
Sparse Linear Networks with a Fixed Butterfly Structure: Theory and Practice
(Supplementary Material)

Nir Ailon1 Omer Leibovitch1 Vineet Nair1

1Technion Israel Institute of Technology
1,3{nailon, vineet}@cs.technion.ac.il

2leibovitch@campus.technion.ac.il

1 BUTTERFLY DIAGRAM FROM SECTION 1

Figure 1 referred to in the introduction is given here.

Figure 1: A 16× 16 butterfly network represented as a 4-layered graph on the left, and as product of 4 sparse matrices on
the right. The white entries are the non-zero entries of the matrices.

2 PROOF OF PROPOSITION 1

The proof of the proposition will use the following well known fact (Lemma 2.1 below) about FJLT (more generally, JL)
distributions (see Ailon and Chazelle [2009], Ailon and Liberty [2009], Krahmer and Ward [2011]).

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

Lemma 2.1. Let x ∈ Rn be a unit vector, and let J ∈ Rk×n be a matrix drawn from an FJLT distribution. Then for all
ε < 1 with probability at least 1− e−Ω(kε2):

‖x− JTJx‖ ≤ ε . (1)

By Lemma 2.1 we have that with probability at least 1− e−Ω(k1ε
2),

‖x− JT1 J1x‖ ≤ ε‖x‖ = ε . (2)

Henceforth, we condition on the event ‖x− JT1 J1x‖ ≤ ε‖x‖. Therefore, by the definition of spectral norm ‖W‖ of W :

‖Wx−WJT1 J1x‖ ≤ ε‖W‖ . (3)

Now apply Lemma 2.1 again on the vectorWJT1 J1x and transformation J2 to get that with probability at least 1−e−Ω(k2ε
2),

‖WJT1 J1x− JT2 J2WJT1 J1x‖ ≤ ε‖WJT1 J1x‖. (4)

Henceforth, we condition on the event ‖WJT1 J1x− JT2 J2WJT1 J1x‖ ≤ ε‖WJT1 J1x‖. To bound the last right hand side,
we use the triangle inequality together with (3):

‖WJT1 J1x‖ ≤ ‖Wx‖+ ε‖W‖ ≤ ‖W‖(1 + ε). (5)

Combining (4) and (5) gives:
‖WJT1 J1x− JT2 J2WJT1 J1x‖ ≤ ε‖W‖(1 + ε). (6)

Finally,

‖JT2 J2WJT1 J1x−Wx‖ = ‖(JT2 J2WJT1 J1x−WJT1 J1x) + (WJT1 J1x−Wx)‖
≤ ε‖W‖(1 + ε) + ε‖W‖
= ‖W‖ε(2 + ε) ≤ 3‖W‖ε , (7)

where the first inequality is from the triangle inequality together with (3) and (6), and the second inequality is from the
bound on ε. The proposition is obtained by adjusting the constants hiding inside the Ω() notation in the exponent in the
proposition statement.

3 PROOF OF THEOREM 1

We first note that our result continues to hold even if B in the theorem is replaced by any structured matrix. For example the
result continues to hold if B is an `× n matrix with one non-zero entry per column, as is the case with a random sparse
sketching matrix Clarkson and Woodruff [2009]. We also compare our result with that Baldi and Hornik [1989], Kawaguchi
[2016].

Comparison with Baldi and Hornik [1989] and Kawaguchi [2016]: The critical points of the encoder-decoder network
are analyzed in Baldi and Hornik [1989]. Suppose the eigenvalues of Y XT (XXT)−1XY T are γ1 > . . . > γm > 0 and
k ≤ m ≤ n. Then they show that corresponding to a critical point there is an I ⊆ [m] such that the loss at this critical point
is equal to tr(Y Y T)−

∑
i∈I γi, and the critical point is a local/global minima if and only if I = [k]. Kawaguchi [2016]

later generalized this to prove that a local minima is a global minima for an arbitrary number of hidden layers in a linear
neural network if m ≤ n. Note that since ` ≤ n and m ≤ n in Theorem 1, replacing X by BX in Baldi and Hornik [1989]
or Kawaguchi [2016] does not imply Theorem 1 as it is.

Next, we introduce a few notation before delving into the proof. Let r = (Y − Y)T , and vec(r) ∈ Rmd is the entries of r
arranged as a vector in column-first ordering, (∇vec(DT)L(Y))T ∈ Rmk and (∇vec(ET)L(Y))T ∈ Rk` denote the partial
derivative of L(Y) with respect to the parameters in vec(DT) and vec(ET) respectively. Notice that ∇vec(DT)L(Y) and
∇vec(ET)L(Y) are row vectors of size mk and k` respectively. Also, let PD denote the projection matrix of D, and hence
if D is a matrix with full column-rank then PD = D(DT ·D)−1 ·DT . The n × n identity matrix is denoted as In, and
for convenience of notation let X̃ = B ·X . First we prove the following lemma which gives an expression for D and E if
∇vec(DT)L(Y) and ∇vec(ET)L(Y) are zero.

Lemma 3.1 (Derivatives with respect to D and E).

1. ∇vec(DT)L(Y) = vec(r)T (Im ⊗ (E · X̃)T), and

2. ∇vec(ET)L(X) = vec(r)T (D ⊗ X̃)T

Proof. 1. Since L(Y) = 1
2 vec(r)T · vec(r),

∇vec(DT)L(Y) = vec(r)T · ∇vec(DT)vec(r) = vec(r)T (vec(DT)(X̃
T · ET ·DT))

= vec(r)T (Im ⊗ (E · X̃)T) · ∇vec(DT)vec(DT) = vec(r)T (Im ⊗ (E · X̃)T)

2. Similarly,

∇vec(ET)L(Y) = vec(r)T · ∇vec(ET)vec(r) = vec(r)T (vec(ET)(X̃
T · ET ·DT))

= vec(r)T (D ⊗ X̃T) · ∇vec(ET)vec(ET) = vec(r)T (D ⊗ X̃T)

Assume the rank of D is equal to p. Hence there is an invertible matrix C ∈ Rk×k such that D̃ = D · C is such that the last
k−p columns of D̃ are zero and the first p columns of D̃ are linearly independent (via Gauss elimination). Let Ẽ = C−1 ·E.
Without loss of generality it can be assumed D̃ ∈ Rd×p, and Ẽ ∈ Rp×d, by restricting restricting D̃ to its first p columns (as
the remaining are zero) and Ẽ to its first p rows. Hence, D̃ is a full column-rank matrix of rank p, and DE = D̃Ẽ. Claims
3.1 and 3.2 aid us in the completing the proof of the theorem. First the proof of theorem is completed using these claims,
and at the end the two claims are proved.

Claim 3.1 (Representation at the critical point).

1. Ẽ = (D̃T D̃)−1D̃TY X̃T (X̃ · X̃T)−1

2. D̃Ẽ = PD̃Y X̃
T (X̃ · X̃T)−1

Claim 3.2. 1. ẼBD̃ = (ẼBY X̃T ẼT)(ẼX̃X̃T ẼT)−1

2. PD̃Σ = ΣPD̃ = PD̃ΣPD̃

We denote Σ(B) as Σ for convenience. Since Σ is a real symmetric matrix, there is an orthogonal matrix U consisting
of the eigenvectors of Σ, such that Σ = U ∧ UT , where ∧ is a m×m diagonal matrix whose first ` diagonal entries are
λ1, . . . , λ` and the remaining entries are zero. Let u1, . . . , um be the columns of U . Then for i ∈ [`], ui is the eigenvec-
tor of Σ corresponding to the eigenvalue λi, and {u`+1, . . . , udy} are the eigenvectors of Σ corresponding to the eigenvalue 0.

Note that PUT D̃ = UT D̃(D̃TUTUD̃)−1D̃TU = UTPD̃U , and from part two of Claim 3.2 we have

(UPUT D̃U
T)Σ = Σ(UPUT D̃U

T) (8)

U · PUT D̃ ∧ U
T = U ∧ PUT D̃U

T (9)
PUT D̃∧ = ∧PUT D̃ (10)

Since PUT D̃ commutes with ∧, PUT D̃ is a block-diagonal matrix comprising of two blocks P1 and P2: the first block P1 is
an `× ` diagonal block, and P2 is a (m− `)× (m− `) matrix. Since PUT D̃ is orthogonal projection matrix of rank p its
eigenvalues are 1 with multiplicity p and 0 with multiplicity m− p. Hence at most p diagonal entries of P1 are 1 and the
remaining are 0. Finally observe that

L(Y) = tr((Y − Y)(Y − Y)T)

= tr(Y Y T)− 2tr(Y Y T) + tr(Y Y
T

)

= tr(Y Y T)− 2tr(PD̃Σ) + tr(PD̃ΣPD̃)

= tr(Y Y T)− tr(PD̃Σ)

The second line in the above equation follows using the fact that tr(Y Y T) = tr(Y Y
T

), the third line in the above equation
follows by substituting Y = PD̃Y X̃

T · (X̃ · X̃T)−1 · X̃ (from part two of Claim 3.1), and the last line follows from part
two of Claim 3.2. Substituting Σ = U ∧ UT , and PD̃ = UPUT D̃U

T in the above equation we have,

L(Y) = tr(Y Y T)− tr(UPUT D̃ ∧ U
T)

= tr(Y Y T)− tr(PUT D̃∧)

The last line the above equation follows from the fact that tr(UP ˜UTD
∧ UT) = tr(PUT D̃ ∧ UTU) = tr(PUT D̃∧). From

the structure of PUT D̃ and ∧ it follows that there is a subset I ⊆ [`], |I| ≤ p such that tr(PUT D̃∧) =
∑
i∈I λi. Hence,

L(Y) = tr(Y Y T)−
∑
i∈I λi.

Since PD̃ = UPUT D̃U
T , there is a p× p invertible matrix M such that

D̃ = (U · V)I′ ·M , and Ẽ = M−1(V TUT)I′Y X̃
T (X̃X̃T)−1

where V is a block-diagonal matrix consisting of two blocks V1 and V2: V1 is equal to I`, and V2 is an (m− `)× (m− `)
orthogonal matrix, and I ′ is such that I ⊆ I ′ and |I ′| = p. The relation for Ẽ in the above equation follows from part one
of Claim 3.1. Note that if I ′ ⊆ [`], then I = I ′, that is I consists of indices corresponding to eigenvectors of non-zero
eigenvalues.

Recall that D̃ was obtained by truncating the last k − p zero rows of DC, where C was a k × k invertible ma-
trix simulating the Gaussian elimination. Let [M |Op×(k−p)] denoted the p× k matrix obtained by augmenting the columns
of M with (k − p) zero columns. Then

D = (UV)I′ [M |Op×(k−p)]C
−1 .

Similarly, there is a p× (k − p) matrix N such that

E = C[M−1

N]((UV)I′)
TY X̃T (X̃X̃T)−1

where [M
−1

N] denotes the k × p matrix obtained by augmenting the rows of M−1 with the rows of N . Now suppose I 6= [k],
and hence I ′ 6= [k]. Then we will show that there are matrices D′ and E′ arbitrarily close to D and E respectively such that
if Y ′ = D′E′X̃ then L(Y ′) < L(Y). There is an a ∈ [k] \ I ′, and b ∈ I ′ such that λa > λb (λb could also be zero). Denote
the columns of the matrix UV as {v1, . . . , vm}, and observe that vi = ui for i ∈ [`] (from the structure of V). For ε > 0

let u′b = (1 + ε2)−
1
2 (vb + εua). Define U ′ as the matrix which is equal to UV except that the column vector vb in UV is

replaced by u′b in U ′. Since a ∈ [k] ⊆ [`] and a /∈ I ′, va = ua and (U ′I′)
TU ′I′ = Ip. Define

D′ = U ′I′ [M |Op×(k−p)]C
−1 , and E′ = C[M−1

N](U ′I′)
TY X̃T (X̃X̃T)−1

and let Y ′ = D′E′X̃ . Now observe that, D′E′ = U ′I′(UI′)
TY X̃T (X̃X̃T)−1, and that

L(Y ′) = tr(Y Y T)−
∑
i∈I

λi −
ε2

1 + ε2
(λa − λb) = L(Y)− ε2

1 + ε2
(λa − λb)

Since ε can be set arbitrarily close to zero, it can be concluded that there are points in the neighbourhood of Y such that
the loss at these points are less than L(Y). Further, since L is convex with respect to the parameters in D (respectively E),
when the matrix E is fixed (respectively D is fixed) Y is not a local maximum. Hence, if I 6= [k] then Y represents a saddle
point, and in particular Y is local/global minima if and only if I = [k].

Proof of Claim 3.1. Since∇vec(ET)L(X) is equal to zero, from the second part of Lemma 3.1 the following holds,

X̃(Y − Y)TD = X̃Y TD − X̃Y TD = 0

⇒ X̃X̃TETDTD = X̃Y TD

Taking transpose on both sides

⇒ DTDEX̃X̃T = DTY X̃T (11)

Substituting DE as D̃Ẽ in Equation 11, and multiplying Equation 11 by CT on both the sides from the left, Equation 12
follows.

⇒ D̃T D̃ẼX̃X̃T = D̃TY X̃T (12)

Since D̃ is full-rank, we have
Ẽ = (D̃T D̃)−1D̃TY X̃T (X̃X̃T)−1. (13)

and,
D̃Ẽ = PD̃Y X̃

T (X̃X̃T)−1 (14)

Proof of Claim 3.2. Since∇vec(DT)L(Y) is zero, from the first part of Lemma 3.1 the following holds,

EX̃(Y − Y)T = EX̃Y T − EX̃ · Y T = 0

⇒ EX̃X̃TETDT = EX̃Y T (15)

Substituting ET ·DT as ẼT · D̃T in Equation 11, and multiplying Equation 15 by C−1 on both the sides from the left
Equation 16 follows.

ẼX̃X̃T ẼT D̃T = ẼX̃Y T (16)

Taking transpose of the above equation we have,

D̃ẼX̃X̃T ẼT = Y X̃T ẼT (17)

From part 1 of Claim 3.1, it follows that Ẽ has full row-rank, and hence ẼX̃X̃T ẼT is invertible. Multiplying the inverse of
ẼX̃X̃T ẼT from the right on both sides and multiplying ẼB from the left on both sides of the above equation we have,

ẼBD̃ = (ẼBY X̃T ẼT)(ẼX̃X̃T ẼT)−1 (18)

This proves part one of the claim. Moreover, multiplying Equation 17 by D̃T from the right on both sides

D̃ẼX̃X̃T ẼT D̃T = Y X̃T ẼT D̃T

⇒ (PD̃Y X̃
T (X̃X̃T)−1)(X̃X̃T)((X̃X̃T)−1X̃Y TPD̃) = Y X̃T ((X̃X̃T)−1X̃Y T · PD̃)

⇒ PD̃Y X̃
T (X̃X̃T)−1X̃Y TPD̃ = Y X̃T (X̃X̃T)−1X̃Y T · PD̃

The second line the above equation follows by substituting D̃Ẽ = PD̃Y X̃
T (X̃X̃T)−1 (from part 2 of Claim 3.1).

Substituting Σ = Y X̃T (X̃X̃T)−1X̃Y T in the above equation we have

PD̃ΣPD̃ = Σ · PD̃

Since PT
D̃

= PD̃, and ΣT = Σ, we also have ΣPD̃ = PD̃Σ.

4 ADDITIONAL TABLES AND PLOTS RELATED TO DENSE LAYER REPLACEMENT

4.1 PLOTS FROM SECTION 5.1

Figure 2 displays the number of parameter in the original model and the butterfly model. Figure 3 reports the results for the
NLP tasks done as part of experiment in Section 5.1. Figures 4 and 5 reports the training and inference times required for
the original model and the butterfly model in each of the experiments. The training and and inference times in Figures 4 and
5 are averaged over 100 runs. Figure 6 is the same as the right part of Figure 3 but here we compare the test accuracy of the
original and butterfly model for the the first 20 epochs.

4.2 PLOTS FROM SECTION 5.2

Figure 7 reports the losses for the Gaussian 2, Olivetti, and Hyper data matrices.

Figure 2: Total number of parameters in the original model and the butterfly model; Left: Vision data, Right: NLP

Figure 3: Left: F1 comparison in the first few epochs with different models on CoNLL-03 Named Entity Recognition
(English) with the flair’s Sequence Tagger, Right: Final F1 Score for different NLP models and data sets.

Figure 4: Training/Inference times for Vision Data; Left: Training time, Right: Inference time

5 ADDITIONAL PLOTS RELATED TO SKETCHING

In this section we state a few additional cases that were done as part of the experiment in Section 6. Figure 8 compares
the test errors of the different methods in the extreme case when k = 1. Figure 9 compares the test errors of the different
methods for various values of `. Figure 10 shows the test error for ` = 20 and k = 10 during the training phase on HS-SOD.
Observe that the butterfly learned is able to surpass sparse learned after a merely few iterations. Finally Table 1 compares
the test error for different values of ` and k.

Figure 5: Training/Inference times for NLP; Left: Training time, Right: Inference time

Figure 6: Comparison of test accuracy in the first 20 epochs with different models and optimizers on CIFAR-10 with
PreActResNet18

Figure 7: Approximation error on data matrix with various methods for various values of k. From left to right: Gaussian 2,
Olivetti, Hyper

6 BOUND ON NUMBER OF EFFECTIVE WEIGHTS IN TRUNCATED BUTTERFLY
NETWORK

A butterfly network for dimension n, which we assume for simplicity to be an integral power of 2, is log n layers deep. Let p
denote the integer log n. The set of nodes in the first (input) layer will be denoted here by V (0). They are connected to the
set of n nodes V (1) from the next layer, and so on until the nodes V (p) of the output layer. Between two consecutive layers
V (i) and V (i+1), there are 2n weights, and each node in V (i) is adjacent to exactly two nodes from V (i+1).

When truncating the network, we discard all but some set S(p) ⊆ V (p) of at most ` nodes in the last layer. These nodes are

Figure 8: Test errors on HS-SOD for ` = 20 and k = 1, zoomed on butterfly and sparse learned in the right

Figure 9: Test error when k = 10, ` = [10, 20, 40, 60, 80] on HS-SOD, zoomed on butterfly and sparse learned in the right

Figure 10: Test error when k = 10, ` = 20 during the training phase on HS-SOD

connected to a subset S(p−1) ⊆ V (p−1) of at most 2` nodes from the preceding layer using at most 2` weights. By induction,
for all i ≥ 0, the set of nodes S(p−i) ⊆ V (p−i) is of size at most 2i · `, and is connected to the set S(p−i−1) ⊆ V (p−i−1)

using at most 2i+1 · ` weights.

Now take k = dlog2(n/`)e. By the above, the total number of weights that can participate in a path connecting some node
in S(p) with some node in V (p−k) is at most 2`+ 4`+ · · ·+ 2k` ≤ 4n.

From the other direction, the total number of weights that can participate in a path connecting any node from V (0) with any
node from V (p−k) is 2n times the number of layers in between, or more precisely:

2n(p− k) = 2n(log2 n− dlog2(n/`)e) ≤ 2n(log2 n− log2(n/`) + 1) = 2n(log `+ 1) .

The total is 2n log `+ 6n, as required.

k, `, Sketch Hyper Cifar-10 Tech
1, 5, Butterfly
1, 5, Sparse
1, 5, Random

0.0008
0.003
0.661

0.173
1.121
4.870

0.188
1.75
3.127

1, 10, Butterfly
1, 10, Sparse
1, 10, Random

0.0002
0.002
0.131

0.072
0.671
1.82

0.051
0.455
1.44

10, 10, Butterfly
10, 10, Sparse
10, 10, Random

0.031
0.489
5.712

0.751
6.989
26.133

0.619
7.154
18.805

10, 20, Butterfly
10, 20, Sparse
10, 20, Random

0.012
0.139
2.097

0.470
3.122
9.216

0.568
3.134
8.22

10, 40, Butterfly
10, 40, Sparse
10, 40, Random

0.006
0.081
0.544

0.111
0.991
3.304

20, 20, Butterfly
20, 20, Sparse
20, 20, Random

0.058
0.229
4.173

1.38
8.14
15.268

20, 40, Butterfly
20, 40, Sparse
20, 40, Random

0.024
0.247
1.334

0.703
3.441
6.848

30, 30, Butterfly
30, 30, Sparse
30, 30, Random

0.027
0.749
3.486

1.25
7.519
13.168

30, 60, Butterfly
30, 60, Sparse
30, 60, Random

0.014
0.331
2.105

0.409
2.993
5.124

Table 1: Test error for different ` and k

	Butterfly Diagram from Section 1
	Proof of Proposition 1
	Proof of Theorem 1
	Additional Tables and Plots related to Dense Layer Replacement
	Plots from Section 5.1
	Plots from Section 5.2

	Additional Plots related to Sketching
	Bound on Number of Effective Weights in Truncated Butterfly Network

