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Abstract

Graph neural networks (GNNs) are able to achieve
promising performance on multiple graph down-
stream tasks such as node classification and link
prediction. Comparatively lesser work has been
done to design GNNs which can operate directly
for community detection on graphs. Traditionally,
GNNs are trained on a semi-supervised or self-
supervised loss function and then clustering algo-
rithms are applied to detect communities. How-
ever, such decoupled approaches are inherently
sub-optimal. Designing an unsupervised loss func-
tion to train a GNN and extract communities in
an integrated manner is a fundamental challenge.
To tackle this problem, we combine the principle
of self-expressiveness with the framework of self-
supervised graph neural network for unsupervised
community detection for the first time in literature.
Our solution is trained in an end-to-end fashion and
achieves state-of-the-art community detection per-
formance on multiple publicly available datasets.

1 INTRODUCTION

Graphs or networks are ubiquitous in our daily life. Graph
representation learning [Perozzi et al., 2014, Hamilton et al.,
2017b] is the task of mapping different components of a
graph (such as nodes, edges or the entire graph) to a vector
space to facilitate downstream graph mining tasks. Among
various types of graph representation techniques, graph neu-
ral networks (GNNs) [Wu et al., 2020] have received sig-
nificant attention as they are able to apply neural networks
directly on the graph structure. Most of the GNNs can be
represented in the form of a message passing network, where
each node updates its vector representation by aggregating
messages from neighboring nodes with its own [Gilmer
et al., 2017, Hamilton et al., 2017a]. GNNs are tradition-

ally trained in a semi-supervised way [Kipf and Welling,
2017] on a node classification loss when a subset of node
labels are available. More recently, unsupervised and self-
supervised graph neural networks have been proposed where
a reconstruction loss [Kipf and Welling, 2016, Bandyopad-
hyay et al., 2020] or noise contrastive loss [Veličković et al.,
2019, Zhu et al., 2020] is used to train the networks.

Community detection is one of the most important tasks for
network analysis and has been studied for decades in classi-
cal network analysis community [Fortunato and Hric, 2016,
Xie et al., 2013]. However, compared to other tasks such
as node classification [Kipf and Welling, 2017, Veličković
et al., 2019] and link prediction [Kipf and Welling, 2016,
Zhang and Chen, 2018], community detection has not been
explored much in the framework of graph neural networks.
Being inherently unsupervised in nature, it is challenging
to train GNNs for community detection directly. Tradition-
ally, methods have been proposed where a graph representa-
tion learning algorithm is trained on a generic unsupervised
loss and then a clustering algorithm is applied as a post-
processing step to discover communities [Perozzi et al.,
2014, Bandyopadhyay et al., 2019]. Such approaches are
sub-optimal in nature as the node representation learning
module and the clustering algorithm work independently.
More recently, there have been efforts to train graph neural
networks directly for community detection in graphs [Bo
et al., 2020, Zhang et al., 2020] (Section 2).

In contrast to a fully unsupervised approach, a graph neural
architecture is proposed in [Chen et al., 2019] for a super-
vised version of community detection . In classical machine
learning, constraint clustering has been shown to be very
efficient where must-link or no-link constraints are given as
input [Wagstaff et al., 2001]. But, obtaining direct ground
truth community labels or such pair-wise constraints is ex-
pensive for real-world networks. In this paper, we aim to
derive such constraints in an unsupervised way, by using
the principle of self-expressiveness of data [Ji et al., 2014].
This allows to express each data point by a linear combina-
tion of other data points which potentially lie in the same
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subspace. The principle of self-expressiveness has been suc-
cessfully applied in computer vision and image processing
for object detection and segregation [Zhang et al., 2019a, Li
and Vidal, 2015]. However, inherent computational demand
to build pair-wise similarity matrix and subsequent use of
spectral clustering makes it infeasible to directly apply the
principle of self-expressiveness and subspace clustering in
domains like graphs where number of nodes can be very
large [Elhamifar and Vidal, 2009, Ji et al., 2014, 2017]. We
have taken a different approach in this paper to address
these computational challenges. Our solution uses a self-
supervised GNN and generate node communities from the
embeddings obtained. To guide the generated communities,
we use the principle of self-expressiveness on randomly
sampled batches of nodes to generate a set of soft must-link
and no-link constraints.

Following are the novel contributions made in this paper:

• We propose a novel community detection algorithm,
referred as SEComm (Self-Expressive Community de-
tection in graph). To the best of our knowledge, we are
the first in literature to combine the principle of self-
expressiveness with the framework of self-supervised
graph neural network for unsupervised community de-
tection. Our solution is able to use both link structure
and the node attributes of a graph to detect node com-
munities.

• To address the computational issues, our solution uses
the principle of self-expressiveness to generate a set
of soft must-link or no-link constraints on a subset
of nodes divided into batches. In contrast to existing
literature on self-expressiveness (which typically ap-
plies spectral clustering as a post-processing step), our
solution is trained in an end-to-end fashion.

• To show the merit of the proposed algorithm, we
conduct experiments with multiple publicly available
graph datasets and compare the results with a diverse
set of algorithms. SEComm is able to improve the
state-of-the-art performance of unsupervised commu-
nity detection with a significant margin in almost all
the real-world datasets we used. Model ablation study
and sensitivity analysis give further insights of the
algorithm. Source code of SEComm is available at
https://github.com/viz27/SEComm.

2 RELATED WORK

We have presented the related work into three categories.

Graph Neural Networks: Graph neural networks have
gained significant attention in last few years with their
success on a diverse set of applications [Wu et al., 2020,
Desai et al., 2021]. Typically, GNNs are trained on node-
classification, link prediction and graph reconstruction
losses [Kipf and Welling, 2017, Hamilton et al., 2017a].

Recently, self-supervised learning has been able to achieve
performance close to supervised learning for multiple down-
stream tasks [Belghazi et al., 2018, Hjelm et al., 2019].
Extending the concept of information maximization, DGI
[Veličković et al., 2019] and GRACE [Zhu et al., 2020] have
been proposed where information between different graph
entities (graph-level to node-level, corrupted versions of a
graph etc.) are maximized. However, none of the GNNs
above handles community detection in their respective ob-
jectives.

Principle of Self-Expressiveness: The concept of self ex-
pressiveness was proposed to cluster data drawn from mul-
tiple low dimensional linear or affine subspaces embedded
in a high dimensional space [Elhamifar and Vidal, 2009].
Given enough samples, each data point in a union of sub-
spaces can always be written as a linear or affine combina-
tion of all other points [Elhamifar and Vidal, 2009, Ji et al.,
2014]. Subspace clustering exploits this to build a similarity
matrix, from which the segmentation of the data can be
easily obtained using spectral clustering [Lu et al., 2012,
Ji et al., 2014]. Recently, a deep learning based subspace
clustering method has been proposed where an encoder is
used to map data to some embedding space before build-
ing the pair-wise similarity matrix and applying spectral
clustering [Ji et al., 2017]. However, inherent computational
demand to build pair-wise similarity matrix and subsequent
use of spectral clustering makes it infeasible to directly
apply the principle of self-expressiveness in domains like
graphs where the number of nodes can be very large.

Community Detection with GNNs: As explained in Sec-
tion 1, a disjoint approach of applying clustering on node
embeddings obtained by some representation algorithm is
inherently sub-optimal in nature [Bandyopadhyay et al.,
2020]. In [Zhang et al., 2019b], the authors have used an
adaptive graph convolution method that performs high-order
graph convolution to obtain smooth node embeddings that
capture global cluster structure. The node embeddings ob-
tained are subsequently used to detect communities using
spectral clustering. In [Sun et al., 2019], a probabilistic gen-
erative model is proposed to learn community membership
and node representation collaboratively. More recently, re-
searchers have tried to propose GNN algorithms that can
operate directly for community detection in a graph [Bo
et al., 2020]. In [Zhang et al., 2020], authors propose to de-
rive node community membership in the hidden layer of an
encoder and introduced a community-centric dual decoder
to reconstruct network structures and node attributes in an
unsupervised fashion. Our work is towards this direction of
obtaining node communities directly in the framework of
graph neural networks.
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3 PROBLEM FORMULATION

Let us denote an input graph by G = (V,E,X), where
V = {1, 2, · · · , N} is the set of nodes and E ⊆ V × V
is the set of edges. We assume that each node has some
attribute values present in a vector xi ∈ RF and X =
[x1 x2 · · · xN ]T ∈ RN×F is the node attribute matrix
of the graph. The goal of our work is to learn a function
f : V 7→ [K], where [K] = {1, 2, · · · ,K} is the set of
community (or cluster) indices, to map each node to a com-
munity by exploiting the link structure and node attributes
of the graph. We want to achieve this without having any
ground truth community information of a node. Intuitively,
nodes which are closely connected in the graph or have sim-
ilar attributes, should be members of the same community.
Important notations in the paper are summarized in Table 1.

Notations Explanations

G = (V,E,X) Input graph
i, j ∈ {1, 2, · · · , N} = V Indices over nodes

X ∈ RF Node feature matrix
Z ∈ RF ′ Node embedding matrix
M, P Batch size and number of batches sampled

Sij ∈ [0, 1] Similarity between nodes i and j
S ⊆ V × V node pairs whose similarities are computed
Sext ⊆ S After filtering out with θlow and θhigh
Ci ∈ RK Community membership vector for ith node
C ∈ RN×K Output node community membership matrix
WSS , WMLP Parameters of SS-GNN and MLP modules

Table 1: Different notations used in the paper

Figure 1: Training phases of SEComm

4 OUR SOLUTION: SECOMM

There are multiple steps in our proposed solution SEComm
as shown in Figure 1. We discuss each of them.

4.1 SELF-SUPERVISED NODE EMBEDDING

The first step of SEComm is to learn node representation
in an unsupervised way. Self-supervised learning [Hjelm

et al., 2019] has been used recently for obtaining both node
embeddings [Veličković et al., 2019, Zhu et al., 2020] and
graph-level embeddings [Sun et al., 2020]. Potentially, any
self-supervised differentiable approach to obtain node repre-
sentation can be integrated with our solution. In the follow-
ing, we have adopted the principle of mutual information
maximization between two corrupted versions of the given
graph, motivated from [Veličković et al., 2019, Zhu et al.,
2020], which is then used to formulate the final objective of
SEComm in Section 4.3.

Given the input graph G = (V,E,X), two graph views
G1 and G2 are generated from it by employing a corruption
function. The corruption function randomly removes a small
portion of edges from the input graph and also randomly
masks a fraction of dimensions with zeros in node features.
The vertex sets of G1 and G2 remain the same. These views
are used for contrastive learning at both graph topology and
node feature levels. We use a GCN encoder to generate
node embeddings for both G1 and G2. For a graph G, GCN
encoder derives node representations as follows:

Z = f(X,A) = ReLU(Â ReLU(ÂXW (0)) W (1)) (1)

where each row of Z ∈ R|V |×F ′ contains the corresponding
node representation. A is the adjacency matrix of the graph
G. We compute Ã = A + I , where I ∈ R|V |×|V | is the
identity matrix and the degree diagonal matrix D̃ii with
D̃ii =

∑
j∈V

Ãij , ∀i ∈ V . We set Â = D̃−
1
2 ÃD̃−

1
2 . W (0)

and W (1) are the trainable parameter matrices of GCN. Let
us use Z1 and Z2 to denote the node embedding matrices for
the two views G1 and G2 obtained from the GCN encoder
(parameters shared).

Next, the following noise contrastive objective (via a dis-
criminator) is used. For any node i ∈ V , let us denote the
corresponding nodes in G1 and G2 as G1(i) and G2(i) re-
spectively. For each i ∈ V , the pair (G1(i), G2(i)) is consid-
ered as a positive example. Negative examples are sampled
from both the views for each node i ∈ V . More formally, we
randomly select a set of nodes V−i = {j ∈ V | j 6= i} such
that |V−i| = N− (number of negative samples), ∀i ∈ V .
Both (G1(i), G1(j)) and (G1(i), G2(j)) are considered as
negative examples. Then, the following objective function
is minimized:

min
WSS

LSS =
∑
i∈V

[
− cos(Z1i, Z2i)

τ

+ log
( ∑

j∈V−i

e
cos(Z1i,Z1j)

τ + e
cos(Z1i,Z2j)

τ

)]
(2)

where Z1i and Z2i denotes the ith row of Z1 and Z2 re-
spectively, cos() is the cosine similarity between the two
embeddings and τ is a temperature parameter. This essen-
tially maximizes the agreement between the embeddings
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of ith node in two views. Both link structure and node at-
tributes of the graph are considered because of the use of
GCN encoder in Equation 1. Node embedding matrix Z of
the original input graph G can be obtained by Equation 1,
where the purpose of G1 and G2 were just to enable the
training of the self-supervised loss in Equation 2.

4.2 LEARNING NODE SIMILARITIES THROUGH
SELF-EXPRESSIVENESS

Vector node representations obtained in Section 4.1 are quite
generic. There is no guarantee that similarities between the
nodes captured through such embeddings are suitable to
discover communities in the graph. In contrast to node clas-
sification or other supervised tasks, lack of any ground truth
in training for community detection makes the problem
highly non-trivial. To tackle this, we use the principle of
self-expressiveness [Elhamifar and Vidal, 2009, Ji et al.,
2017] which aims to approximate a data point by a sparse
linear sum of a subset of other points, which stays in the
same subspace. This is more prevalent when the graph has
large number of nodes and embedding dimension is also
reasonably high [Elhamifar and Vidal, 2009]. Based on the
contribution of a point to reconstruct some other point, it
is possible to learn a pair-wise similarity matrix using this
principle. Such a pair-wise similarity can guide the gener-
ation of communities from the node embeddings obtained
by the self-supervised layer. However, computation of pair-
wise similarity matrix for a graph can be too expensive as it
needs O(N2) storage and processing. Hence, we propose a
batch-wise learning procedure, as discussed later.

Given the node embedding matrix Z ∈ RN×F ′ obtained
from Section 4.1, we want to derive a node similarity matrix
S ∈ RN×N using the principle of self-expressiveness. For
each node i ∈ V , we first try to express Zi (ith row of Z)
by a linear sum of few other node embeddings Zj , j 6= i.
So, Zi =

∑
j∈V

qijZj , where qij is the (i, j)th element of a

coefficient matrix Q ∈ RN×N and we enforce Qii = 0 to
avoid the trivial solution of Q being assigned to a identity
matrix. We need to learn this coefficient matrixQwhich will
be used to generate similarity matrix S. It can be shown [Ji
et al., 2014] under the assumption of subspace independence
that, by minimizing certain norms ofQ, it is possible to have
a block-diagonal structure (up to a permutation) ofQ. In that
case, each block in Q would contain nodes which belong
to the same subspace. This can be posed as the following
optimization problem.

min
Q
||Q||p such that, Z = QZ; diag(Q) = 0 (3)

where ||Q||p is pth matrix norm of Q and diag(Q) denotes
the diagonal entries of Q. Based on the choice in some exist-
ing literature [Lu et al., 2012, Ji et al., 2014], we use square
Frobenius matrix norm for our implementation. However,

exact reconstruction of Z using the this principle may not
be possible. So, we relax the hard constraint Z = QZ with
square Frobenius norm of (Z −QZ) (soft constraint). This
gives us the following objective function.

min
Q
LSE = ||Z −QZ||2F + λ1||Q||2F such that, diag(Q) = 0

(4)
where λ1 is a weight parameter of this optimization.

In principle, while a pairwise similarity matrix S can be
constructed trivially as Q+QT , many heuristics have been
proposed to improve the clustering performance of S (when
using methods such as spectral clustering directly on S). We
follow the heuristics proposed in [Ji et al., 2014] to construct
the node similarity matrix S as:

1. Q′ = 1
2 (Q+QT )

2. Compute the r rank SVD of Q′, ie. Q′ = UΣV T ,
where r = dK + 1, K is the number of communities
and d is the maximal intrinsic dimension of subspaces
which is set to 4 in all our experiments.

3. Compute L = UΣ
1
2 and normalize each row of L to

have unit norm.

4. Set negative values in L to zero to obtain L′.

5. Construct similarity matrix S as S = (L′ +
L′T )/||L||∞, so that sij ∈ [0, 1].

As mentioned before, an inherent difficulty to compute the
pair-wise similarity matrix is the computation and storage
of N ×N dimensional matrix S. So, instead of computing
this matrix for all pairs of nodes, we use batch-wise learn-
ing. We sample batches of randomly selected nodes with
batch size M , where M ≤ N . We train the loss in Equation
4 for each batch. The required computation in each batch
is O(M3) (for solving Equation 4 and the subsequent use
of SVD decomposition) which is much lesser than O(N3)
for a significantly smaller M . However, the problem with
this approach is that one would not get complete similarity
matrix for the graph. It only computes sij if nodes i and
j belong to a same batch. Let us denote S to be the set
of node pairs for which the similarity is computed in the
batch-wise learning. Clearly, S ( V × V and |S| << N2

(when M < N). This makes it difficult to use with spectral
clustering, as most of the subspace clustering algorithms do
[Ji et al., 2017]. But as explained next, our overall solution
does not need all the node-pair similarities. Rather, it fil-
ters the existing similarities computed with the batch-wise
solution using a simple trick explained next.

4.3 CONSTRAINED NODE COMMUNITY
DETECTION

Instead of applying expensive spectral clustering on the
complete matrix S as a post processing step to find node
clusters, we use a neural network based solution which is
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significantly more scalable. We use a fully-connected multi-
layer perceptron (MLP) with the set of trainable parameters
WMLP to map each node embedding to its corresponding
soft community membership vector as follows.

Ci = Softmax(MLP(Zi)) ∈ RK (5)

where the MLP maps each Zi ∈ RF ′ to a K dimensional
vector, K is the number of communities. We assume to
know K beforehand. The softmax layer converts the K
dimensional vector to a probability distribution such that
cik (kth element of Ci) denotes the probability that ith node
belongs to kth community, ∀k = [K]. Equation 5 ensures
that nodes having similar embeddings will be mapped to
similar positions in the (K − 1) dimensional probability
simplex. However, relying completely on embeddings to
detect communities is not desirable since the embeddings
are generated with generic objectives. So, they may not be
optimal to generate node communities. Hence, we use the
information learned in node-pair similarities in Section 4.2
to guide both the detection of node communities by training
the parameters of MLP in Equation 5 and updating node
embeddings.

Let us form the community membership matrix C =
[C1, · · · , CN ]T ∈ RN×K . If the complete node similarity
matrix S is available, one may try to minimize the following
objective.

min
WSS , WMLP

||CCT − S||2F (6)

There are multiple drawbacks present in the objective func-
tion above. First, it needs us to compute the complete node
similarity matrix S in Section 4.2 which prevents the batch-
learning mechanism explained before. Next, the compu-
tation involved is O(N2) in Equation 6. Further, there is
another issue if one wants to use all pair-wise node similar-
ities in S to guide the community detection. Due to noise
in the dataset, many of the pair-wise similarities may not
reflect the actual similarities between the nodes. The simi-
larity values which are around 0.5 neither express a strong
similarity nor a strong dissimilarity between a node pair. So
they are less informative compared to the similarity values
which are close to 0 or 1. But they can still influence the
parameters of the neural network because of Equation 4.

Hence, instead of considering all the pair-wise similarity
values, we only consider the ones in S computed over the
batches as discussed in Section 4.2. Further, we have ob-
served experimentally in Section 5.6 that for a larger dataset,
it is okay even if some nodes are not part of any of the
batches selected randomly. Thus, the number of batches can
be significantly smaller than N

M for a larger dataset. We also
introduce two thresholds θlow and θhigh to use only those
node-pair similarities which are extreme in their values, thus
more informative in nature. We set 0 < θlow ≤ θhigh < 1.
We also set θhigh = 1 − θlow, as this choice works well
in the experiments and also reduces the number of hyper-
parameters. Let us introduce the set Sext ⊆ S as follows.

Sext =
{

(i, j) ∈ S | Sij ≤ θlow or Sij ≥ θhigh
}

(7)

Here, a node pair (i, j) in Sext should be roughly con-
strained to be in the same cluster when Sij value is very
high or in different clusters when Sij is very low. Thus,
we derive a set of soft version of must-link and no-link
constraints in an unsupervised way to guide the formation
of communities. With these, we formulate the following
optimization to detect the communities:

min
WSS , WMLP

∑
(i,j)∈Sext

(
CT

i Cj − Sij

)2
(8)

By considering only the node pairs in Sext, we are able
to ignore the pairs which are neither too similar nor too
dissimilar, to contribute to the learning of community mem-
berships. As Ci is a probability distribution over all the K
communities for a node i, we want to avoid trivial com-
munity formations where each node is assigned to all the
communities with roughly uniform probabilities, or all the
nodes are assigned to a single community [Bianchi et al.,
2020]. So, we update the main objective in Equation 8 as:

min
WSS , WMLP

LCom =
∑

(i,j)∈Sext

(
CT

i Cj − Sij

)2
+λ2

∣∣∣∣∣∣∣∣ CTC

||CTC||2F
− IK
K

∣∣∣∣∣∣∣∣2
F

(9)

The second component in the equation above ensures that
communities are close to orthogonal and they are balanced
in size. Please note that due to the use of neural network to
generate community membership for each node in Equation
5, the optimization in Equation 9 is not a discrete optimiza-
tion. Rather, we solve it with respect to the parameters WSS

of the self-supervised layer (Eq. 2) and WMLP of the MLP
(Eq. 5). The total loss to train the node embeddings and
community detection can be written as a weighted sum of
self-supervised loss and community detection loss, which is
shown below:

min
WSS , WMLP

Ltotal = αLSS + LCom (10)

where α is a weight factor of the optimization. The node-pair
similarity values are obtained by solving the batch-learning
technique in Section 4.2. The overall algorithm SEComm
proceeds in an iterative way by solving the self-expressive
layer for each batch and then updating the parameters of
the neural network by minimizing Equation 10. The pseudo
code of SEComm is presented in 1.

4.4 TRAINING AND ANALYSIS OF SECOMM

We use ADAM with default parameterization to solve the
optimization formulations in Equations 4 and 10. For the
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Algorithm 1 SEComm - Self-Expressive Community De-
tection

Input: The graph G = (V,E,X), |V | = N , K: Number
of communities in the graph, M : Batch size for the self-
expressive layer, P : Number of batches used for training self
expressive layer, Thresholds θlow and θhigh.
Output: Community membership vector Ci ∈ RK for each
node i ∈ V .

1: Initialize the parameters of the self-supervised GNN and clus-
tering MLP (in Eq. 5).

2: pre-training step: Obtain node embeddings Z ∈ RN×F ′ by
training the self-supervised GNN.

3: Initialize S as empty.
4: for batch ∈ {1, 2, · · · , P} do
5: Sample a batch of M nodes from V
6: Learn the pair-wise node similarity matrix Sm for the

selected nodes by optimizing Eq. 4.
7: Add all the node-pairs from the batch to S.
8: end for
9: Construct Sext according to Eq. 7

10: for iter ∈ {1, 2, · · · , T} do
11: Generate node embedding matrix Z ∈ RN×F ′ using the

self-supervised GNN.
12: Generate cluster membership vector Ci ∈ RK for each

node i ∈ V .
13: Update the parameters of the GNN and clustering MLP by

optimizing Eq. 10
14: end for

self-expressive loss in Equation 4, we train until the loss satu-
rates. For the total loss in Equation 10, we particularly focus

on the saturation of the regularization
∣∣∣∣∣∣∣∣ CTC
||CTC||2F

− IK
K

∣∣∣∣∣∣∣∣2
F

.

Experimentally, using the convergence of this component
explicitly as a stopping criteria for SEComm gives slightly
better result for all the datasets, than checking the total con-
vergence. But as explained in Section 5.3, different compo-
nents of the loss function have similar contributions. Hence
they saturate almost in the same time for most of the cases.
This can also be observed in Section 5.5.

Time Complexity: Time complexity of the self-supervised
GNN in Section 4.1 is O(|E| + NFF ′N−), where N− is
the number of negative samples used. The self-expressive
layer takes another O(PM3) time, where P is the number
of batches sampled, and M is the size of each batch. Finally,
generating community membership takes O(NK2) time
because of solving the loss in Equation 9. Thus, the overall
run time of each iteration of SEComm is linearly dependent
on the number of nodes and number of edges in the graph.

5 EXPERIMENTAL EVALUATION

This section presents the details of the experiments that we
conducted and the analysis of the results.

Dataset #Nodes #Edges #Features #Labels
Cora 2,708 5,429 1,433 7

Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3

Wiki 2,405 17,981 4,973 17
Physics 34,493 247,962 8,415 5

Table 2: Summary of the datasets used

5.1 DATASETS USED

To show the merit of SEComm, we conduct experiments
on 5 publicly available graph datasets [Kipf and Welling,
2017, Zhang et al., 2019b]. Different statistics of the datasets
are summarized in Table 2. Cora, Citeseer and Pubmed
are citation datasets where nodes correspond to papers and
are connected by an edge if one cites the other. Wiki is a
collection of webpages where nodes are webpages and are
connected if one links to other. Physics is a co-authorship
network where nodes are authors, that are connected by
an edge if they have co-authored a paper [Shchur et al.,
2018]. Each of these datasets have attribute vector associated
with each node. They also have ground truth community
membership of each node, which we use to evaluate the
performance of our proposed and baseline algorithms.

(a) Cora (b) Wiki

Figure 2: Loss vs Accuracy progression during training

5.2 BASELINE ALGORITHMS

We use a diverse set of baselines to compare the performance
of SEComm. We divide them into the following categories.

Using only Node Features: As each node is associated with
some attribute vectors, we use k-means and spectral cluster-
ing (Spectral-f) algorithms directly on the node attributes
to cluster nodes into different communities. Naturally, these
approaches ignore the graph structure completely.

Using only Graph Structure: We also use spectral cluster-
ing (Spectral-g) on the graph structure. Here we consider
adjacency matrix of a graph as the similarity matrix between
the nodes. We also use popular unsupervised node embed-
ding techniques DeepWalk [Perozzi et al., 2014], which is a
random walk based technique and DNGR [Cao et al., 2016],
which is an auto-encoder based technique.
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Methods Input Cora CiteSeer Pubmed Wiki

Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%

k-means Feature 34.65 16.73 25.42 38.49 17.02 30.47 57.32 29.12 57.35 33.37 30.20 24.51
Spectral-f Feature 36.26 15.09 25.64 46.23 21.19 33.70 59.91 32.55 58.61 41.28 43.99 25.20

Spectral-g Graph 34.19 19.49 30.17 25.91 11.84 29.48 39.74 3.46 51.97 23.58 19.28 17.21
DeepWalk Graph 46.74 31.75 38.06 36.15 9.66 26.70 61.86 16.71 47.06 38.46 32.38 25.74

DNGR Graph 49.24 37.29 37.29 32.59 18.02 44.19 45.35 15.38 17.90 37.58 35.85 25.38

GAE Both 53.25 40.69 41.97 41.26 18.34 29.13 64.08 22.97 49.26 17.33 11.93 15.35
VGAE Both 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95 28.67 30.28 20.49
MGAE Both 63.43 45.57 38.01 63.56 39.75 39.49 43.88 8.16 41.98 50.14 47.97 39.20
ARGE Both 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41 41.40 39.50 38.27

ARVGE Both 63.80 45.00 62.70 54.40 26.10 52.90 58.22 20.62 23.04 41.55 40.01 37.80
AGC Both 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72 47.65 45.28 40.36

GUCD Both 50.5 32.3 NA 54.47 27.43 NA 63.13 26.98 NA NA NA NA

SEComm Both 75.92 56.04 73.94 69.82 42.53 60.25 74.49 36.50 73.50 53.10 51.38 44.48
Rank (SEComm) 1 1 1 1 1 2 1 1 1 1 1 1

Table 3: Performance of Community Detection by SEComm and other baseline algorithms

Methods Acc% NMI% F1% Runtime (sec.)
k-means 44.20 44.46 37.63 28
ARGE 60.67 51.77 62.32 2112

ARVGE 61.28 53.49 65.47 2221
AGC 75.36 58.19 60.72 6931

SEComm 77.93 56.08 76.42 624

Table 4: Community Detection on Physics Dataset

Using both Node Features and Graph Structure: We
use a set of unsupervised graph neural network based tech-
niques. GNN based approaches are naturally able to use
both link structure and node attribute of the graph. They
are: graph autoencoder (GAE) and graph variational au-
toencoder (VGAE) [Kipf and Welling, 2016], marginalized
graph autoencoder (MGAE) [Wang et al., 2017], adversari-
ally regularized graph autoencoder (ARGE) and variational
graph autoencoder (ARVGE) [Pan et al., 2018]. These meth-
ods typically learn the node embeddings and use clustering
on the embeddings as a post processing step. Finally, we use
two recently proposed community detection methods - AGC
[Zhang et al., 2019b], which uses high-order graph convo-
lution to get node embeddings and detect communities via
spectral clustering on the embeddings and GUCD [Zhang
et al., 2020], which uses an auto-encoder based framework
to obtain direct community assignments for every node.

5.3 EXPERIMENTAL SETUP

Our proposed algorithm SEComm generates community
membership of each node in a graph in the framework of
graph neural networks. As each node has a single ground
truth community membership in all the datasets that we use,
we consider the index of the maximum value of Ci ∈ RK

(from Equation 5) as the community index of the node

generated by SEComm.

There are multiple hyperparameters present in SEcomm.
For weight factors in optimization such as λ1, λ2 and α,
we check the contribution of different components in a loss
function at the beginning of the algorithm, and set these
parameters to values such that effective contributions of
those components become roughly the same. This ensures
that the optimization pays similar importance to different
components of SEComm. For the temperature parameter
τ , we use the same values used in the literature [Zhu et al.,
2020]. For threshold parameters θlow (0 < θlow ≤ 0.5), we
set it to 0.5 for relatively smaller datasets as we do not want
to discard any information for them. For Pubmed, we set it
to 0.05 as considering more node-pair similarity values adds
noise and also increases runtime of SEComm. However on
Physics, the training convergence is not smooth when we
set θlow to a very small number. So, we set it to 0.3 on
this dataset. As mentioned in Section 4.3, we set θhigh =
1 − θlow. We have also conducted sensitivity analysis of
SEComm with respect to some of these hyperparameters in
Section 5.6.

5.4 RESULTS OF COMMUNITY DETECTION

Tables 3 and 4 show the performance of community de-
tection by different baseline algorithms and SEComm. We
use three popularly used metrics to evaluate the quality of
community detection. They are clustering accuracy (Acc),
normalized mutual information (NMI), and macro F1-score
(F1) [Aggarwal and Reddy, 2014, Zhang et al., 2019b]. We
use ground truth community information of the nodes only
to calculate these quality metrics.

While reporting the performance of baseline algorithms for
the first four datasets in Table 3, we have collected the best

1084



results from the available literature [Zhang et al., 2019b,
2020] which adopted the same experimental setup. We mark
some entry as ‘NA’ if the result of that algorithm for a
dataset is not publicly available. For Physics dataset, the
baseline results are not available in the literature. So, we
have run and reported results only for better-performing
and diverse subset of baselines in Table 4 with adequate
hyperparameter tuning. Additionally, we have also reported
the runtime on Physics dataset for these algorithms to give
more insight about scalability.

We run SEComm 10 times on each dataset and report the
average performance. Tables 3 and 4 show that SEComm is
able to achieve state-of-the-art (SOTA) performance for all
the datasets, and for all the metrics, except on Citeseer-F1%
and Physics-NMI% scores, where SEComm is next to AGC.
In terms of performance improvement by clustering accu-
racy, SEComm is able to improve SOTA by 10.1% on Cora,
4.2% on Citeseer, 6.7% on Pubmed, 5.9% on Wiki and 3.4%
on Physics. We also check the standard deviation of the per-
formance of SEComm over 10 runs in each dataset. Standard
deviation lies in the range of 0.5% - 1% on all the datasets,
which shows the robustness of SEComm. Among the base-
lines, AGC mostly performs better than others. But, AGC is
computationally much expensive because of their adaptive
strategy for determining k in k-order graph convolution. As
shown in Table 4, runtime of AGC on Physics dataset is ~16
times more than that of SEComm. As expected, the algo-
rithms which use both graph structure and node attributes
perform better than the ones which use only one of those.
The consistent performance of SEComm on all the datasets
shows the importance of integrating the objective of commu-
nity detection directly into the framework of self-supervised
graph neural network (the loss from these components prop-
agates to each other through backpropagation). Further, use
of the principle of self-expressiveness regularizes the com-
munities formed in SEComm to achieve better performance.
Run-time of SEComm and its various components on all the
datasets is shown in Table 5. Usefulness of the individual
components of SEComm are presented in Section 5.7.

Dataset GNN Self-Express. Comm. Module Total
Wiki 5.4s 34.8s 44.8s 85.1s
Cora 6.6s 39.2s 84.2s 130.1s

CiteSeer 27.8s 58.4s 157.8s 244.1s
Pubmed 239.6s 103.6s 121.9s 465.1s
Physics 106.9s 280.4s 236.4s 623.7s

Table 5: Runtime of SEComm on various datasets

5.5 LOSS AND ACCURACY OF SECOMM

Typically for an unsupervised algorithm, the loss that it
minimizes and the metric that is used to evaluate the per-
formance of the algorithm are not necessarily the same. So,
it is important to see if reducing the loss over the epochs

actually increases the performance of the algorithm with
respect to the quality metric. For SEComm, we plot the loss
in Equation 10 and the clustering accuracy that it achieves
over different epochs of the algorithm for the datasets Cora
and Wiki in Figure 2. One can see that with the decreasing
loss, overall clustering accuracy improves with some mi-
nor fluctuations. Thus, the unsupervised loss that SEComm
minimizes essentially helps to improve the performance of
clustering. This is also another reason of consistent perfor-
mance (improved metric scores with less standard deviation)
of SEComm on multiple datasets.

(a) Cora (b) Wiki

Figure 3: Performance of SEComm with varying embedding
dimension

(a) Cora (b) Pubmed

Figure 4: Performance of SEComm with varying threshold
θlow

(a) Pubmed (b) Pubmed

Figure 5: Performance of SEComm with varying number of
batches sampled and batch size respectively

5.6 SENSITIVITY TO HYPERPARAMETERS

In this section, we show the sensitivity of SEComm to dif-
ferent hyperparameters. We keep all other hyperparameters
fixed while changing only the hyperparameter of interest.
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Methods Cora CiteSeer Pubmed Wiki

Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%

SEComm-GNN 72.85 54.40 68.16 64.95 39.01 60.51 49.63 19.59 40.04 32.14 34.88 28.34
SEComm-Spectral 74.26 55.38 71.75 57.58 36.63 54.99 - - - 49.81 51.07 43.95

SEComm-Embeddings 73.85 57.57 65.07 60.29 35.46 54.46 68.30 34.47 67.97 35.67 36.12 29.49
SEComm 75.92 56.04 73.94 69.82 42.53 60.25 74.49 36.50 73.50 53.10 51.38 44.48

Table 6: Model Ablation Study of SEComm

We vary the embedding dimension F ′ from 64 to 512 for
Cora and Wiki and show the performance of community
detection in Figure 3. We can see some fluctuation in the
performance for Cora. As other hyperparameters are tuned
keeping F ′ = 256 for Cora, there are some sudden lows
around it. For Wiki, the performance was low at F ′ = 64 as
that is not sufficient enough to preserve all the information
about the graph in the embeddings. It increases at F ′ = 128.
There is a gradual decrease of performance beyond that
as the embeddings start holding noisy information when
dimension increases more.

We check the performance on Cora, Wiki and Pubmed in
Figure 4 with varying θlow (we set θhigh = 1 − θlow). As
we decrease θlow, we are filtering out more pair-wise simi-
larities, especially the ones which lies in the mid zone of the
range [0, 1]. Filtering out such similarity values might lead
to less amount of data to regularize the communities learned
by SEComm in Equation 9 for a smaller dataset. Thus, the
performance on Cora is affected when θlow is very low in
Figure 4. But on a larger dataset, filtering out such less in-
formative similarity values (as explained in Section 4.2) can
lead to removing noise and help improving the performance.
Thus in Pubmed, better performance is observed around
θlow = 0.05 (which implies θhigh = 0.95). Below which
the amount data becomes too less to train the algorithm
properly, and above which it was adding noise.

As discussed in Section 6, we do not need to train the self-
expressive layer (in Eq. 4) on the complete dataset. In Fig-
ure 5a, we vary the number of batches sampled, where
each batch contains 2000 nodes. We can see that the perfor-
mance improved initially and then saturates when number of
batches is 5 or more. Thus, optimal performance on Pubmed
for community detection can be achieved by using only
~50% (or more) of data points to train the self-expressive
layer. In Figure 5b, we change the batch size, keeping num-
ber of batches as 6. More is the batch size, more computation
resource and time needed. We observe that SEComm is able
to achieve reasonably good performance when the batch
size is 2000 or more.

5.7 MODEL ABLATION STUDY

In this section, we show the usefulness of different compo-
nents of SEComm. In particular, we check the community
detection performance in the following scenarios.

SEComm-GNN We run k-means on the node embeddings
produced by the self-supervised GNN used in SEComm,
without running the other modules of SEComm.

SEComm-Spectral We run spectral clustering on the com-
plete similarity matrix S to find node clusters. However, S
can be computed only for smaller graphs and hence this
experiment cannot be performed on larger datasets like
Pubmed and Physics.

SEComm-Embeddings We run k-means on the node em-
beddings generated after the complete training of SEComm
(including the self-expressive and clustering modules)

We compare the results of the above with the community
detection output of the complete model of SEComm in
Table 6. Again we use three metrics clustering accuracy,
NMI and F1 score to evaluate the quality of community
detection. Interestingly, we do not see any clear winners
between the three model variants. But it is clear from the
reported performance numbers that the complete model of
SEComm outperforms its variants (except CiteSeer-F1%).

6 DISCUSSION AND CONCLUSION

In this work, we have proposed a novel graph neural network
that can directly be used for node community detection in a
graph. We use the principle of self-expressiveness to derive
a set of soft node-pair constraints to regularize the formation
of the communities. To the best of our understanding, this is
the first work to integrate a self-expressive layer into a self-
supervised GNN. Our approach is highly scalable, without
compromising the performance of community detection.
SEComm is able to achieve state-of-the-art performance on
all the datasets that we used for community detection.

Due to the use of graph neural network to directly generate
community memberships of nodes, SEComm can work in
an inductive setup. It would be interesting to analyze the
performance of SEComm on newly added nodes or even
new graphs without retraining.
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