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This appendix is outlined as follows.

• Section A proves all propositions and theorems.

– Section A.1 proves Proposition 1.
– Section A.2 proves Theorem 1.
– Section A.3 proves Theorem 2.
– Section A.4 proves Theorem 3.

• Section B gives a more detailed description and data generating mechanism of the example provided in the introduction.

• Section C gives a detailed description of other tests and our implementations.

• Section D discusses computational complexity and possible methods to speed up computations.

A PROOFS

In this section we prove the propositions and theorems described in the main body of this paper.

A.1 PROOF OF PROPOSITION 1

Assume that kernel k : Y × Y → R is characteristic (i.e. the mean embedding is injective) and that for all y, w(x) > 0 is
bounded above by W . A kernel is called characteristic, if the maximum mean discrepancy between probability measures
PY 0 and PY 1 induced by k is such that, MMD(PY 0 , PY 1) = 0 if and only if PY 0 = PY 1 . (Gretton et al., 2007) showed
that Gaussian kernels are characteristic.

To prove the proposition we exploit the assumption Y 0, Y 1 |= T |X and recover expectations with respect to the underlying
random variables of interest (Y 0, Y 1). Assuming access to the propensity score, e(x) = p(T = 1|X = x) = E(I(T =
1)|X = x), and for any measurable function of our observed values Y , such as the kernel function k, we have that,

EY,Y ?∼PY |T=1

(
k(Y, Y ?)

e(X)e(X?)

)
= EY,Y ?

(
TT ?k(Y, Y ?)

e(X)e(X?)

)
= EY,Y ?

(
I(T = 1)I(T ? = 1)k(Y 1, Y 1?)

e(X)e(X?)

)
= EX,X?

(
EY,Y ?

(
I(T = 1)I(T ? = 1)k(Y 1, Y 1?)

e(X)e(X?)
|Y 1, Y 1,?, X,X?

))
= EY 1,Y 1,?,X,X?

(
k(Y 1, Y 1?)

e(X)e(X?)
ET,T?

(
I(T = 1)I(T ? = 1)|Y 1, Y 1,?, X,X?

))
= EY 1,Y 1,?

(
k(Y 1, Y 1,?)

)
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where recall that we use the notation y1 for a realization of the random variable Y 1. I is the indicator function. This
derivation shows that by taking weighted expectations with respect to the observed distribution Y |T = 1 we can access
expectations with respect to our distribution of interest Y 1. Similar derivations follow for data observed under Y |T = 0

using the fact that EY |T=0( f(Y )
1−e(X) ) = EY 0(f(Y 0)), for f any measurable function.

Now notice that the MMD(Y 0, Y 1) between Y 0 and Y 1 is defined in terms of expectations with respect to the random
variables Y 0 and Y 1,

MMD(Y 0, Y 1) := EY 0,Y 0,?k(Y 0, Y 0,?) + EY 1,Y 1,?k(Y 1, Y 1,?)− 2EY 1,Y 0k(Y 0, Y 1)

Thus with the above derivation we get that each term in the definition of WMMD(Y |T = 0, Y |T = 1) is equal to each term
in the definition of the MMD, which proves the proposition.



A.2 PROOF OF THEOREM 1

Regularity conditions. The following notation is used in the statement on the regularity conditions of Theorem 1. Let
Bn = (bimn) and Wn = (Wijn), for i, j = 1, ..., n;n,m : 1, 2, .... Here Wn is a matrix of weights in Rn×n and Bn is
an orthogonal matrix in Rm×n such that BTnWnBn = Λn, where Λn is a diagonal matrix with λmn as the mth diagonal
element. Assume limn→∞ λmn = λm and let δkm be the dirac delta function with δkm = 1 if k = m and zero otherwise.
Assume that the following regularity conditions hold,

1. max
1≤i≤n

|bimn| → 0 as n→∞ for each m.

2.
∑n
i=1 bimnbikn → δmk as n→∞ for all m, k.

3.
∑n
i=1

∑n
j=1 w

2
ijn →

∑∞
m=1 λ

2
m <∞.

4.
∑n
i=1

∑n
j=1 wijnbiknbjkn → λk as n→∞, for all m.

These conditions are sufficient by (De Wet et al., 1973) for a square matrix of data-dependent weights W = (wiwj) to be
approximately diagonalizable, such that it admits an eigen-decomposition BTWB = Λ.

Proof. Recall the definition of the empirical estimate of the WMMD2,

ŴMMD
2

:=
1

n(n− 1)

∑
i6=j:ti=tj=1

wiwjk(yi, yj) +
1

m(m− 1)

∑
i 6=j:ti=tj=0

k(yi, yj)− (1)

2

nm

∑
i,j:ti=1,tj=0

w(xi)k(yi, yj) (2)

where the (yi, ti, xi) are realization of the random variables (Y, T,X), and have assumed that n observations are made with
T = 1 and m with T = 0. w(xi) = Pr(Ti = 1|Xi = xi)/Pr(Ti = 0|Xi = xi) is the density ratio giving the likelihood of
an example i being observed under one population with respect to the other. We assume this ratio to be known (for now) and
provide approximation bounds for our proposed approximation in Theorem 2 and 3. Our proof is presented in three parts,
each one deriving the asymptotic behaviour of each one of the three terms in (1).

Note first that we may write the square integrable (centered) kernel k as a weighted sum of product of eigen-functions of the
Hilbert-Schmidt operator defined by k (Gretton et al., 2012),

k(yi, yj) =

∞∑
k=1

αkψk(Yi)ψk(Yj) (3)

Consider now the first term in (1), it follows that,
n∑
i=1

n∑
j=1,j 6=i

w(xi)w(xj)k(yi, yj) =

n∑
i=1

n∑
j=1,j 6=i

wij

∞∑
k=1

αkψk(Yi)ψk(Yj) (4)

=

∞∑
k=1

αk

n∑
i=1

n∑
j=1,j 6=i

wijψk(Yi)ψk(Yj) (5)

where we have dropped the ti’s in the summation indices and have written wij = w(xi)w(xj) for brevity. Using the
degeneracy of k (in the sense that Var[E[k(y, y′)]] = 0), the eigen-functions ψk(Yi), i = 1, ..., n are zero mean independent
random variables by the independence of the Yi. Using the above and the regularity conditions, Theorem 1 in (Verrill &
Johnson, 1988) yields,

1

n

n∑
i=1

n∑
j=1,j 6=i

wijψk(Yi)ψk(Yj)
d→

∞∑
m=1

λm(Z2
km − 1) (6)

where Zkm ∼ N (0, 1) are i.i.d..

The limiting distribution of the un-weighted term in (1) is that of a well-studied U-Statistic whose derivation can be found in
Section 5.5.2 of (Serfling, 2009).

1

m

m∑
i=1:ti=0

m∑
j=1,j 6=i:tj=0

k(Yi, Yj)
d→

∞∑
k=1

αk(V 2
k − 1) (7)



The limiting distribution of the cross term in (1) follows from a modification of the derivation of Theorem 1 in (De Wet
et al., 1973) and is given by,

1√
nm

n∑
i=1:ti=1

n∑
j=1:tj=0

w′ijψk(Yi)ψk(Yj)
d→

∞∑
m=1

λ′mZkmVkm (8)

where the eigenvalues (λ′m) correspond to those of the eigen-decomposition of the weight matrix W ′ with W ′ij = w(xi)
and where Vkm ∼ N (0, 1) independently of Zkm ∼ N (0, 1). We prove (8) below.

We now combine these results. Define t = m+ n, and assume limm,n→∞m/t = ρy and limm,n→∞ n/t = ρx := (1− ρy)
for fixed 0 < ρx < 1. Then,

tŴMMD
2 d→ ρ−1x

∞∑
k=1

αk

∞∑
m=1

λm(Z2
km − 1) + ρ−1y

∞∑
k=1

αk(V 2
k − 1)− 2

√
ρxρy

∞∑
k=1

αk

∞∑
m=1

λ′mZkmVkm (9)

In the case that both samples have equal size with total sample size n, we have that underH0,

nŴMMD
2 d→

∞∑
k=1

αk

∞∑
m=1

λm(Z2
km − 1) +

∞∑
k=1

αk(V 2
k − 1)− 2

∞∑
k=1

αk

∞∑
m=1

λ′mZkmVkm (10)

The case of P 6= Q, under H1. The centered kernel k is non-degenerate since its expectation under assumption H1 is
different from 0. The limiting distribution of WMMD can be derived by considering each term in the sum separately. For
the first and third terms,

(?) :=
1

n(n− 1)

∑
i 6=j:ti=tj=1

w(xi)w(xj)k(yi, yj), (??) :=
2

mn

∑
i,j:ti=1,tj=0

w(xi)k(yi, yj) (11)

we get immediately by Theorem 2.1 from p. 4, (Shapiro et al., 1979) that their limiting distributions are nor-
mal with mean E(?) and variance Var(?), and mean E(??) and variance Var(??), respectively. The middle term

1
m(m−1)

∑
i 6=j:ti=tj=0 k(yi, yj) is an un-weighted U-statistic whose limiting distribution is given by the results in section

5.5 (Serfling, 2009). As above, define t = m+ n, and assume limm,n→∞m/t = ρy and limm,n→∞ n/t = ρx := (1− ρy)
for fixed 0 < ρx < 1. Collecting these results, we get underH1,

t1/2
(

ŴMMD2 −WMMD2
)

d→ N
(
0, σ2
H1

)
(12)

where we write z = ((y1, t = 1, x1), (y0, t = 0, x0)) for the joint sample under the two populations, and h(z, z?) :=
w(x1)w(x?1)k(y1, y

?
1) + Ek(y0, y

?
0)− 2w(x1)k(y1, y

?
0). σ2

H1
:= Varz (Ez?h(z, z?)) (Serfling, 2009; Gretton et al., 2012).

Proof of equation (8). The proof is a modification of the result of the convergence of degenerate U statistics on p. 761 in
(Gretton et al., 2012) and of the derivation of Theorem 1 in (De Wet et al., 1973).

Consider,

Tk :=
1√
nm

n∑
i=1:ti=1

m∑
j=1:tj=0

w′ijψk(Yi)ψk(Yj) (13)

and define for each k,

w∗ij :=

S∑
s=1

λsbiskbjsk, T ∗k :=
1√
nm

n∑
i=1:ti=1

n∑
j=1:tj=0

w′ijψk(Yi)ψk(Yj) (14)

We will start by showing that
∑n
i=1

∑m
j=1

(
wij − w∗ij

)2 → 0 as n,m→∞. Note that this implies that Var(T ∗k − Tk)→ 0
and thus that the distributions of T ∗k and Tk coincide in the limit. We will proceed by showing first the convergence of the



sum of squares and then we derive the distribution of T ∗k . Using the definitions above, write,

n∑
i=1

m∑
j=1

(
wij − w∗ij

)2
=

n∑
i=1

m∑
j=1

w2
ij − 2

S∑
s=1

λs

n∑
i=1

m∑
j=1

wijbiskbjsk+

S∑
s=1

S∑
t=1

λsλt

(
n∑
i=1

biskbitk

) m∑
j=1

bjskbjtk


=

n∑
i=1

m∑
j=1

w2
ij −

S∑
s=1

λ2s − 2

S∑
s=1

λs

 n∑
i=1

m∑
j=1

wijbiksbjks − λs


+

S∑
s=1

S∑
t=1

λtλs

(
n∑
i=1

biskbitk − δst

) m∑
j=1

bjskbjtk − δst

+

2

S∑
s=1

λ2s

 n∑
i=1

m∑
j=1

b2iks − 1

 (15)

where we have removed the group allocation indices t for clarity. Note here that the first and second term cancel each other
by Assumption 1 of the regularity conditions, the third term is O(1) by Assumption 4 and the fourth and fifth terms are also
O(1) by Assumption 2 and the properties of the dirac delta function.

Consider now T ∗k and rewrite it as,

T ∗k =

S∑
s=1

λs

(
1√
n

n∑
i=1:ti=1

biskψk(Yi)

) 1√
m

m∑
j=1:tj=0

bjskψk(Yj)

 (16)

Define the length K vectors Ψn and Ψ′m having kth entries,

Ψkn =

(
1√
n

n∑
i=1:ti=1

biskψk(Yi)

)
, Ψ′km =

 1√
m

m∑
j=1:tj=0

bjskψk(Yj)

 (17)

respectively. These have mean and covariance,

E(Ψkn) = 0, Cov(Ψkn,Ψk′n) =

{
1
m

∑n
i=1 b

2
isk = 1, if k = k′

0, otherwise
(18)

Moreover, the vectors Ψn and Ψ′m are independent. The results (8) then holds by the Lindberg-Levy Central Limit Theorem
(Serfling, 2009), Theorem 1.9.1A.

A.3 PROOF OF THEOREM 2

We assume that for increasing sample size, as n,m→∞, we can approximate arbitrarily well the density ratio w(x), for all
x in our training data. This is justified by the following Lemma,

Lemma 1 (Lemma 1.4 (Gretton et al., 2009a)) Let w(xi) ∈ [0, B] be the optimal weight in the population sense, Pr(Ti =
1|xi) = w(xi)Pr(Ti = 0|xi). Assume we draw n samples from X|T = 1 and m samples from X|T = 1 independently and
that ||φ(x)|| ≤ R. Then, with probability at least 1− δ,∣∣∣∣∣∣

∣∣∣∣∣∣ 1n
n∑

i=1:ti=1

w(xi)φ(xi)−
1

m

m∑
j=1:tj=0

φ(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

(
1 +

√
2 log

2

δ

)
R

√
B2

n
+

1

m
(19)

Note that because the optimization problem is convex the choice of ŵ(x) := Pr(Ti = 1|x)/Pr(Ti = 0|x) uniquely
minimizes the objective function with value 0, see Lemma 1.3, (Gretton et al., 2009a). Thus by the argument above, we may



assume that for increasing sample size, as n,m→∞, ŵ(x)→ w(x), for all x in the common support of the distributions
Pr(Ti = 1|x) and Pr(Ti = 0|x).

Consider the first terms of ŴMMD
2
(; ŵ) and ŴMMD

2
(;w), that denote the empirical WMMD2 with estimated and true

weights w respectively,

K̂n,m :=

n∑
i=1:ti=1

m∑
j=1,j 6=i:tj=1

ŵijk(yi, yj), and Kn,m :=

n∑
i=1:ti=1

m∑
j=1,j 6=i,tj=1

wijk(yi, yj) (20)

It holds that
∑n
i=1

∑m
j=1,j 6=i (ŵij − wij)2 → 0 as n,m→∞ by the arguments at the end of section A.3. This implies that

Var(K̂n,m −Kn,m)→ 0 and E(|K̂n,m −Kn,m|2)→ 0 which means that K̂n,m −Kn,m converges to 0 in L2, and hence
in distribution. The distributions of K̂n,m and Kn,m coincide in the limit.

The same derivations apply for the other two terms in the definition of ŴMMD
2
. Therefore we conclude that ŴMMD

2
with

estimated weights has the same asymptotic null and alternative distribution as ŴMMD
2

with known weights. In particular,
asymptotically, its false positive rate is α and its power converges to 1.

A.4 PROOF OF THEOREM 3

We prove Theorem 3 by first stating and proving several Lemmas which bound the different terms of the inequality of
interest.

Lemma 2 In addition to the conditions of Lemma 1, assume there exists some ŵi, the empirical counterparts of the
population weights estimated by matching kernel mean embeddings, such that,∣∣∣∣∣∣

∣∣∣∣∣∣ 1n
n∑

i=1:ti=1

ŵiφ(xi)−
1

m

m∑
j=1:tj=0

φ(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ ε (21)

Then, ∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

wiφ(xi)−
1

n

n∑
i=1

w(xi)φ(xi)

∣∣∣∣∣
∣∣∣∣∣ ≤ ε+

(
1 +

√
2 log

2

δ

)
R

√
B2

n
+

1

m
(22)

Proof. Note that by using Lemma 1 and the triangle inequality we immediately get,∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1:ti=1

ŵiφ(xi)−
1

n

n∑
i=1:ti=1

wiφ(xi)

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

n∑
i=1:ti=1

ŵiφ(xi)−
1

m

m∑
j=1:tj=0

φ(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣

+

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

n∑
i=1:ti=1

wiφ(xi)−
1

m

m∑
j=1:tj=0

φ(xj)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ ε+

(
1 +

√
2 log

2

δ

)
R

√
B2

n
+

1

m
(23)

Lemma 3. Let ŴMMD(w) be the weighted estimator of the MMD given i.i.d. distorted samples as defined in (1) with
known (population) weights w, and similarly define ŴMMD(ŵ) with weights ŵ estimated by matching the empirical kernel
mean embeddings of the distorted samples. Then, given the conditions of Lemmas 1 and 2,

∣∣∣ŴMMD
2
(ŵ)− ŴMMD

2
(w)
∣∣∣ ≤ 2R(B + 1)

(
ε+

(
1 +

√
2 log

2

δ

)
R

√
B2

n
+

1

m

)
(24)



Proof. Consider expanding the estimators,∣∣∣ŴMMD
2
(ŵ)− ŴMMD

2
(w)
∣∣∣ =

1

n(n− 1)

∑
i 6=j

ŵiŵjk(yi, yj)−
1

n(n− 1)

∑
i 6=j

wiwjk(yi, yj)

−

 2

nm

∑
i,j

ŵik(yi, yj)−
2

nm

∑
i,j

w(xi)k(yi, yj)

 (25)

Note that the U-statistic in y cancel since these do not involve the weights.

First and second terms. We can bound the first and second terms as follows,

1

n(n− 1)

∑
i 6=j

ŵiŵjk(yi, yj)−
1

n(n− 1)

∑
i 6=j

wiwjk(yi, yj) (26)

=
1

n(n− 1)

∑
i 6=j

ŵiŵj 〈ψ(yi), ψ(yj)〉 −
1

n(n− 1)

∑
i 6=j

wiwj 〈ψ(yi), ψ(yj)〉 (27)

= |

〈
1

n

n∑
i=1

ŵiψ(yi)−
1

n

n∑
i=1

w(xi)ψ(yi),
1

n− 1

m∑
j=1,j 6=i

ŵjψ(yj)

〉

+

〈
1

n

n∑
i=1

ŵiψ(yi)−
1

n

n∑
i=1

w(xi)ψ(yi),
1

n− 1

m∑
j=1,j 6=i

w(xj)ψ(yj)

〉
| (28)

≤

∣∣∣∣∣∣
〈

1

n

n∑
i=1

ŵiψ(yi)−
1

n

n∑
i=1

w(xi)ψ(yi),
1

n− 1

m∑
j=1,j 6=i

ŵjψ(yj)

〉∣∣∣∣∣∣
+

∣∣∣∣∣∣
〈

1

n

∑
i

ŵiψ(yi)−
1

n

∑
i

w(xi)ψ(yi),
1

n− 1

m∑
j=1,j 6=i

w(xj)ψ(yj)

〉∣∣∣∣∣∣ (29)

≤ 2BR

(
ε+

(
1 +

√
2 log

2

δ

)
R

√
B2

n
+

1

m

)
(30)

where ψ(y) := k(y, ·). Note that we have omitted the group allocation indices, these should be clear however from the i and
j indices. The second equality follows by adding and subtracting 1

n(n−1)
∑n
i=1

∑m
j=1,j 6=i w(xi)ŵj〈ψ(yi), ψ(yj)〉 which

factorizes into the given expression. The second to last inequality follows from the triangle inequality and the last inequality
follows from the properties of norms and the results derived in Lemmas 1 and 2.

Third and fourth terms. The third and fourth terms (in brackets) are derived similarly and satisfy the following bounds,

2

nm

∑
i,j

ŵik(yi, yj)−
2

nm

∑
i,j

w(xi)k(yi, yj) (31)

=
2

nm

∑
i,j

ŵi 〈ψ(yi), ψ(yj)〉 −
2

nm

∑
i,j

w(xi) 〈ψ(yi), ψ(yj)〉 (32)

=

∣∣∣∣∣∣ 1n
n∑
i=1

ŵi

〈
ψ(yi),

2

m

m∑
j=1

ψ(yj)

〉
− 1

n

n∑
i=1

w(xi)

〈
ψ(yi),

2

m

m∑
j=1

ψ(yj)

〉∣∣∣∣∣∣ (33)

=

∣∣∣∣∣∣
〈

1

n

n∑
i=1

ŵiψ(yi)−
1

n

n∑
i=1

w(xi)ψ(yi),
2

m

m∑
j=1

ψ(yj)

〉∣∣∣∣∣∣ (34)

≤ 2R

(
ε+

(
1 +

√
2 log

2

δ

)
R

√
B2

n
+

1

m

)
(35)

where the last inequality follows from the properties of norms and the results derived in Lemmas 1 and 2.

Finally, collecting the two bounds the lemma follows.



Lemma 4. Let ŴMMD(w) be the weighted estimator of the MMD given i.i.d. distorted samples as defined in (1) with
known (population) weights w, and maximum kernel value R. Assume that 1 ≤ w ≤ B for all x ∈ X . Then, with probability
at least 1− δ, ∣∣∣ŴMMD

2
(w)−MMD2

∣∣∣ ≤ R(B + 1)2
√

1

2m2
log

1

δ
(36)

where m2 := bm/2c.

Proof. Assuming the kernel k(·, ·) is bounded between 0 and R and the weights w bounded between 0 and B, we can infer
function bounds such that −2BR ≤ wk(yi, xj) ≤ R(B2 + 1). By Theorem 10 in (Gretton et al., 2012) which results from
an application of the large deviation bound on U statistics due to Hoeffding we have that,

p
(∣∣∣ŴMMD

2
(w)−MMD2

∣∣∣ > e
)
≤ exp

{
−2e2m2

R2(B + 1)4

}
(37)

Define δ = exp
{
−2e2m2

R2(B+1)4

}
. Thus, with probability 1− δ,

∣∣∣ŴMMD
2
(w)−MMD2

∣∣∣ ≤ R(B + 1)2
√

1

2m2
log

1

δ
(38)

where m2 := bm/2c.

We are ready to prove Theorem 3. This will be a straightforward combination of the lemmas given above.

Proof of Theorem 3. Let ŴMMD(ŵ) be the weighted estimator of the MMD given i.i.d. distorted samples as defined in (1)
with estimated weights ŵ. Assume conditions on Lemmas 1,2,3 and 4 above hold and that there exists an ε > 0 such that,∣∣∣∣∣

∣∣∣∣∣ 1n
n∑
i=1

ŵiφ(xi)−
1

m

m∑
i=1

φ(xi)

∣∣∣∣∣
∣∣∣∣∣ ≤ ε (39)

We may decompose the absolute difference between our weighted approximation using distorted samples and the population
MMD as follows,∣∣∣ŴMMD

2
(ŵ)−MMD2

∣∣∣
≤
∣∣∣ŴMMD

2
(ŵ)− ŴMMD

2
(w)
∣∣∣+
∣∣∣ŴMMD

2
(w)−MMD2

∣∣∣ (40)

Then using Lemma 3 to bound the first term and Lemma 4 to bound the second term, we get that with probability at least
1− δ,

|ŴMMD
2
(ŵ)−MMD2| ≤

R(B + 1)

(
2ε+ 2

(
1 +

√
2 log

2

δ

)
R

√
B2

n
+

1

m
+ (B + 1)

√
1

2m2
log

1

δ

)
(41)

where m2 := bm/2c.

B DETAILS ON THE INTRODUCTORY EXAMPLE

The example is used to illustrate the need for adjusting for confounding variables. For a total of 500 individuals we
generated random education data X by sampling from a uniform distribution between 0 and 10, from which we derived the
post-intervention income Y 0 and Y 1 by simply adding a standard random Gaussian noise variable to these values (in this
caseH0 holds: the distributions are equal). We generated male T = 1 and female T = 0 data, our two populations (S = 1),
by selectively removing with probability 0.5 females with education level higher than 5 (Pr(T = 0|X > 5) ≈ 0.33),
and removing with probability 0.5 males with education level lower than 5 (Pr(T = 0|X < 5) ≈ 0.66). We end up with
approximately 150 individuals in each group, males with higher education levels than females on average. Observe that the
underlying generating process is the same in both populations, only the marginal distribution of the education level changes.
As is natural, a two-sample test that overlooks the differences in education will reject the hypothesis of equal data generating
process for the income.



C DESCRIPTION AND IMPLEMENTATION OF TESTS

C.1 KERNEL MEAN MATCHING

The idea in Kernel Mean Matching is to minimize the mean distance between a weighted data distribution w(x)Pr(T =
0|X = x) and corresponding target data distribution Pr(T = 1|X = x) in a reproducing Kernel Hilbert Space (RKHS)Hk
with feature map φ : D → H, such that k(x, y) :=< φ(x), φ(y) >. Mean distance between these distributions is measured
by computing the Maximum Mean Discrepancy between feature representations.

Under the assumption that Pr(T = 1|X = x) is absolutely continuous with respect to Pr(T = 0|X = x), i.e. Pr(T =
1|X = x) = 0 whenever Pr(T = 0|X = x) = 0, and that the RKHS kernel k is universal (see (Gretton et al., 2012)) it has
been shown that minimizing MMD with respect to the weights converges to Pr(T = 1|X = x) = w(x)Pr(T = 0|X = x)
(Gretton et al., 2009a).

The optimization problem,

argmin
0<w<B

‖EPX|T=0
w(x)φ(x)− EPX|T=1

φ(x)‖HK
(42)

in finite samples reduces to the quadratic program,

argmin
0<w<B
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1

n2
wTKw − 2

n
κTw + const.

)
(43)

where K is a matrix with (i, j) entries k(xi, xj) and κi = n
m

∑
j:tj=1 k(xi, xj) as in (Gretton et al., 2009a). n is the number

of samples with T = 0 and m is the number of samples with T = 1.

This problem can then be solved with a convex optimization solver. We use cvxpy in python.

C.2 HYPERPARAMETER SELECTION FOR HIGH POWER

The population quantity WMMD = 0 if and only if the distributions under consideration are equal, for any choice of kernel
hyperparameters. With finite sample size n, decisions must rely on inference based on the empirical WMMD, and some
hyperparameters will give higher power than others. A popular strategy is to set the bandwidth σ of the Gaussian kernel to
the median squared pairwise distance between input data, but can be sub-optimal when the scale of the difference between
populations differs from the scale of the difference within populations themselves. Instead, we follow the approaches of
(Sutherland et al., 2016; Jitkrittum et al., 2017) and choose σ so as to maximize the test power, i.e. the probability of
rejectingH1 when it is false.

Proposition. (Approximate power of test statistic (Sutherland et al., 2016)). Under H1, for large n and fixed r, the test

power Pr(nŴMMD2 > r) ≈ 1− Φ( r√
nσH1

−
√
nWMMD2

σH1
), where Φ denotes the cumulative distribution function of the

standard normal distribution, and σH1 is defined as in Theorem 1.

Assume that n is sufficiently large. Following the same argument as in (Jitkrittum et al., 2017), in r√
nσH1

− WMMD2

σH1
, we

observe that the first term r√
nσH1

= O(n−1/2) goes to 0 as n → ∞ because σ2
H1

= O(n−1), while the second term,
√
nWMMD2

σH1
= O(n1/2), dominates the first one for large n. Thus, the parameters that maximize the test power are given

by θ∗ = argmaxθ p(nŴMMD2 > r) ≈ WMMD2

σH1
. Since WMMD and σH1

are unknown, to maintain the validity of the

hypothesis test we divide the sample into a training set, used to compute ŴMMD
2

σ̂H1
and choose the kernel, and a testing set

used to perform the final hypothesis test with the learned kernel. The empirical estimate of the variance σ̂H1 that appears in
our objective is approximated up to second order terms, similarly to (Sutherland et al., 2016).

C.3 B-TEST: A MODIFICATION THAT USES PROPENSITY SCORES

An alternative to the weighted MMD test is a B-test (block-based test): the idea is to break the data into homogeneous blocks
by stratifying subjects into mutually exclusive subsets based on their estimated propensity score. Recall that the propensity



score is defined as e(x) := Pr(T = 1|X), the probability of group assignment given confounding variables. After this
stage, we compute a two sample test statistic on each block, and average these quantities to obtain the test statistic.

More specifically, subjects are ranked according to their estimated propensity score and then stratified into subsets based on
previously defined thresholds of the estimated propensity score. Because population assignment is essentially at random for
individuals with the same propensity value, we expect mean comparisons within this group to be unbiased. (Rosenbaum
& Rubin, 1983) showed that stratification based on the propensity score will balance x, in the sense that within strata
homogeneous in e(x) = Pr(T = 1|x), the distribution of x will be equal in the two populations.

For an individual block, laying on the main diagonal and starting at position (i− 1)B + 1, the statistic η(i) is calculated as,

η(i) :=
1(
B
2

) iB∑
a=(i−1)B+1

iB∑
b=(i−1)B+1 6=a

h(ya,0, y
?
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?
b,1) (44)

where h(y0, y
?
0 , y1, y

?
1) = k(y0, y

?
0) + k(y1, y

?
1)− k(y0, y

?
1)− k(y?0 , y1) , y0 is a sample from Y |T = 0, y1 a sample from

Y |T = 1 and superscript ? denotes an independent copy. The overall test statistic is then,

η =
B

n

n
B∑
i=1

η(i) (45)

The choice ofB determines the accuracy of the balancing procedure and computation time - at one extreme is exact matching
based on the propensity score and the linear-time MMD suggested by (Gretton et al., 2012) where we have n/2 blocks of
size B = 2, and at the other extreme is the unbalanced and usual full MMD with 1 block of size n. We chose as a default to
divide both populations into

√
n blocks as proposed in (Zaremba et al., 2013).

B-test of (Zaremba et al., 2013) assumes that B → ∞ together with n, which implies that the statistic η̂ defined in (45)
under the null distribution satisfies,

√
nBη̂ →d N (0, 4σ2) (46)

where σ2 = EX,X′(k(X,X ′)2) + (EX,X′k(X,X ′))2 − 2EX [(EX′k(X,X ′)2] that can be estimated directly or by consid-
ering the empirical variance of the statistics computed within each of the blocks.

C.4 ANCOVA

Analysis of covariance (ANCOVA) are a general statistical procedure derived from a general linear model which blend
ANOVA and regression. Conventionally, ANCOVA evaluates whether the means of a dependent variable are equal across
levels of a categorical independent variable often called a treatment, while statistically controlling for the effects of other
continuous variables that are not of primary interest, that is confounders. In existing implementations (Tabachnick et al.,
2019) these suffer from a number of limitations such as the assumption of an underlying linear feature/outcome mapping
and normality of residuals.

In our implementation we proceed as follows. We fit a Random Forest regression model on the confounding variables
to approximate the outcome variable Y . Since in our experiments we consider Y to be multivariate, we fit a different
regression model for each dimension of Y . We interpret the resulting residuals as being independent of confounders given
group assignments and use those to proceed with testing. Because of the computational burden of this procedure, we fit the
well-known Hotelling T 2 test (Hotelling, 1992) on the residuals to decide whether Y 0 and Y 1 share the same generating
process up to confounding variables.

D COMPUTATIONAL COMPLEXITY

The computational complexity of the WMMD2 is quadratic in the number of samples due to the need to compute the
Kernel matrix, similarly to the plain implementation of the MMD2. When permutations are chosen to approximate the
null distribution, this procedure can be overly time consuming for large data sets. Below we briefly describe existing
approximations that can be used with the WMMD2 to speed up computations.



• Gamma approximation to the null (Gretton et al., 2009b). This procedure consist of using a two-parameter Gamma
distribution that we fit by matching the first and second moments of the empirical MMD2. Such approximations can be
accurate in practice and much faster, although they remain heuristics with no consistency guarantees.

• Linear time test (Gretton et al., 2012). Another alternative would be to randomly subsample the data such as to make
the computational complexity linear in the original number of samples. The drawback is that power is often overly
reduced as a result.

• Kernel matrix approximation with low-dimensional random features (Rahimi & Recht, 2008). To accelerate the
computation of the kernel matrix, one may map the input data to a randomized low-dimensional feature space and
compute inner products based on these representations. (Rahimi & Recht, 2008) showed that by projecting unto a
suitable basis the inner products of the transformed data are approximately equal to those in the feature space of a user
specified shift-invariant kernel.

Computational complexity of weight estimation – The problem is convex and so in theory can be solved in polynomial time,
in the worst case it scales cubically with the number of samples. However, complexity measures for quadratic solvers tend to
be very conservative; in practice, we have found that far fewer iterations are needed than the theoretical bounds suggest. Our
running times scaled approximately linearly with the number of samples.
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