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A PROOFS

A.1 USEFUL LEMMAS

Lemma 1 (Hoeffding’s inequality for general bounded random variables). Let X1, . . . , XN be independent random
variables. Assume that Xi ∈ [mi,Mi] for every i. Then, for any t > 0, we have

Pr

[
N∑
i=1

(Xi − E[Xi]) ≥ t

]
≤ exp

(
− 2t2∑N

i=1(Mi −mi)2

)
.

Lemma 2 (Bretagnolle-Huber inequality). Let P and Q be probability measures on the same measurable space (Ω,F),
and let A ∈ F be an arbitrary event. Then, P (A) +Q(Ac) ≥ 1

2 exp(−KL(P,Q)). Here, KL(P,Q) is the KL-divergence
between P and Q.

Lemma 3. Let P be a distribution over domain X . Let X ′ be a subset of X . Let S be an i.i.d. sample of size m drawn from
the distribution P . Let p̂(X ′, S) be the fraction of the m samples that are in X ′. For any δ > 0, with probability 1− δ over
the generation of the samples S,

|P (X ′)− p̂(X ′, S)| ≤ wp(m, δ)

where

wp(m, δ) =

√
1

2m
ln

2

δ
.

Proof. Let Xi be a random variable indicating if the ith sample belongs to set X ′. Xi = 1 if the ith sample belongs to
X ′ and zero otherwise. For each i, E[Xi] = P (X ′). p̂(X ′, S) =

∑N
i=1Xi
m . Applying Hoeffding’s inequality, we get the

inequality of the theorem.

Lemma 4. Let D be distribution over X × {0, 1}. Let X ′ be a subset of X . Let S be an i.i.d. sample of size m drawn from
D. Let ˆ̀(X ′, S) be the fraction of the m labelled samples with label 1 in S ∩X ′. For any δ > 0, with probability 1− δ over
the generation of the samples S, if p̂(X ′, S)− wp(m, δ/2) > 0, then

|¯̀P (X ′)− ˆ̀(X ′, S)| < w`(m, δ, p̂(X
′, S))

w`(m, δ, p̂(X
′, S)) =

1

p̂(X ′, S)− wp(m, δ/2)

·

(
wp(m, δ/2) +

√
1

2m
ln

4

δ

)
,

where p̂(X ′, S) is the fraction of the samples from S in X ′ that have label 1, wp(m, δ/2)) is as defined in Lemma 3.
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Proof of Lemma 4. Let Xi be a random variable such that

Xi =

{
1 If ith sample belongs to the set X ′ and has label one.
0 otherwise.

E[Xi] = P (X ′)¯̀
P (X ′), for each i.

∑m
i=1Xi = mp̂ˆ̀

P (X ′, S). Note that by triangle inequality,

|P (X ′)ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|

≤ |p̂ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|+ |p̂− P (X ′)|ˆ̀P (X ′, S)

≤ |p̂ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|+ wp.

For any ε > 0,

Pr[|¯̀P (X ′)− ˆ̀(X ′, S)| > ε]

= Pr[P (X ′) · |¯̀P (X ′)− ˆ̀(X ′, S)| > P (X ′)ε]

≤ Pr[|p̂ˆ̀
P (X ′, S)− P (X ′)¯̀

P (X ′)|+ wp > (p̂− wp)ε]

= Pr[|mp̂ˆ̀(X ′, S)−mP (X ′)¯̀
P (X ′)| > m(p̂− wP )ε− wp]

= Pr[

m∑
i=1

|Xi − E[Xi]| > m((p̂− wP )ε− wp)]]

≤ 2 exp
(
−2m((p̂− wP )ε− wp)2

)
(By Hoeffding’s inequailty).

When p̂− wp > 0, choosing

wl(m, δ, p̂) >
wp

p̂− wp
+

1

p̂− wp

√
1

2m
ln

4

δ
,

we get that with probability 1− δ, |¯̀P (X ′)− ˆ̀(X ′, S)| < w`(m, δ, p̂).

A.2 CONFIDENCE SCORES USING LIPSCHITZ ASSUMPTION

Proof of Theorem 1. The algorithm partitions the space into rd cells. Let pc be the probability weight of a cell c and let p̂c
be the estimate of pc that is calculated based on a sample to be the fraction of sample points in the cell c. From Lemma 3
and a union bound, we know that with probability 1− δ

2 , for every cell c,

pc ∈ [p̂c − wp(c), p̂c + wp(c)].

Here wp(c) = wp(m, δ/2r
d) (as defined in Lemma 3).

The algorithm also estimates the average label of a cell c - `c as ˆ̀
c. This is the fraction of the sample point in the cell that

have the label one. This is the same as the labelling probability estimate defined in Lemma 4. When the true probability
weights of cells lie within the calculated confidence interval, by Lemma 4, we know that with probability 1− δ

2 , for every
cell c,

ˆ̀
c ∈ [ˆ̀c − w`(c), ˆ̀

c − w`(c))].

Here w`(c) = w`(m, δ/2r
d, p̂c) (as defined in Lemma 4).

The maximum distance between any two points in any cell is r
√

2. By the λ-Lipschitz, any point in the cell has labelling
probability within λr

√
2 of the average labelling probability of the cell. Therefore, with probability 1− δ, for each cell c,

for every point x in the cell c, the labelling probability of x satisfies:

`P (x) ∈ [ˆ̀c − w`(c)− λr
√

2, ˆ̀
c + w`(c) + λr

√
2].



This is the interval returned by the algorithm. Now we lower bound true confidence based on the confidence interval of the
labelling probability. For a point x, let c(x) denote the cell containing the point.

CP (x, 0) = `P (x)

≥ ˆ̀
c(x) − w`(c(x))− λr

√
2

CP (x, 1) = 1− `P (x)

≥ 1− ˆ̀
c(x) − w`(c(x))− λr

√
2.

Proof of Theorem 2. We choose the input to the algorithm to be r = 1
m1/8d . With probability 1 − δ

2 , for all cells with
probability weight greater than γ = 1

m1/4 , the length of the confidence interval of the labelling probability is less than

1
m1/2

1
m1/4 + 1

m1/2

− 1
1

m1/4 − 1
m1/2

√
1

2m
ln

4m1/8

δ
+
λ
√

2

m1/8

≤ 1

m1/4 − 1
+

1

m1/4 − 1

√
1

16
ln

4m

δ
+
λ
√

2

m1/8
.

This quantity decreases with increase in m and converges to zero. Therefore, for every εc > 0, there is M1(εc, δ) such
that this interval is less than εc. When sample size is larger than M1(εc, δ), with probability 1− δ

2 , the size of confidence
intervals for labelling probabilities of cells with weights greater than γ = 1

m1/4 , is smaller than εc.

The points for which we can’t say anything about the interval lengths are points in cells with weight at most γ. The total
weight of such points is at most γ 1

rd
= 1

m1/8 . For any εx > 0, let M2(εx) be such that 1
M2(εx)1/8

< εx.

Choosing a sample size M greater than M1(εc, δ) and M2(εx), we get that

Pr
S∼PM

[w` > εc] < εx.

Proof of Theorem 1. For any m > 0, let Dm = 1
2N (m, 1) × {1} + 1

2N (−m, 1) × {0}. The labelling probability for a
point x according to this distribution is

fm(x) :=
exp(−(x−m)2)

exp(−(x−m)2) + exp(−(x+m)2)

=
1

1 + exp(−2xm)

Consider µ(ε,M) > 1√
M

ln 1−ε
ε + 1√

M
. We will show that the ε labelling probability learning problem for the class Fµ(ε,M)

can be reduced to the problem of finding, for each Dm ∈ Fµ(ε,M), finding an m′ s.t. |m−m′| < 1√
M

with probability 2
3 ,

based on samples from Dm. This problem as sample complexity at most
√
M

For any m ≥ µ, for any m′ s.t. |m−m′| < ∆(M) = 1√
M

, we will show that for every x ∈ R, |fm(x)− fm′ | < ε.

|fm(x)− fm′(x)| = |exp(−2xm)− exp(−2xm′)|
(1 + exp(−2xm))(1 + exp(−2xm′))

≤ |exp(−2xm)− exp(−2xm′)|

For x < x̄ = 1
2∆(M) ln 1

1−ε ,

|exp(−2xm)− exp(−2xm′)| ≤ 1− exp(−2x|m−m′|)
< 1− exp(−2x̄|m−m′|)
≤ ε



For x ≥ x̄,

|exp(−2xm)− exp(−2xm′)| < exp (−2xmin{m,m′})
≤ exp (−2x̄(µ(ε,M)−∆))

≤ exp

(
−2 ·

√
M

2
ln

1

1− ε
· 1√

M
ln

1− ε
ε

)
= ε

A.3 FUNCTION CLASS WITH LOW APPROXIMATION ERROR

Proof of Theorem 3. Let, for any classifier h, L0/1
P,B(h) = P(X,Y )∼P [h(X) 6= Y,X ∈ B]. Then the quantity we want to

bound - L0/1
P |B(hH(Sl)) can be expressed as L0/1

P |B(hH(Sl)) =
L0/1
P,B(hH(Sl))

P (B) . We will show how to estimate an upper bound

for the numerator - L0/1
P,B(hH(Sl)) using Sl and a lower bound for the denominator - P (B) using Su.

Upper bound for L0/1
P,B(hH(Sl)): By uniform convergence, with probability 1 − δ

2 , L0/1
P,B(hH(Sl)) < L0/1

Sl,B
(hH(Sl)) +

εUC(|Sl|, δ/2).

Lower bound for P (B): By Lemma 3, the estimate of P (B) based on unlabelled samples - |Su∩B||Su| satisfies, with probability

1− δ
2 , P (B) > |Su∩B|

|Su| −
√

1
2|Su| ln

4
δ .

Therefore, with probability 1− δ, the upper bound for L0/1
P |B(hH(Sl)) holds.

Proof of Theorem 4. Let h∗ = argminh∈HL
0/1
P (h). With probability at least 1− δ

4 , by uniform convergence, L0/1
Sl

(h∗) ≤
L0/1
Sl

(hH(Sl)) + 2εUC(|Sl|, δ/4). So, h∗ ∈ H2εUC(|Sl|,δ/4).

Also by uniform convergence, with probability 1 − δ
2 , for any h ∈ H2εUC(|Sl|,δ/4), ∆P (h, h∗, B) ≤ ∆Su(h, h∗, B) +

εUC(|Su|, δ/4) ≤ DCB,H (Sl, Su, 2εUC(|Sl|, δ/4)) + εUC(|Su|, δ/4). In particular, the above inequality holds for hH(Sl).

L0/1
P,B(hH(Sl)) ≤ L0/1

P,B(h∗) + ∆P (hH(Sl), h
∗, B)

≤ εapprox +DCB,H (Sl, Su, 2εUC(|Sl|, δ/4))

+ εUC(|Su|, δ/4)

Using Su to obtain a lower bound on P (B) with Lemma 3, we obtain the upper bound on L0/1
P |B(hH(Sl)) =

L0/1
P,B(hH(Sl))

P (B)
provided by the theorem.

Proof of Lemma 1. Let c be a label coverage hypothesis having α-region-conditional validity relative to {B1, B2}.

P(X,Y )∼P [Y ∈ c(X)|X ∈ B1 ∪B2]

=
P(X,Y )∼P [Y ∈ c(X), X ∈ B1] + P(X,Y )∼P [Y ∈ c(X), X ∈ B2]

PX (B1) + PX (B2)

=
P(X,Y )∼P [Y ∈ c(X)|X ∈ B1] · PX (B1)

PX (B1) + PX (B2)

+
P(X,Y )∼P [Y ∈ c(X)|X ∈ B2] · PX (B2)

PX (B1) + PX (B2)

By α-region-conditional validity,

≤
αP(X,Y )∼P [X ∈ B1] + αP(X,Y )∼P [X ∈ B2]

PX (B1) + PX (B2)
= α



A.4 GENERATIVE MODELS

Proof of Theorem 5. For some distribution P with PDF p(x, y) =

{
ap1(x) , if y = 1

(1− a)p0(x) , if y = 0
, we can write the correspond-

ing CLF as lP (x) = ap1(x)
ap1(x)+(1−a)p0(x) . Assume we get an iid sample S from P of size m. Let S1 denote the subset of

S with label 1 and S0 be the subset of S labelled 0. Furthermore let m1 = |S1| and m0 = |S0|. Then let â = m1

m1+m0
.

According to our assumptions there exists a learner A of F with sample complexity mF . Let p̂1 = A(S1) and p̂0 = A(S0).
We then define our CLF-learner by A′(S)(x) = âp̂1(x)

âp̂1(x)+(1−â)p̂0(x) .

EX∼PX [|lP (X)−A′(S)(X)|]

=

∫
|lP (x)−A′(S)(x)|p(x)dx

=

∫
|

ap1(x)

ap1(x) + (1− a)p0(x)
−

âp̂1(x)

âp̂1(x) + (1− â)p̂2(x)
|(ap1(x) + (1− a)p0(x))dx

=

∫
|
ap1(x)(âp̂1(x) + (1− â)p̂0(x))− âp̂1(x)(ap1(x) + (1− a)p0(x))

âp̂1(x) + (1− â)p̂0(x)
|dx

=

∫
|
ap1(x)(1− â)p̂2(x)− âp̂1(x)(1− a)p0(x)

âp̂1(x) + (1− â)p̂2(x)
|dx

=

∫
|
ap1(x)(1− â)p̂2(x)− âp̂1(x)(1− â)p̂2(x) + âp̂1(x)(1− â)p̂2(x)âp̂1(x)(1− a)p0(x)

âp̂1(x) + (1− â)p̂0(x)
|dx

=

∫
|
(1− â)p̂0(x)(ap1(x)− âp̂1(x)) + âp̂1(x)((1− â)p̂0(x)− (1− a)p0(x))

âp̂1(x) + (1− â)p̂0(x)
|dx

≤
∫
|
(1− â)p̂0(x) max{|âp̂1(x)− ap1(x)|, |(1− â)p̂0(x)− (1− a)p0(x)|}+ âp̂1(x) max{|âp̂1(x)− ap1(x)|, |(1− â)p̂0(x)− (1− a)p0(x)|}

âp̂1(x) + (1− â)p̂0(x)
|dx

=

∫
|max{|âp̂1(x)− ap1(x)|, |(1− â)p̂0(x)− (1− a)p0(x)|}|dx

=

∫
|max{|âp̂1(x)− âp1(x) + âp1(x)− ap1(x)|, |(1− â)p̂0(x)− (1− â)p0(x) + (1− â)p0(x)− (1− a)p0(x)|}|dx

≤
∫
|max{â|p̂1(x)− p1(x)|+ p1(x)|â− a|, (1− â)|p̂0(x)− p0(x)|+ p0|(1− â)− (1− a)|}|dx =

≤
∫
|max{â|p̂1(x)− p1(x)|, (1− â)|p̂0(x)− p0(x)|}+ max{p1(x)|â− a|, p0|(1− â)− (1− a)|}|dx =

≤
∫
|max{â|p̂1(x)− p1(x)|, (1− â)|p̂0(x)− p0(x)|}dx+ |â− a|

≤
∫
â|p̂1(x)− p1(x)|+ (1− â)|p̂0(x)− p0(x)|dx+ |â− a|

= âdTV (p1, p̂1) + (1− â)dTV (p0, p̂0) + |â− a|

Let εF,TV (m, δ) = arg minε′:m≥mF,TV (ε′,δ) ε
′. Now if we have m ≥ max{mTV,F ( ε3 ,

δ
3 ),
−9 ln( δ6 )

2ε2 }, we have:

• From Hoeffding inequality we get PrS∼Pm [|a− â|| ≥ ε
3 ] ≤ 2 exp(− 2

9ε
2m) = δ

3

• From the sample complexity âdTV (p1, p̂1) ≤ âεF,TV (âm, δ) ≤ ε
3 with probability 1− δ

3 .

• similarly (1− â)dTV (p1, p̂1) ≤ (1− â)εF,TV ((1− â)m, δ) ≤ ε
3 with probability 1− δ

3 .

Thus get EX∼PX [|f(X)−A′(S)(X)|] ≤ ε with probability 1− δ.

A.5 SAMPLE COMPLEXITY OF CLF-COVERAGE LEARNING COMPARED TO OTHER LEARNING
PROBLEMS

Proof of Lemma 5. From Thm 1.3 of Devroye et al. [2018], we get that TV distance approximation implies approximating
the mean to precision Cε. The KL-divergence between two one-dimensional, unit variance Gaussians with means having
difference Cε is 1

2C
2ε2. Then we apply the Bretagnolle-Huber inequality (stated in the appendix as Lemma 2) to get the

lower bound on estimating the mean of the Gaussian to be 1
2 exp

(
−C2ε2/2

)
.



Proof of Theorem 1. For any m > 0, let Dm = 1
2N (m, 1) × {1} + 1

2N (−m, 1) × {0}. The labelling probability for a
point x according to this distribution is

fm(x) :=
exp(−(x−m)2)

exp(−(x−m)2) + exp(−(x+m)2)

=
1

1 + exp(−2xm)

Consider µ(ε,M) > 1√
M

ln 1−ε
ε + 1√

M
. We will show that the ε labelling probability learning problem for the class Fµ(ε,M)

can be reduced to the problem of finding, for each Dm ∈ Fµ(ε,M), finding an m′ s.t. |m−m′| < 1√
M

with probability 2
3 ,

based on samples from Dm. This problem as sample complexity at most
√
M

For any m ≥ µ, for any m′ s.t. |m−m′| < ∆(M) = 1√
M

, we will show that for every x ∈ R, |fm(x)− fm′ | < ε.

|fm(x)− fm′(x)|

=
|exp(−2xm)− exp(−2xm′)|

(1 + exp(−2xm))(1 + exp(−2xm′))

≤ |exp(−2xm)− exp(−2xm′)|

For x < x̄ = 1
2∆(M) ln 1

1−ε ,

|exp(−2xm)− exp(−2xm′)| ≤ 1− exp(−2x|m−m′|)
< 1− exp(−2x̄|m−m′|)
≤ ε

For x ≥ x̄,

|exp(−2xm)− exp(−2xm′)| < exp (−2xmin{m,m′})
≤ exp (−2x̄(µ(ε,M)−∆))

≤ exp

(
− 2 ·

√
M

2
ln

1

1− ε

· 1√
M

ln
1− ε
ε

)
= ε

Proof of Observation 2. We know that there is a CLF-learner ACLF for P . As learner for classification to excess risk, we
define our learner A by

A(S) =

{
1 if ACLF ≥ 1

2

0 otherwise
.

Let S ∼ Pm with m ≥ mCLF,P(ε, δ). With probability 1− δ over the generation of S, ACLF (S) returns a hypothesis l̂P
with ∫

|lP (x)− l̂P (x)|dP ≤ ε.



Then with probability at least 1− δ the learner A returns a hypothesis h with

P(X,Y )[h(X) 6= Y ]− P(X,Y )∼P [h∗P 6= Y ]] =∫
|h(x)− lP (x)|1 [h(x) = 0] dP +

∫
|h(x)− 1 + lP (x)|1 [h(x) = 1]

−
∫
|h∗P (x)− lP (x)|1 [h(x) = 0] dP +

∫
|h∗P (x)− 1 + lP (x)|1 [h∗P (x) = 1] =∫

(|h(x)− lP (x)| − |h∗P (x)− 1 + lP (x))|1 [h(x) = 0 ∧ h∗P (x) = 1] dP

+

∫
(|h(x)− 1 + lP (x)| − |h∗P (x)− lP (x))|1 [h(x) = 1 ∧ h∗P (x) = 0] dP =∫
|2lP (x)− 1|1 [h(x) = 0 ∧ h∗P (x) = 1] dP+∫
|2lP (x)− 1|1 [h(x) = 1 ∧ h∗P (x) = 0] dP

=

∫
|2lP (x)− 1|1

[
l̂P (x) <

1

2
∧ lP (x) ≥ 1

2

]
dP+∫

|2lP (x)− 1|1
[
l̂P (x) ≥ 1

2
∧ lP (x) <

1

2

]
dP

≤
∫
|2lP (x)− 1|1

[
|l̂P (x)− lP | ≤ |

1

2
− lP (x)|

]
dP

≤ 2

∫
|lP (x)− l̂P (x)|dP ≤ 2ε.

Proof of Lemma 6. Due to α-domain validity and (β, γ)-domain non-triviality, the probability weight of points satisfying at
least one of the following two (bad) conditions is at most 1− α+ 1− β.

1. The true CLF lies outside the CLF-coverage set.

2. The CLF-coverage set has length more than γ.

For points in such a set, we can trivially bound the difference between the true CLF and the CLF estimate obtained from
the CLF-coverage set by one. The weight of the points not in this set can be trivially bounded by one. For all points in the
complement set, the difference between the true CLF and the CLF estimate can be bounded by γ. Therefore, we can bound
the `1 norm of the difference between the true CLF and the CLF estimate from the coverage hypothesis by 2−α−β+γ.

B EXTENDED DISCUSSION RELATED WORK

B.1 CONFORMAL LEARNING

One earlier approach to providing confidence estimates to prediction is through the notion of conformal mappings Shafer
and Vovk [2008]. This notion usually applies to regression or multiclass learning problem and outputs regions in the label
space that are guaranteed, with high probability, to contain the true label value.

The conformal mappings literature differs from this work in several respects: In most setups the probability here is the
joint probability over the training data and the probability over a newly arriving test-point. Most guarantees discussed
in the literature on conformal mappings are distribution-free, requiring only that the data is exchangable (the common
i.i.d. assumption is a special case of exchangeablility). Furthermore, most of the conformal prediction literature considers
online-settings.

There is some work on conformal prediction that explores giving guarantees conditioned on subsets or elements of the
domain [Lei and Wasserman, 2014, Vovk, 2013, Foygel Barber et al., 2020]. The probabilities here are still aggregated
over the generation of the training set and on the randomness of the instance to be classified. Lei and Wasserman [2014]



show that it is impossible to give point-wise-guarantees in the distribution-free regression setting. Vovk [2013] extend this
result to a general prediction setting that includes classification. Furthermore, Foygel Barber et al. [2020] show that it is also
impossible to give distribution-free validity guarantees for all regions with mass greater than some tolerance parameter δ
while providing non-trivial coverage sets in a regression setup. However, they also show that if the collection of possible
regions is pre-definded and has finite VC-dimension it is possible to provide validity guarantees for these regions and
non-trivial coverage sets in a distribution-free setting. We note that this definition, while similar to ours, gives slightly
worse validity guarantees, as they only require validity for regions with mass higher than some δ, while our definition of
region-validity gives a guarantee on all regions of a predefined collection of subset. It is left as an open question in their
work whether the impossibility of non-trivial point-wise guarantees or region-specific guarantees for greater collections
of subsets can be overcome by additional distributional assumptions. We address this question in our work. Our setup
also distinguishes the randomness that comes from the sampling of the training set and the randomness that comes from
sampling a new instance. Furthermore, we consider a binary classification setting. In addition to analysing point-wise and
region-specific guarantees for label coverage sets we also propose coverage set is the conditional labelling function(CLF)
instead of the label itself.

Selective Classification/ Classification with Abstention: Another line of work that is related to our paper is learning with
abstention. Similar to our setting, the classification problem does not only consist of the goal of classifying correctly, but to
also allows the classifier to abstain from making a prediction, if the confidence of a prediction is too low. Many works in this
line provide accuracy guarantees that hold with high probability over the domain [Bartlett and Wegkamp, 2008, Yuan and
Wegkamp, 2010, Freund et al., 2004, Herbei and Wegkamp, 2006, Kalai et al., 2012, Michael, 2010]. In contrast to their
work we also provide point-wise-guarantees and guarantees that hold for specific subregions of the domain. Furthermore we
also consider the problem of learning a coverage set for the conditional labeling function to distinguish if the uncertainty
of a point comes from undersampling or from a lack of informative features/inherent stochasticity of the process. Such a
distinction is not made in the classification with abstention setting.

Point-wise guarantees are provided in earlier work [El-Yaniv and Wiener, 2010, Wiener and El-Yaniv, 2015].The former
study gave a theoretical analysis of the selective classification setup in which a classification function and a selective function
are learned simultaneously [El-Yaniv and Wiener, 2010]. The risk of a classification is then only accessed on the set of
instances that was selected for classification. As a non-triviality requirement they propose high coverage over the set. They
analyse the trade-off between risk and coverage (which is similar to our trade-off between validty and non-triviality), and
introduce a notion of "perfect classification" which requires risk 0 with certainty. In our setting this corresponds to point-wise
validity guarantees for our coverage sets. Their results for such point-wise guarantees are developed under an assumption
of realizability by a hypothesis class. Under this assumption they provide an optimal learning strategy for their notion of
perfect classification and then also show that for some hypothesis classes they can give non-trivial point-wise prediction
guarantees. In contrast to this work, our setup also considers probabilistic labeling functions (which are excluded by a
realizability assumption). In addition, our analysis extends to different types of assumptions on the family of probability
distributions and extends their framework to also include region-wise guarantees.

Learning Gaussians An example of our mixture model CLF-learning setup is to learn conditional labeling functions of
mixtures of Gaussians. Our aim here differs from the literature of learning Gaussians we are aware of. There are many results
for parameter estimation for Gaussian mixtures models if the components of the mixture are well separated [e.g. Kwon and
Caramanis [2020]]. In the case of Gaussians that are not well separated the problem of parameter estimation of a mixture of
Gaussians is known to be hard [Moitra and Valiant, 2010]. In contrast, we give a finite sample complexity on the labelled
data needed to learn the conditional labelling function that is independent of separation criteria. Thus we show that learning
the conditional labelling function of Gaussians is easier than parameter estimation for a mixture of Gaussians. Another line
of work looks at learning the marginal of Gaussian mixtures in total variation distance [Ashtiani et al., 2020], giving finite
sample complexities for this learning problems without separability assumptions. We show that a learner for generative
mixture models in total variation distance can be used to learn the labelling function of a mixture of homogeneously labelled
generating distributions with the same sample complexity. However we also show that the problem of learning the marginal
of a Gaussian mixture model can have higher sample complexity than learning the associated conditional labelling function.
There is also work that looks at learning classification of homogeneously labelled Gaussians with respect to excess risk [Li
et al., 2017]. We show that CLF learning implies learning classification with respect to excess risk. However, we also show
that the problem of learning the CLF is in general harder and give examples that separate the sample complexities of the two
problems.



C EXTENDED DISCUSSION OF THE RELATION BETWEEN LABEL COVERAGE AND
CLF COVERAGE

Given a label coverage hypothesis clabel with α-point-validity and β-domain-non-triviality, we can construct a CLF coverage
hypothesis cCLF by

cCLF (x) =


[0, α] , if clabel(x) = {0}
[1− α, 1] , if clabel(x) = {1}
[0, 1] , if clabel(x) = {0, 1}

This hypothesis has point-wise-validity and β, α-domain-non-triviality. Given access to a CLF coverage hypothesis h′CLF
with point-wise validity, we can construct a label coverage hypothesis h′label,α with α-point-wise validity by

c′label(x) =


{0} , if c′CLF (x) = [a, b] with b ≤ α
{1} , if c′CLF (x) = [a, b] with a ≥ 1− α
{0, 1} , otherwise.

While this hypothesis satisfies point-wise validity guarantees we cannot bound the non-triviality of c′label in terms of the
non-triviality of c′CLF , as it is possible that the true CLF is close to 1

2 for every point, yielding trivial label coverage sets,
even if we have a tight CLF coverage. However we can compare the non-triviality of c′label to the best possible label coverage
possible for a given distribution. Let the α-level Bayes-coverage hypothesis be defined by

c∗P,α(x) =


{0} , if lP (x) ≤ α
{1} , if lP (x) ≥ 1− α
{0, 1} , otherwise.

It is easy to see that this is the optimal label coverage hypothesis in terms of non-triviality that fulfills point-wise α-level
coverage. If c∗P,α has beta-non-triviality β and c′CLF has β, γ-domain-non-triviality, then c′label has (γ + (1− γ)(β′ + β))-
domain-non-triviality.

D COMPARING SAMPLE COMPLEXITIES OF TASKS

In this section, we compare the CLF-coverage learning problem with the CLF-learning problem and the problem of learning
the Bayes classifier, in terms of sample complexity. We construct classes of distributions for which the following hold:

• The hardest CLF-coverage learning problem requiring point-wise validity has lower sample complexity than the
problem of learning the CLF in TV distance.

• The easiest CLF-coverage learning problem requiring domain validity has higher sample complexity than the problem
of learning the Bayes optimal classifier.

For µ > 0, let Fµ be the class of distributions:

Fµ :=

{
1

2
N (x, 1)× {1}+

1

2
N (−x, 1)× {0} : x ≥ µ

}
.

We start by providing a lower bound on the sample complexity of the CLF-learning problem for every class Fµ. This lower
bound is stated as the following lemma:

Lemma 5. [Lower bound for distribution learning sample complexity] For ε < 0.004, for any µ > 0, the sample complexity
for TV-learning the class Fµ is at least mTV,Fµ(ε, 1

3 ) ≥ C 1
ε2 for a universal constant C.

In the following theorem, we show that there is a class Fµ with arbitrarily small sample complexity for learning CLF-
coverage sets with point-wise validity and point-wise non-triviality. Combined with the previous lemma, this theorem shows
that there is a class for which CLF learning is more difficult than CLF-coverage sets learning.

Theorem 1. For every M ∈ N and every ε > 0, there exists a µ > 0 such that the sample complexity for CLF-learning Fµ -
mCLF,Fµ(ε, 1

3 ) is at most M .



D.1 CONNECTION BETWEEN CLF-LEARNING AND CLASSIFICATION, EXTENDED VERSION

We will now look at the connection between CLF learning and learning a good classification rule. As it is not always possible
to define a function with classification loss our optimality criterion will be defined with respect to the excess risk, which is
defined as the loss of the best possible classifier, i.e. the Bayes classifier for the distribution.

Definition 1. Classification Learning with respect to excess risk We say the family of probabilities P can be learned
with respect to excess risk with sample complexity mex,P , if there is a learner A such that for every ε, δ ∈ (0, 1) for all
m ≥ m(ε, δ) and all P ∈ P , we have

PS∼Pm [L0/1
P (A(S)) ≤ L0/1

P (h∗P ) + ε] ≥ 1− δ

We first show that CLF learning implies learning the classification problem up to excess risk.

Observation 2. If a family of distributions P is CLF-learnable with sample complexity mCLF,P(ε, δ), then P learnable
with respect to excess risk with sample complexity at most m(ε, δ) ≤ mCLF,P(2ε, δ).

Now we show that learning CLF-coverage sets can be harder than learning the Bayes classifier. The Bayes classifier for any
distribution in any class Fµ is the classifier that thresholds at zero. We don’t need any samples to learn the Bayes classifier
for the classes Fµ. However, to provide CLF-coverage sets, we will need samples. This is even for the easiest CLF-covering
problem requiring domain validity and domain non-triviality.

To show that samples are required for the CLF-coverage learning problem requiring domain validity and domain non-triviality,
we first show that solving this problem implies approximating the CLF in `1 distance. Then we note a positive lower bound
on the difference in `1 distance between distributions in Fµ. Together, these statements imply that for every distribution
class Fµ, there exist α(µ), β(µ), γ(µ) > 0 such that the problem of providing CLF-covers satisfying α(µ)-domain wide
validity and (β(µ), γ(µ))-domain non-triviality has higher sample complexity than learning the Bayes classifier.

The following lemma (Lemma 6) shows how the CLF-coverage learning problem with the easiest validity requirement
implies approximating the CLF in `1 distance:

Lemma 6. A CLF-coverage set that has α-marginal coverage and (β, γ)-domain non-triviality yields an approximation
to the true CLF that has at most (2− α− β + γ) - `1 distance from the true CLF. The approximation is one obtained by
simply choosing any element of the CLF-coverage set for each point.

Now, we note a positive lower-bound in - ε(µ) on the `1 norm of the pair-wise differences of distributions in the class Fµ.

Observation 1. For every µ > 0, there is an ε(µ) > 0 such that the distribution class Fµ contains distributions with `1
norm of difference at least ε(µ).

Therefore, the CLF learning problem to precision ε(µ) for the class Fµ requires samples and is hence harder than the
problem of learning the Bayes classifier. Combined with Lemma 6, Observation 1 shows that CLF-coverage learning with
domain-validity is harder than learning the Bayes classifier for Fµ.

E SPLIT CONFORMAL ALGORITHM

The split conformal was algorithm introduced by Vovk et al. [Vovk et al., 2005]. This algorithm is shown to provide
distribution-free, marginal coverage by Lei and Wasserman [Lei and Wasserman, 2014]. The split conformal method
partitions the sample into two parts - the training set and the validation set. The training set is used to train a model. The
validation set is used to evaluate that model. The size of the coverage sets is determined by how well the trained model fits
the validation set. When the model fits the validation set well, the algorithm outputs small coverage sets. A modification
of this algorithm for regression conformal prediction satisfying a more refined guarantee than the marginal coverage is
provided by Barber et al [Foygel Barber et al., 2020]. Rather than simply guaranteeing coverage with high probability
over test points drawn from the domain, the refined guarantee is for coverage with high probability over test-points drawn
conditioned on membership in predefined subsets of the domain.

We now state this form of the split conformal algorithm by Barber et al. [Foygel Barber et al., 2020] as Algorithm 1.



Algorithm 1 Split conformal algorithm for restricted conditional coverage

Input: Validity parameter: α, Collection of subsets of the domain: B,
Labelled samples: S = (xi, yi)

m
i=1, Binary classification learning algorithm: A,

Test point: x.
Output: Label coverage set for x
St = {(x1, y1), . . . , (xn, yn)}
Sv = {(xn+1, yn+1), . . . , (xm, ym)}
Default coverage set for x is Ĉ(x) = {A(St)(x)}.
for B ∈ B such that x ∈ B do

NSv (B) = |Sv ∩B|
L0/1
Sv,B

(A(St)) = |{(x′, y′) : (x′, y′) ∈ Sv ∩B and A(St)(x
′) 6= y′}|

threshold = NSv (B)−
⌈(

1− α+ 1
m−n

)
(NSv (B) + 1)

⌉
if L0/1

Sv,B
(A(St)) ≥ threshold then

Set coverage set of x to be trivial i.e. Ĉ(x) = {0, 1}
end if

end for
Return Ĉ(x)

We refer the reader to the paper of Barber et al.[Foygel Barber et al., 2020] for a proof that this algorithm yields coverage
sets satisfying region-conditional validity. While this algorithm has the desired quality of providing distribution-free
validity guarantees, under certain distributional assumptions, this algorithm could provide coverage sets with sub-optimal
non-triviality. We show that this is the case under the distributional assumptions we consider in this work.

F COMPARISON OF METHODS

We have seen a few approaches for constructing label-coverage sets with region-conditional validity so far. In Section 4, we
proposed two methods that stem from the two conditional error bounds provided by Theorem 3 and Theorem 4. We will refer
to these methods as ‘conditional error bound methods’ (abbreviated as CEB methods). We will refer to the CEB method
based on Theorem 3 as the ‘baseline CEB method’ and the CEB method based on Theorem 4 as the ‘decisiveness-based
CEB method’. Another method for coverage sets with region-conditional validity is the modified split conformal algorithm
proposed by Barber et al. [Foygel Barber et al., 2020] (see Algorithm 1 in Section E of the appendix for a description of this
algorithm). In this section, we will discuss some differences among these approaches. We will focus on differences in the
case of the data generating distribution satisfying the assumption we have been studying in this chapter - low approximation
error by a function class H .

The modified split conformal algorithm and the baseline CEB both have the advantage of providing distribution-free validity.
The baseline CEB method uses the whole labelled training set to both train an ERM classifier and evaluate that classifier.
The split conformal algorithm on the other hand partitions the labelled training set into two parts and uses one part for
training a model and the other part for evaluating that model. Due to this, the classifier used for coverage sets construction in
the baseline CEB method is likely to have lower error (by a constant factor) than the classifier in the split conformal method.
This could result in the baseline CEB method’s coverage sets having higher non-triviality compared to the coverage sets
from the split conformal algorithm. However, the split conformal method allows for more general training algorithms and is
therefore likely to adapt better even when the probability distribution is not approximated well by the function class.

Compared to the split conformal algorithm and the baseline CEB method, the decisiveness-based CEB method has the
disadvantage of requiring knowledge of an upper bound on the approximation error of the function class in order to construct
coverage sets. However, the decisiveness-based CEB method makes better use of the distributional assumption to provide
coverage sets with higher non-triviality in some cases. The distributional assumption allows the decisiveness-based CEB
method to better utilize unlabelled data. Recall that both conditional error bounds are obtained by estimating the error on
the region

(
L0/1
P,B

)
and the probability weight of the region (P (B)). Unlabelled data is used to estimate the probability

weight by both the baseline and the decisiveness-based CEBs. The decisiveness-based CEB also uses the unlabelled data
to estimate region’s error whereas the baseline CEB uses only labelled data for this. The rest of this section describes an
example where decisiveness-based CEB method provides better non-triviality compared to the baseline CEB method and



the split conformal method.

We use the following notation for the example: The domain X is the unit real interval - [0, 1]. The class of threshold
classifiers over this domain is denoted by Hthresholds = {ha : a ∈ [0, 1]}. The threshold classifier denoted by ha for a ∈ [0, 1]
is such that h(x) = 0 for every x ≤ a and h(x) = 1 for every x > a. For ε > 0, Pthresholds,ε denotes the class of probability
distributions that are approximated by the class H with approximation error - optP (H) at most ε. That is, a probability
distribution P belongs to the class Pthresholds,ε if and only if minh∈H L0/1

h ≤ ε.

Example 1. Let the domain X be the unit interval [0, 1] ⊆ R. Let the marginal distribution PX be the uniform distribution.
Let the conditional distribution be:

P (y = 1|x) =

{
1− 0.001, if x ≥ 1

2

0.001, if x < 1
2 .

We want to construct label-coverage sets based on samples drawn from P using prior knowledge that P has approximation
error by the threshold class optP (Hthresholds) = 0.001. We have access to 100 labelled samples drawn i.i.d from P and
107 unlabelled samples drawn i.i.d from PX . The goal is to provide (0.85, 0.85, {B})-region-conditional coverage sets for
B = [0, 0.01]. The following hold:

• With probability more than 1
2 over the samples drawn, the split conformal method assigns trivial label-coverage sets

for all points in B.

• With probability more than 1
2 over the samples drawn, the baseline CEB method assigns trivial label-coverage sets for

all points in B.

• With probability more than 1
2 , the decisiveness-based CEB method assigns non-trivial label-coverage sets for all points

in B.

Note that in this example, the claim we make about the split conformal algorithm is for the algorithm with parameter (1−α)
equalling 0.85. Barber et al. Foygel Barber et al. [2020] show that with this parameter, the coverage sets satisfy a notion
called 0.85-restricted conditional coverage. This is a weaker validity guarantee that implies (0.85, 0.85)-region conditional
validity. Now we prove the correctness of the above example. We outline a sketch of this proof here and defer the full details
of the proof to the appendix.

We will now give an outline to the proof:

1. Showing that the baseline CEB method returns trivial coverage sets: We show that the bound provided by Theorem 3
for B with sample failure parameter δ = 0.15 is vacuous (greater than 1.0). This implies trivial coverage sets. Note that
εUC(|Sl|,0.15/2)

|Su∩B|
|Su|

is a lower bound on the baseline CEB given by Theorem 3. The numerator of this lower bound is a

constant value that we can calculate. The denominator is close to P (B) = 0.01 with high probability. The denominator
is less than the numerator with high probability and hence the baseline CEB is vacuous.

2. Showing that the split conformal algorithm returns trivial coverage sets: First we show that with probability, there are
only few validation samples in B. Then we show that this implies that the split conformal algorithm returns trivial
coverage sets.

3. Showing that the decisiveness-based CEB method returns non-trivial coverage sets: We first show that with high
probability over the samples, the decisiveness of the region B is the highest value - one. This will imply that the error
of the region B is low. The unlabelled samples provide an estimate of the probability weight of B that is larger than the
bound on the region’s error. This results in a small conditional error bound due to the decisiveness-based CEB given by
Theorem 4.
To show that decisiveness is one with high probability, we show that any classifier in Hthresholds that labels any point in
Su ∩B zero, has high sample error with high probability. This shows that all classifiers with low empirical error have
the same behaviour on Su ∩B i.e., label zero for all points in Su ∩B. Therefore the decisiveness is one.

We will now give a detailed proof with full calculations.

Proof of validity of Example 1. Using the enumeration from the proof outline we will now show the three parts.



1. Showing that the baseline CEB method returns trivial coverage sets: We show that the bound provided by Theorem 3
for B with sample failure parameter δ = 0.15 is greater 1.0. This implies trivial coverage sets.
Note that a lower bound for this bound is

εUC(|Sl|, 0.15/2)
|Su∩B|
|Su|

=

√
9(1+log(2/0.15))

150

|Su∩B|
|Su|

>
0.35 · 107

|Su ∩B|
.

The expected value of |Su ∩B| is 107 · 0.01 = 105. With high probability, |Su ∩B| is not much larger than 105. By
the Hoeffding inequality,

P

[
|Su ∩B| > 105 +

√
107

2
ln 4

]
≤ 1

10
.

With probability at least 0.9,

|Su ∩B|
|Su|

<
105

107
+ 10−3.5

√
ln 10

2

< 0.013.

Since 0.35 > 0.013, the bound given by Theorem 3 is bigger than 1.0.

2. Showing that the split conformal algorithm returns trivial coverage sets: First we show that with probability at least
0.52, the number of validation samples that lie in the region B is at most six. Then we show that this low number of
validation samples in B implies that the split conformal method returns trivial coverage sets.

(a) Showing that there are few validation samples inB. The expected size of |Sv∩B| is P (B)|Sv| = 0.01·75 = 0.75.
By applying the Hoeffding inequality, we get that

P [|Sv ∩B| ≥ 6] ≤ exp

(
−2(6− P (B)|Sv|)2

|Sv|

)
≤ exp

(
−2(6− 0.75)2

75

)
< 0.48.

(b) Showing that split conformal algorithm returns trivial coverage sets when |Sv ∩ B| ≤ 6. Recall that the split
conformal algorithm (Algorithm 1) calculates a threshold value and the number of errors in Sv ∩ B made by
the empirical risk minimizer from Hthresholds. The split conformal algorithm returns trivial coverage sets if the
errors in Sv ∩B is greater than the threshold value. If the threshold value is negative, then the split conformal
algorithm returns trivial coverage sets regardless of the number of errors in Sv ∩B. We will now show that when
|Sv ∩B| ≤ 6, the threshold value is negative. The threshold is at most

|Sv ∩B| −
⌈(

1− α+
1

|Sv|

)
(|Sv ∩B|+ 1)

⌉
.

When |Sv ∩B| ≤ 6, this threshold value is negative.

3. Showing that the decisiveness-based CEB method returns non-trivial coverage sets: We first show that with probability
at least 0.62 over samples, the decisiveness of the region B is the highest value - one. Like in the first part, we also
show that the fraction of sample points that lie in B is at least 0.013 with probability at least 0.9. The high decisiveness
combined with the lower bound on the fraction of samples that lie in B results in the conditional error bound in
Theorem 4 with sample failure parameter δ = 0.15 being less than 0.85. This results in non-trivial coverage sets for
(0.85, 0.85)-region-conditional validity.
To show that decisiveness is one with high probability, we show that any classifier in Hthresholds that labels any point in
Su ∩B zero, has high sample error with high probability. This shows that all classifiers with low empirical error have
the same behaviour on Su ∩B - labelling all points in Su ∩B zero. And therefore the decisiveness is one.



(a) Showing that the decisiveness of set B is one with high probability over the samples. We show this by showing
that all classifiers inHthresholds having sample error within 2εUC

(
|Sl|, 1

4 · 0.15
)

of the optimal sample error all
label all points in Su ∩ B zero. First we show that the sample error of the classifier h 1

2
is at most 0.0686 with

probability at least 0.84. This implies that the sample of the empirical risk minimizing classifier is also at most
0.0686. We show this by applying the Hoeffding inequality. The expected sample error is 0.001.

P
[
L0/1
Sl,B
≥ 0.1

]
≤ exp

(
−2(12− 0.15)2

150

)
< 0.16.

All classifiers with sample error within 2εUC(100, 0.15/4) have sample error at most 0.0686 + 2 · 0.34 = 0.77.

0.686 + 2εUC

(
|Sl|,

1

4
· 0.15

)
= 0.686 + 2

√
9(1 + log(4/0.15))

150

< 0.832

Now we show that with high probability any classifier that labels some point in B one (a classifier ha ∈ Hthresholds
with a < 0.01) has sample error larger than 0.832. We first show that there are few labelled samples in B similar
to how we showed that there are few validation samples in B. With probability at least 0.77, |Sl ∩B| ≤ 12.

P [|Sl ∩B| ≥ 12] ≤ exp

(
−2(12− P (B)|Sl|)2

|Sl|

)
< 0.23.

Next we show that of the labelled sample points not in B, most have labels different from the labels assigned
by a classifier ha ∈ Hthresholds with a < 0.01. A labelled sample not in B with label agreeing with a classifier
ha ∈ Hthresholds differs from the label assigned to it by the classifier h 1

2
. We have already shown that most labelled

samples have labels agreeing with the classifier h 1
2

. Therefore, the number of labelled samples in Sl \B that are
correctly labelled by a classifier ha with a < 0.01 is upper bounded by the number of labelled samples on which
h 1

2
makes an error. We have shown that this is at most 12 with probability at least 0.832. Therefore, any classifier

ha with a < 0.01 makes error on at least (150− 12− 12) labelled sample points with probability at least 0.62.
This concludes our proof that the decisiveness of the set B is one with probability at least 0.62.

(b) Showing a lower-bound on the number of unlabelled samples in B. By Lemma 3, with probability at least 1
10 ,

|Su∩B|
|Su| > 0.01−

√
1

2|Su| ln 10.

Therefore, with probability at least 0.52, the conditional generalization error of the empirical risk minimizer
can be bounded above by 0.15, using Theorem 4. The decisiveness-based method for (1 − α) = 0.85-region
conditional validity returns non-trivial coverage sets for all points in the set B.
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