent conditioned on Z. Theorem 1 then implies that
D(pX,Y,Z , qX,Y ′,Z) 6= D(pY,Z , qY ′,Z), and in fact we have
D(pX,Y,Z , qX,Y ′,Z) > D(pY,Z , qY ′,Z) since the proof of

Theorem 1 shows that the difference between the diver-
gences is non-negative. Specifically, the difference is the
expectation of a non-negative function

ξ(z) = Ex∼PX | z

[
D
(
pY | x,z, qY ′ | z

)]
−D

(
Ex∼PX | z

[
pY | x,z

]
, qY ′ | z

)
. (1)

We may then interpret the magnitude of the difference
D(pX,Y,Z , qX,Y ′,Z)−D(pY,Z , qY ′,Z) as a measure of con-
ditional dependence of X and Y .

Taking this interpretation a step further, we can consider
the function ξ(z) as a measure of the dependence of X
and Y conditioned on a particular Z = z. Examination
of (1) shows that ξ(z) is the slack in Jensen’s inequality,
i.e. the difference between the expectation of a convex func-
tion of pY | x,z and the same convex function evaluated at
the expected value of pY | x,z , which is pY | z . Qualitatively
speaking, the more that pY | x,z varies with (i.e. depends on)
x, the greater the slack ξ(z) is expected to be. If pY | x,z
does not vary with x (almost surely), then ξ(z) = 0.

With additional assumptions, it is possible to relate ξ(z) to
a measure of variation with x based on L2 distance between
pY | x,z and pY | z . The derivation is in the SM.

Proposition 1. Assume that D(p, q) is differentiable
and strongly convex in p with parameter m, and that
pY | z , pY | x,z for all x such that pX | z(x | z) > 0, and
∇pD(p, qY ′ | z)|p=pY | z all belong to the space of square-
integrable functions L2(Y). Then

ξ(z) ≥ m

2
Ex∼PX | z

[∥∥pY | x,z − pY | z∥∥2L2

]
.

2.2 DIVERGENCES SATISFYING ASSUMPTIONS

We show that many well-known divergences satisfy Assump-
tions 1 and 2, and therefore Theorem 1 and/or Corollary 1
apply to them.

f -divergences Given two distributions P and Q with den-
sities p(x), q(x) such that P is absolutely continuous with
respect to Q, and a convex function f : R+ 7→ R such that
f(1) = 0, the f -divergence between P and Q is defined as

Df (p, q) = EQ
[
f

(
p(X)

q(X)

)]
. (2)

Due to the fact that p(x) enters into (2) only through the
ratio p(x)/q(x), all f -divergences satisfy the separability
property (Assumption 2) as verified in the SM. Assumption 1
can be satisfied if the function f is strictly convex.

Proposition 2. If f : R+ 7→ R is strictly convex, then
Df (p, q) is a strictly convex function of p for all p that are
absolutely continuous with respect to q.
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Remark: In the case of f -divergences, the above indicates
that absolute continuity of p with respect to q is needed for
Theorem 1 to hold. For bounded Y , we can take q to be the
uniform distribution.

It follows that many common f -divergences satisfy As-
sumptions 1 and 2: KL divergence (f(t) = t log t or
f(t) = − log t), χ2 divergence (f(t) = t2 − 1), squared
Hellinger distance (f(t) = 2(1−

√
t)), but not total varia-

tion distance.

Kullback-Leibler divergence In the case of KL diver-
gence, KL(p ‖ q) = EP [log (p(X)/q(X))], Theorem 1 re-
duces to the well-known condition of conditional mutual
information being zero.

Corollary 2. If D is the Kullback-Leibler divergence, then
Theorem 1 reduces to I(X;Y |Z) = 0 ⇐⇒ X ⊥⊥ Y |Z,
where I(X;Y |Z) is the conditional mutual information.

In this case, the auxiliary variable Y ′ drops out of the iden-
tity.

f -divergences without conditioning If Z is constant,
then we may drop the conditioning on Z and drop Z from
all distributions. Then the identity in Theorem 1 becomes
D(pX,Y , qX,Y ′) ≥ D(pY , qY ′), where again the inequal-
ity is shown in the proof. If we also let Y ′ have a general
conditional distribution qY ′ |X , then this coincides with the
“conditioning increases f -divergence” property of Polyan-
skiy and Wu [2019, Thm. 6.1].Theorem 1 is more general
because 1) we do condition on arbitrary Z, as required in
our application, and 2) we do not restrict ourselves to f -
divergences, instead identifying general conditions on the
divergence (Assumptions 1 and 2) for the theorem to hold.

Jensen-Shannon divergence The case of Jensen-
Shannon (JS) divergence is of particular interest in this
paper because it forms the basis for the architecture in Sec-
tion 3. We use the following definition of JS divergence
between distributions P and Q with densities p and q:

JS(p ‖ q) =
1

2
KL

(
p
∥∥∥ p+ q

2

)
+

1

2
KL

(
q
∥∥∥ p+ q

2

)
.

(3)
The JS divergence is also a (perhaps less well-known) f -
divergence with f(t) = t

2 log
(

2t
1+t

)
+ 1

2 log
(

2
1+t

)
. The

first term in f(t) has been noted e.g. by Lin [1991]. Since
f ′′(t) = 1/(2t(1+t)) > 0 for t > 0, f(t) is strictly convex.
Hence the JS divergence satisfies both Assumptions 1 and
2.

Bregman divergences Let F be a strictly convex and
differentiable function mapping probability distributions to
the reals. The function F defines a Bregman divergence
through

DF (p, q) = F (p)− F (q)− 〈∇F (q), p− q〉, (4)

where 〈·, ·〉 denotes an inner product. Bregman divergences
thus satisfy Assumption 1 by virtue of (4) and the strict
convexity of F . Besides KL divergence (and its general-
izations), a Bregman divergence that also satisfies Assump-
tion 2 is Itakura-Saito distance, due to the fact that it depends
on (p, q) only through their ratio, similar to f -divergences
[Banerjee et al., 2005].

3 CONDITIONALLY INDEPENDENT
DATA GENERATION

In the remainder of the paper, we consider the problem of
generating data from a distribution that satisfies a desired CI
statement while remaining close to a given data distribution.
We now use X,Y, Z,W to denote random variables that are
distributed according to the given distribution, with density
p(x, y, z, w).

Our goal is to generate samples (x̃, ỹ, z̃, w̃)i from the
same domain X × Y × Z × W and following a distri-
bution p̃(x̃, ỹ, z̃, w̃) that is close to the input distribution
p(x, y, z, w) in JS divergence, while ensuring that X̃ is con-
ditionally independent of Ỹ given Z̃. The optimization is
stated as

min JS
(
p̃(x̃, ỹ, z̃, w̃) ‖ p(x, y, z, w)

)
s.t. X̃ ⊥⊥ Ỹ | Z̃.

(5)

We leverage the results of Section 2 by assuming that we
have a sampler for Y ′ ∼ q(y′ | zf ) such that p̃(y | z̃) is
positive only where q(y | z̃) > 0 a.s. This ensures that the
joint densities p̃(x̃, ỹ, z̃) and q(x̃, y′, z̃) = p̃(x̃, z̃)q(y′ | z̃)
satisfy the absolute continuity assumption in Proposition 2,
which in turn ensures that Assumption 1 and Theorem 1
hold. We then proceed to use the Jensen-Shannon version
of Theorem 1 and the dependence measure that it defines to
relax (5) as follows:

min JS
(
p̃(x̃, ỹ, z̃, w̃) ‖ p(x, y, z, w)

)
s.t. JS

(
p̃(x̃, ỹ, z̃) ‖ q(x̃, y′, z̃)

)
− JS

(
p̃(ỹ, z̃) ‖ q(y′, z̃)

)
≤ δ.

(6)

The choice of JS divergence allows us to exploit the capa-
bilities of GANs, as described in Section 3.1.

Remark: If W = ∅, then as discussed in the introduction,
(5) could be addressed by faithfully generating Ỹ follow-
ing p(y|z). Conditional generation however becomes more
difficult in high dimensions. When W is non-empty, there
is an additional trade-off between CI constraint imposition
and closeness between p̃(x̃, ỹ, z̃, w̃) and p(x, y, z, w). For
example, if the generated data is used to learn a predictor
for Ỹ , one may not want to hurt accuracy too much by com-
pletely ignoring W just to satisfy conditional independence
amongst Ỹ , X̃ and Z̃.
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Enforcing Component

GAN Component
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Figure 1: Proposed architecture to enforce
conditional independence
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Enforcing Component

Classifier Generating
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𝑦!, �̃� %𝑦, �̃� 𝑠, %𝑦, �̃�𝑠, 𝑦!, �̃�

Given �̃�, 𝑦!~𝑞 𝑦 �̃� 𝑠, 𝑣

(𝑠, 𝑣, 𝑦)

𝑢"

%𝑦
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𝔼 𝐷#$ 𝑝 𝑦 𝑠, 𝑣 || %𝑝 %𝑦 𝑠, 𝑣

Figure 2: Simplified architecture to enforce fairness

3.1 GENERAL GAN ARCHITECTURE AND
ALGORITHM

We propose using the general GAN architecture provided
in Figure 1 for generating samples from a distribution p̃
that aims to solve (6). The architecture involves three dis-
criminators Dφi

, i ∈ {1, 2, 3}, one generator Gθ1 , and a
sampler which samples Y ′ ∼ q(y′|z̃). The generator and
the first discriminator Dφ1 constitute a typical GAN which
attempts to bring the generated distribution closer to the
original one. Discriminators Dφ2

, Dφ3
together with loss

L4 comprise the CI-enforcing component. The two discrim-
inators compute tight variational lower bounds L2 and L3

on the two JS divergences in the constraint in (6). Loss L4

then encourages the squared difference (L2 − L3)2 to be
small; other functions of the difference are possible.

The loss functions of the three discriminators are standard
GAN losses that approximate the JS divergences between
the distributions whose samples are given as input [Nowozin

et al., 2016]. Specifically,

L1 = Eu1 [log(1−Dφ1(Gθ1(u1)))]

+ E(x,y,z,w)∼p(x,y,z,w)[logDφ1(x, y, z, w)]

L2 = Eu1 [log(1−Dφ2(Gθ1(u1)))]

+ E(x̃,y′,z̃)[logDφ2(x̃, y′, z̃)]

L3 = Eỹ,z̃[log(1−Dφ3(ỹ, z̃))] + E(y′,z̃)[logDφ3(y′, z̃)].
(7)

Here, Dω(x) = 1
1+e−Vw(x) is the sigmoid function acting

on the logit output Vw(x) of a deep neural network parame-
terized by ω.

The training of the weights in the architecture proceeds
as specified in Algorithm 1. Below we describe the two
alternating steps that correspond to lines 4–5 and 6–7 in
Algorithm 1.

Training Discriminators: Keeping θ1 fixed, the three dis-
criminators maximize their corresponding losses L1, L2, L3

with respect to their parameters φ1, φ2 and φ3, thus approx-
imating the JS divergences between the input distributions
to the discriminators.

Training Generator: Keeping the discriminator parame-
ters φ1, φ2, φ3 fixed, the generator is trained to optimize
the combination of two losses, one that enforces similarity
between the given and generated distributions (L1), and one
that ensures the desired CI (L4). The generator objective is

min γL4 + L1, (8)

where γ is used as a trade-off parameter. Note that the gener-
ator minimizes only the (squared) difference between losses
(L2 − L3)2 and not L2, L3 themselves.

3.2 THEORETICAL RESULTS

In this subsection, our interest is in showing that if dis-
criminators approximate the divergences well, then large
conditional dependence necessarily implies a large value
for our metric and conditional independence would imply
small value for our metric. The following lemma asserts that
the losses L2, L3 provide variational lower bounds on their
respective JS divergences. The proof follows from Sections
2.1 and 2.4 in Nowozin et al. [2016].

Lemma 1. For any θ1, φ2, and φ3 we have:

L2 ≤ 2JS
(
p̃(x̃, ỹ, z̃) ‖ q(x̃, y′, z̃)

)
− log 4,

L3 ≤ 2JS
(
p̃(ỹ, z̃) ‖ q(y′, z̃)

)
− log 4.

The next result simply makes precise the fact that if L2 and
L3 are close approximations to the JS divergences, then their
difference reflects the dependence measure in the constraint
in (6). It is a consequence of Lemma 1 and Theorem 1.
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Algorithm 1 Conditionally Independent Data Generation
.
1: Input: Dataset: D ∼ p(x, y, z, w); Iterations: T1, T2, E; Stepsizes: η1, η2; Sampler: Given z̃ samples y′ ∼ q(y′|z̃).
2: Initialize: Set parameters φ1, φ2, φ3, θ1 randomly, and iteration counter e = 1.
3: for e = 1, . . . , E do
4: for t1 = 1, . . . , T1 do
5: (φ1, φ2, φ3)← GRADIENT DESCENT(−L3 − L2 − L1, η1, (φ1, φ2, φ3)) . Train Discriminators
6: for t2 = 1, . . . , T2 do
7: θ1 ← GRADIENT DESCENT(L1 + γL4, η2, θ1) . Train Generator
8: Output: Generator Gθ1 .

Proposition 3. For a given θ1, suppose that there exist φ∗2
and φ∗3 that provide ε-approximations to their respective JS
divergences:

L2 ≥ 2JS
(
p̃(x̃, ỹ, z̃) ‖ q(x̃, y′, z̃)

)
− log 4− ε,

L3 ≥ 2JS
(
p̃(ỹ, z̃) ‖ q(y′, z̃)

)
− log 4− ε.

Then

L2 − L3 ≥ 2
(
JS
(
p̃(x̃, ỹ, z̃) ‖ q(x̃, y′, z̃)

)
− JS

(
p̃(ỹ, z̃) ‖ q(y′, z̃)

))
− ε,

and if conditional independence holds, i.e. Ỹ ⊥⊥ X̃ | Z̃, we
also have L2 − L3 ≤ ε.

In particular, minimizing L4 = (L2 − L3)2 brings X̃, Ỹ , Z̃
closer to conditional independence, provided that L2 and
L3 approximate the JS divergences well.

Based on the development in Section 2, the above “differ-
ence of divergences” dependence measure assumes absolute
continuity of p with respect to q. In the theorem below how-
ever, we use the particular properties of JS divergence to
show that even if absolute continuity is not satisfied, L2−L3

is still bounded from below by a different dependence mea-
sure.

Theorem 2. For a given θ1, suppose that φ∗2 and φ∗3 sat-
isfy the assumptions of Proposition 3. For some constants
η1 > 0, η2 > 0, δ > 0, γ > 0, suppose the distribu-
tion q is such that the event B(η1, η2, δ) = {(x, y, z) :

p̃(y|z) > η1, q(y|z) ≥ η2, |log p̃(y|x,z)
p̃(y|z) | > δ} has proba-

bility Prp̃(x,y,z)(B(η1, η2, δ)) > γ. Then

L2 − L3 ≥ 2γ
η21(1− e−δ)2

(1 + 1/η2)4
− ε.

Remark: Theorem 2 quantifies dependence in terms of the
probability γ of regions where the log-ratio log p̃(y|x,z)

p̃(y|z) is
large and both p̃(y|z) and q(y|z) have non-zero probability
mass. In particular, it stipulates that q should have proba-
bility mass in regions where p̃ has mass and conditional
dependence is high. This is weaker than absolute continuity
of p̃ with respect to q. Note also that the lower bound on
L2 − L3 is increasing in all parameters η1, η2, δ, γ.

3.3 CHOICE OF THE SAMPLING DISTRIBUTION
q

If Y , the domain of Y , Ỹ , and Y ′, is bounded or discrete
with finite cardinality, then it suffices to choose the sampling
distribution q(y′ | z̃) to be uniform over the support. This en-
sures that q(y | z̃) covers the support of p̃(y | z̃) completely.
It also resolves any support issues in estimating JS diver-
gence by discriminatorsDφ2

andDφ3
, so that losses L2 and

L3 will not diverge to infinity even if discriminator training
is run for longer. In fairness applications in Section 4, Y can
be taken to be a scalar outcome variable, i.e. dy = 1, and in
classification settings it has finite cardinality. We therefore
adopt uniform sampling in the experiments in Section 4.2.

4 APPLICATIONS TO ENFORCING
FAIRNESS CRITERIA

We discuss an application of the framework of Section 3 to
fairness in machine learning, and specifically to enforcing
two fairness measures that involve conditioning. The first
condition is conditional statistical parity (CSP) [Kamiran
et al., 2013] where we wish to make outcomes independent
of protected attributes conditioned on admissible variables
A, i.e. Ỹ ⊥⊥ S |A. The well-known Berkeley admissions
case [Bickel et al., 1975] makes clear the importance of
CSP, where the bias in admissions (Ỹ ) against female ap-
plicants (S is gender) changed patterns when conditioned
on departments (A). In the CSP case, the advantage of the
proposed CI generation method is that it handles multiple
admissible variables (possibly continuous) while avoiding
enumeration of all their values. The second fairness criterion
is equalized odds (EO) [Hardt et al., 2016], a well-known
measure used in fair binary classification. It requires equal
rates of false positives and false negatives between groups
defined by protected attributes S. Denoting the predicted
and true labels by Ỹ and Y , this corresponds to Ỹ ⊥⊥ S |Y .
As mentioned in the introduction, there are many existing
methods for enforcing EO, and our consideration of EO can
be seen more as a proof of concept that CI data generation
works in a known setting.
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Table 1: Differences in accuracy and differences in maxi-
mum conditional statistical disparity (MCSD) with respect
to γ = 0. Protected attribute is gender. Admissible attributes
are years of education (top) and both years of education and
hours per week (bottom). Standard errors in parentheses.

γ ∆Acc. (%) ∆MCSDedu (%)

0.01 0.2 (0.3) 1.1 (1.9)
0.1 0.3 (0.3) -0.6 (1.6)
1.0 -0.2 (0.4) -1.8 (2.0)
10 -0.9 (0.4) -7.1 (2.1)
50 -2.9 (0.4) -17.3 (2.4)

100 -2.3 (0.4) -16.9 (2.5)
1000 -3.0 (0.3) -23.7 (1.7)

γ ∆Acc. (%) ∆MCSDedu (%) ∆MCSDhrs (%)

0.01 0.0 (0.3) -0.6 (1.8) 3.2 (2.9)
0.1 -0.2 (0.3) -0.9 (2.1) -2.6 (2.7)
1.0 -0.5 (0.3) -1.0 (2.1) -4.7 (2.8)
10 -0.2 (0.4) -6.2 (2.2) -12.7 (2.5)
50 -3.0 (0.3) -18.3 (2.6) -25.0 (2.1)

100 -2.8 (0.4) -20.6 (2.6) -23.8 (2.2)
1000 -5.5 (1.9) -16.0 (2.7) -18.7 (2.6)

4.1 ARCHITECTURE

In Figure 2, we specialize the generic architecture proposed
in Figure 1 to promote CSP and EO. The sensitive attributes
S play the role of X̃ . In the CSP case, the conditioning
variable Z̃ = A, the admissible variables, whereas in the EO
case, Z̃ maps to Y , the true label. The symbol V represents
all predictor variables other than the sensitive attributes,
including admissible variables A and other variables W .

The major difference in Figure 2 is that only the binary Ỹ is
generated while X̃ = S and Z̃ = A or Z̃ = Y come from
the original data. Hence, this is a simpler special case. As a
consequence, the generator Gθ1 reduces to a classifier that
takes the feature set (S, V ) and outputs a predicted label Ỹ
such that the cross-entropy loss between the ground truth
and predicted label distributions is small. This cross-entropy
loss takes on the role of discriminator Dφ1

in Figure 1. The
other components on the left side remain the same.

4.2 EXPERIMENTS

We demonstrate the utility of the architecture in Figure 2
for fair classification on the Adult Census Income [Kohavi,
1996] dataset. The target variable is whether a person’s an-
nual income exceeds 50, 000 USD. We consider gender/sex
and race as the protected attributes. For the CSP experi-
ments, we consider years of education and hours worked per
week as admissible attributes since these are well-accepted
as legitimate determinants of income. We use the dataset’s
fixed train/test split and report results on the test set. Ad-

Table 2: Changes in accuracy and equalized odds difference
(EOD) for the proposed CI method (with respect to γ = 0)
and adversarial debiasing (AD) [Zhang et al., 2018] (with
respect to λa = 0). Protected attribute is gender.

CI γ ∆Acc. (%) ∆EOD (%)

0.01 0.0 (0.3) -1.2 (0.6)
0.1 0.1 (0.3) -0.2 (0.6)
1.0 0.2 (0.3) -1.2 (0.7)
10 -1.4 (0.4) -3.8 (0.6)
30 -1.3 (0.3) -3.1 (0.6)
50 -1.3 (0.3) -4.0 (0.6)

100 -2.0 (0.3) -4.6 (0.6)
200 -2.8 (0.4) -3.5 (1.0)
300 -2.8 (0.3) -5.0 (0.5)

AD λa ∆Acc. (%) ∆EOD (%)

0.01 -0.1 (0.2) -0.5 (0.3)
0.1 -1.1 (0.3) 1.1 (0.4)
1.0 -1.8 (0.2) 10.6 (1.4)
10 -7.1 (0.4) 16.8 (5.7)

ditionally, we held out 30% of the training samples as the
validation set. The SM contains further details on data pre-
processing, the architecture and optimization. We report the
mean and standard error over 25 runs for the metrics.

Conditional Statistical Parity Results We implemented
the architecture in Figure 2 for CSP. Here we take gender as
the protected attribute and evaluate maximum conditional
statistical disparity (MCSD) by first computing the differ-
ence between predicted positive rates for females and males,
conditioned on each value of the admissible variable, and
then taking the maximum absolute difference. In the un-
penalized case, our CI method with γ = 0 in (8) achieves
an accuracy of (82.6± 0.2)%. Our main findings are illus-
trated in Table 1, which shows differences in accuracy and
differences in MCSD (denoted by ∆) with respect to the
γ = 0 values as γ is increased. With years of education as
the admissible variable (corresponding to Table 1, top), the
baseline MCSD for γ = 0 is (38.2± 1.4)%, whereas with
both education and work hours per week as admissible vari-
ables (Table 1 bottom), the baseline MCSD is (37.5±1.1)%
for education (averaging out hours/week) and (34.8±1.9)%
for hours/week (averaging out education). We see that in-
creasing γ reduces MCSD without a substantial reduction
in accuracy.

Equalized Odds Results For EO, we compare with the
adversarial debiasing (AD) [Zhang et al., 2018] algorithm
as a point of reference. AD was chosen because it is also a
GAN-like solution, developed specifically for fairness. Ad-
herence to EO is measured by the average absolute equal-
ized odds difference (EOD), which is the average of the abso-
lute differences in false positive rate (FPR) and negative rate
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(FNR) between two protected groups. In the unpenalized
case, our CI method with γ = 0 in (8) achieves an accuracy
of (82.6 ± 0.2)% and an EOD of (6.0 ± 0.5)%. AD with
parameter λa = 0 achieves (85.2 ± 0.1)% accuracy and
(4.2± 0.2)% EOD. These starting metrics are different for
CI and AD because of implementation differences that are
unfortunately hard to reconcile. Similar to the CSP case,
Table 2 shows changes in accuracy and EOD with respect
to the γ = 0 or λa = 0 values as γ and λa are increased.
For CI, increasing γ enforces EO more strictly as expected,
while accuracy decreases modestly. For AD however, the
EOD decreases only slightly before results deteriorate, with
a large decrease in accuracy and unexpected increase in
EOD. We did not increase λa further for this reason.

We also consider multiple protected attributes, namely sex
and race together. While AD can in principle be applied to
this setting by encoding sex and race as a single 4-category
variable, it requires changing the discriminator loss to multi-
class and we have been unable to tune it to obtain reasonable
results. In contrast, CI naturally handles multiple protected
attributes. For γ = 0, the EOD between sexes is (4.8 ±
0.4)% after averaging out race, and (6.2± 0.4)% between
races after averaging out sex. For γ = 10, these numbers
decrease to (2.8 ± 0.2)% and (4.7 ± 0.7)% respectively,
thus improving EO with respect to both attributes, while
accuracy is unchanged.

We note as a limitation that GANs are known to exhibit
instability and difficulty in training, and the proposed archi-
tecture does inherit these issues.

5 CONCLUSION

We have addressed the problem of enforcing conditional
independence (CI) on a data-generating distribution, as a
complement to the large literature on testing data distribu-
tions for CIs. Underpinning the work is a flexible charac-
terization of CI in the form of an identity that holds for a
wide class of divergences. This identity formed the basis
for a differentiable GAN-based architecture for generating
data to balance adherence to a desired CI with proximity
to a given data distribution. We demonstrated an applica-
tion to enforcing the fairness criteria of equalized odds and
conditional statistical parity.

One specific item for future work concerns the sampling dis-
tribution q(y′ | z̃): while we have found a uniform distribu-
tion to be sufficient in our experiments, it would be interest-
ing to explore alternatives that cover the support of p̃(ỹ | z̃)
and perhaps attempt to approximate it. More broadly, the
proposed CI-enforcing GAN exploits the Jensen-Shannon
version of the divergence identity, and fairness is only one
application of conditionally independent data generation.
Regarding the first point, similar architectures might be ex-
plored in future work, for example for other f -divergences,

building on f -GANs [Nowozin et al., 2016]. Regarding
other applications, one that would be interesting to explore
is invariant prediction [Peters et al., 2016, Arjovsky et al.,
2019], which can be stated as a CI condition: predictions
should be independent of the environment conditional on a
transformation of the data. It may also be possible to turn the
proposed difference in divergences measure into a CI testing
principle; this would require characterizing its distribution
under the null hypothesis.
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