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A VANISHING SINGULAR VALUES IN
TRANSFORMERS

Two crucial components relevant to the signal propagation
in the Transformer include LayerNorm [Ba et al., 2016]
and (multi-head) self attention [Vaswani et al., 2017]. In
this section, we argue that neither component by itself or in
conjunction with a vanilla residual connection can satisfy
dynamical isometry for all input signals.

A.1 LAYERNORM

Layer normalization removes the mean and scales the vari-
ance over all neurons of a given layer and introduces learn-
able parameters γ and β to re-scale the variance and shift
the mean according to

LayerNorm(x) =
x− E(x)√

Var(x)
× γ + β . (1)

It is clear from this definition that perturbing an input x
by a transformation that purely shifts either its mean or
variance will leave the output unchanged. These perturba-
tions, therefore, give rise to two vanishing singular values
of the input-output Jacobian. In the Transformer architec-
ture [Vaswani et al., 2017], the norm is applied to each of
the n elements of the input sentence, leading to a total of
2 × n vanishing singular values of the Jacobian for each
Transformer layer.

A.2 SELF-ATTENTION

Self-attention allows the model to relate content located
across different positions by computing a weighted sum of
an input sequence. Specifically, the n × d matrix x con-
tains an input sequence of n rows containing d-dimensional
embedding vectors, from which we can evaluate the query,
key and value matrices Q,K,V = x ·WQ,K,V , where
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the WQ,K,V matrices are d × d. The scaled dot-product
attention then is given by

Attention(Q,K,V ) = softmax
(
Q ·K>/

√
d
)
·V . (2)

In general, the singular value spectrum of the Jacobian of
this attention process is complicated. Rather than studying
it in full generality, we now merely argue that for some
inputs x and weights WQ,K,V the Jacobian has a large
number of vanishing singular values (a claim we evaluate
empirically in the paper). Consider weights or inputs such
that each of the arguments of the softmax function is small
compared to 1. The softmax function then simply returns a
n× n dimensional matrix filled with entries that all approx-
imate 1/n. This means that the attention function projects
all embedding vectors of the input sequence onto a single
diagonal direction. This implies that out of the n × d Ja-
cobian singular values only d are non-vanishing and hence
much of the input signal is lost. A residual connection can
restore some of the lost signals, but even then some per-
turbations are amplified while others are attenuated. This
example demonstrates that self-attention is incompatible
with dynamical isometry and unimpeded signal propagation
in deep Transformer networks. It is easy to verify that the
same conclusion holds for multi-head attention. A careful
initialization of the weights might alleviate some of these
issues, but we are not aware of any initialization scheme that
would render a Transformer layer consistent with dynamical
isometry.

B CONVERGENCE SPEED
EXPERIMENTAL
HYPERPARAMETERS

For all model variants in Section 6.2, we control the batch
size to be 1080, number of layers to 12, feed-forward and
attention dropout to 20%, hidden and embedding size to
512 units, context length to 512, the attention heads to 2,
and GELU [Hendrycks and Gimpel, 2016] activation in the
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Model Iterations Speedup

Post-Norm Diverged -
+ Warm-up 13,690 1×

Pre-Norm 17,765 0.77×
GPT2-Norm 21,187 0.65×
ReZero α = 1 14,506 0.94×
ReZero α = 0 8,800 1.56×

Table 1: Comparison of various 12 layer Transformers nor-
malization variants (Post-Norm [Vaswani et al., 2017], Pre-
Norm, GPT2-Norm [Radford et al., 2019]) against ReZero
and the training iterations required to reach 1.2 BPB on
enwiki8 validation set.

point-wise feed-forward layer. To accommodate large batch
training we use the LAMB optimizer [You et al., 2019]
with a fixed learning rate of 0.016. Although learning rate
schedules tend to improve performance [Devlin et al., 2019],
we omit them to simplify our training process. Training
is performed on 8x V100 GPUs for at most a few days.
Table 1 shows the speed gain of ReZero to reach 1.2 BPB
as compared to Transformers normalization variants. The
findings is also reflected in Figure 7.

C DEEP TRANSFORMERS
EXPERIMENTAL
HYPERPARAMETERS

In Section 6.3, in order to examine whether our approach
scales to deeper Transformers, we scale our 12 layer ReZero
Transformer from Section 6.2 to 64 layers and 128 layers
and compare it against the vanilla Transformer (Post-Norm).
Due to memory constraints, we decreased the hidden size
from 512 to 256 and reduced batch size to 304 and 144 for
the 64 layer and 128 layer model respectively. Following
guidelines from [You et al., 2019] we also adjusted the
learning rate according to 0.0005 ×

√
batch size. For all

models in our experiments we limit training to a maximum
of 100 training epochs. Training is performed on 8x V100
GPUs for at most a few days. Table 1

D REVIEW OF RESIDUAL GATES FOR
DEEP SIGNAL PROPAGATION

In this section we give a chronological but light review of
residual gates that are designed to preserve signals as they
propagate deep into neural networks.

D.1 HIGHWAY NETWORKS

Highway Networks Srivastava et al. [2015], based on ideas
from LSTM Hochreiter and Schmidhuber [1997], were the

first feedforward neural networks with hundreds of layers.
This architecture employs gating units that learn to regulate
signal flow through the network. Specifically, the authors de-
fine transform and carry gates T [W T ](x) and C[WC ](x),
with weights W T,C that act explicitly non-linearly on the
signal x. When combined with some block F (xi) of a deep
network, this gives the transformation

xi+1 = C[WC ](x) · xi + T [W T ](x) · F (xi) . (3)

The authors further propose to simplify the architecture
according to C ≡ 1 − T , and using a simple Transform
gate of the form T [W T ](x) ≡ σ(W>

T · x+ bT ), where σ
denotes some activation function. The bias is initialized to
be negative, as to bias the network towards carry behavior,
e.g., C, but the network is not initialized as the identity map.

The proposal of Highway Networks lead to Gated ResNet
Savarese et al. [2016], in which there exists a single addi-
tional parameter that parametrizes the gates as W T = 0,
bT = α, C = 1− T .

Any feed-forward network could be written in the form
(13), and ReZero corresponds to the simple choiceW T =
WC = 0, bT = α, bC = 1. In contrast to Highway Net-
works, in ReZero the gates are independent of the input
signal. We compare the performance of Gated ResNets to
ReZero ResNets in Section 5.

D.2 RESNETS

ResNets He et al. [2016a] introduced the simple residual
connection

xi+1 = σ (xi + F (xi)) , (4)

that has been extremely successful in training deep networks.
Just as Highway Networks, these residual connections are
not initialized to give the identity map.

D.3 PRE-ACTIVATION RESNETS

Soon after the introduction of ResNets it was realized in He
et al. [2016b] that applying the activation function σ prior
to the residual connection allows for better performance.
Schematically, we have the pre-activation connection

xi+1 = xi + F (xi) , (5)

where we absorbed the activation function into the block
F (xi). This finding of improved performance is consistent
with improved signal propagation, since the residual con-
nection is not modulated by the activation function.

D.4 ZERO γ

Residual networks often contain normalization layers in
which the signal is rescaled by learnable parameters γ which



Model Val. Error [%] Change Epochs to 80% Acc. Train Loss ×1000

ResNet-56 6.27 ± 0.06 – 20 ± 1 5.9 ± 0.1
+ Gated ResNet 6.80 ± 0.09 + 0.53 9 ± 2 4.6 ± 0.3
+ zero γ 7.84 ± 0.05 + 1.57 39 ± 4 31.2 ± 0.5
+ FixUp 7.26 ± 0.10 + 0.99 13 ± 1 4.6 ± 0.2
+ ReZero 6.58 ± 0.07 + 0.31 15 ± 2 4.5 ± 0.3

ResNet-110 6.24 ± 0.29 – 23 ± 4 4.0 ± 0.1
+ Gated ResNet 6.71 ± 0.05 + 0.47 10 ± 2 2.8 ± 0.2
+ zero γ 7.49 ± 0.07 + 1.25 36 ± 5 18.5 ± 0.9
+ FixUp 7.10 ± 0.22 + 0.86 15 ± 1 3.3 ± 0.5
+ ReZero 5.93 ± 0.12 − 0.31 14 ± 1 2.6 ± 0.1

Pre-activation ResNet-18 6.38 ± 0.01 – 26 ± 2 4.1 ± 0.3
+ ReZero 5.43 ± 0.06 − 0.95 12 ± 1 1.9 ± 0.3

Pre-activation ResNet-50 5.37 ± 0.02 – 26 ± 3 2.6 ± 0.1
+ ReZero 4.80 ± 0.08 − 0.57 17 ± 1 2.2 ± 0.1

Table 2: Comparison of ResNet variants on CIFAR-10. The uncertainties correspond to standard error. Baselines used: Gated
ResNet [Srivastava et al., 2015, Savarese et al., 2016], zero γ [Goyal et al., 2017, Hardt and Ma, 2016], FixUp [Zhang et al.,
2019], ResNet-56/110 [He et al., 2016a], Pre-activation ResNet-18/50 [He et al., 2016b]

is referred to the Zero γ Goyal et al. [2017], Hardt and Ma
[2016], He et al. [2019]. If the last element before a resid-
ual connection happens to be a normalization layer, then
initializing these γ to zero has been found to improve con-
vergence speed and accuracy. This method is in spirit very
similar to the ReZero architecture. However, it potentially
zero-initializes many parameters for each block, and is only
applicable when a normalization layer exists.

D.5 FIXUP

FixUp initialization Zhang et al. [2019] carefully rescales
the initialization scheme in order to avoid vanishing or ex-
ploding gradients, without the use of normalization tech-
niques. In particular, this scheme is implemented via the
following Rules (verbatim from Zhang et al. [2019]):

1. Initialize the classification layer and the last layer of
each residual branch to 0.

2. Initialize every other layer using a standard method
(e.g., [He et al., 2015]), and scale only the weight layers
inside residual branches by L−1/(2m−2).

3. Add a scalar multiplier (initialized at 1) in every branch
and a scalar bias (initialized at 0) before each convolu-
tion, linear, and element-wise activation layer.

The authors emphasize that Rule 2 is the essential part.
ReZero is simpler and similar to the first part of Rule 3, but
the initialization differs.

D.6 SKIPINIT

De and Smith [2020] proposes to replace BatchNorm layers
with a single scalar initialized at a small value. SkipInit is
only applicable when normalization layers exist.

D.7 REZERO

ReZero is the simplest iteration achieving the goal of deep
signal propagation. Schematically, the ReZero architecture
is

xi+1 = xi + αiF (xi) . (6)

The rule to implement ReZero is

• For every block add a scalar multiplier α (initialized at
0) and a residual connection.

E CIFAR-10 EXPERIMENTS

In this section we briefly describe the hyperparameters used
in the image recognition experiments performed in §5. For
all these experiments we used PyTorch version 1.2.0 (we
have observed some inconsistencies in results with other
PyTorch versions that may be due to different default ini-
tializations). CIFAR10 experiments tend to take less than
an hour on a single RTX 2080TI GPU. The comparison for
various ResNet variants is in Table 2.

E.1 STEP-DOWN SCHEDULE

In Table 1 we compare the inference accuracy of different
network architectures after training with identical hyper-



parameters a learning-rate schedule that decreases in three
steps, as in He et al. [2016a]. The initial learning rate is 0.1
and decreases by a factor of 10 at 100 and 150 epochs. The
models are trained for a total of 200 epochs. We use the
SGD optimizer with a batch size of 128, weight decay of
5× 10−4 and momentum 0.9.

E.2 SUPERCONVERGENCE SCHEDULE

To demonstrate superconvergence we use a one-cycle learn-
ing rate schedule, as described in Smith and Topin [2019]
and closely follow the setup by Fast AI referenced in the
text. In particular, the learning rate of the SGD optimizer
evolves as follows over 45 epochs. The initial learning rate
is 0.032 and linearly increases with each iteration to reach
1.2 after 10% of the total number of iterations has been
reached. Then, the learning rate linearly decreases to return
to 0.032 when 90% of the total steps. Thereafter, the learn-
ing rate linearly decays to a final value of 0.001 at the end
of training. The SGD momentum varies between 0.85 and
0.95, mirroring the triangular learning rate, as is standard for
the one-cycle policy in this setup Smith and Topin [2019].
Weight decay is set to 2 × 10−4 and the batch size is 512.
It was important to have a small, constant learning rate for
the residual weights, otherwise the ReZero model diverges
easily.

The residual weights cannot tolerate the extremely large
learning rates required for the super-convergence phe-
nomenon. For this reason we keep the learning rate of the
residual weights at 0.1 throughout training.

F DATASETS

We note that for all our experiments, we follow the official
training, validation and test splits of the respective datasets.
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