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1 ALGORITHMS

1.1 SEQUENTIAL MONTE CARLO

Algorithm 1 Resample-move SMC [Chopin, 2002, Gilks and Berzuini, 2001] for data tempering in exchangeable models

1: procedure SMC(population size K, proc. REJUV)
. initialize particles and memory

2: (π
(0)
k , θ

(0)
k )← Equation (2), M (0) ← 0

3: for t← 1, . . . , T do
. update particle weights with new data batch (x

(t)
b )Bb=1

4: (π̄
(t)
k )Kk=1 ← Equation (3)

. expand memory with new data batch (x
(t)
b )Bb=1

5: M (t) ←M (t−1) +B, (1, ū
(t)
j )M

(t)

j=1 ← Equation (11)
. resample particles

6: if ESS(π̄(t)) < threshold then
7: (π̂

(t)
k , θ̂

(t)
k )Kk=1 ← Equation (5)

8: else
9: (π̂

(t)
k , θ̂

(t)
k )Kk=1 ← (π̄

(t)
k , θ

(t−1)
k )Kk=1

10: end if
. rejuvenate particles using memory (Algorithm 2)

11: (π
(t)
k , θ

(t)
k )Kk=1 ← REJUV

(
(π̂

(t)
k , θ̂

(t)
k )Kk=1, (1, ū

(t)
j )M

(t)

j=1

)
12: end for
13: return particles (π

(T )
k , θ

(T )
k )Kk=1

14: end procedure

For completeness, we provide in Algorithm 1 the original resample-move SMC method for sequential inference in static
models, using the notation in this work. In comparison to SCMC (Algorithm 1), it has uniform data weights in line 5, lacks
the core-set projection in lines 12-17, and does not produce a core-set memory as an output.

1.2 WEIGHTED METROPOLIS-HASTINGS FOR CORE-SET REJUVENATION

The simplest possible rejuvenation method, used inside Algorithm 1 for all experiments, is the Metropolis-Hastings kernel
in Algorithm 2. The only difference to the standard procedure is the non-uniform weighting of data likelihoods in line 4,
cf. Section 3.2. See Section 2 for details on the choice of proposal kernels q in individual experiments.
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Algorithm 2 Weighted rejuvenation kernel using Metropolis-Hastings

1: procedure REJUV(population (π̂
(t)
k , θ̂

(t)
k )Kk=1, memory (w̄

(t)
j , ū

(t)
j )C̄

(t)

j=1 , steps J , proposal q)

2: ∀k ∈ [K] : θ
(0)
k ← θ̂

(t)
k

3: for j ← 1, . . . , J do
. propose, compute acceptance probability (Equation (18))

4: ∀k ∈ [K] : θ′k ∼ q(· |θ
(j−1)
k ), a

(j)
k ← α(θ′k, θ

(j−1)
k )

. accept / reject
5: ∀k ∈ [K] : θ

(j)
k ∼ a

(j)
k · δθ′k + (1− a(j)

k ) · δ
θ
(j−1)
k

6: end for
7: return (π̂

(t)
k , θ

(J)
k )Kk=1

8: end procedure

1.3 GREEDY ITERATIVE GEODESIC ASCENT

Since Hilbert core-set projection can be reduced to the standard sparse nonnegative least-squares (SNNLS) problem in
Equation (16), SCMC (Algorithm 1) is parametrized by the choice of an SNNLS solver. In this work, we choose GIGA
[Campbell and Broderick, 2018] for this purpose, because it was designed specifically for this application, and because it
provides the currently best accuracy-cost trade-off. Bayesian core-set methods such as [Campbell and Beronov, 2019] can
reach higher levels of precision, but require their own internal sequential inference procedures with significantly higher
runtimes.

We note that prior work on model-agnostic Bayesian core-set construction was limited to the batch setting [Huggins et al.,
2016, Campbell and Broderick, 2018, 2019, Campbell and Beronov, 2019], in which the input data have uniform weights
and the target vector in Equation (15) is given by b = A · ~1. The iterative core-set construction task performed by CPF
instead requires the solution of an SNNLS problem with general weights as in Equation (16), and we provide the natural
generalization of GIGA to this scenario in Algorithm 3.

2 EXPERIMENT DETAILS

In this section, we provide analytical background on the models and the parameters for each experiment. The hyper-
parameters for rejuvenation kernels are listed in Table 1, and all experiments are conducted with 3 rejuvenation steps.
Following the concentration rate of a conjugate Gaussian posterior, we reduce the variance of proposal kernels linearly in
the number of data points, where we denote the total number of observations at SMC step t by σt.

2.1 AUTO-REGRESSIVE PROCESS

2.1.1 Rejuvenation Proposal

We use the same Gaussian kernel as in Equation (6), with parameters listed in Table 1 and Σ = 3. We have done no tuning
and, given the simplicity of the experiment, assume that many other parameters would work as well.

2.2 NORMAL-INVERSE-WISHART

When the generative model constitutes an exponential family, the space of core-set posteriors generally lies within the same
family. Our first experiment makes use of this circumstance in order to directly evaluate the approximation error of CPF in
Figure 3, without introducing an additional inference problem.



Algorithm 3 Greedy iterative geodesic ascent—generalized from b = A ·~1 in [Campbell and Broderick, 2018]

1: procedure GIGA(dictionary A ∈ RK×N , target b ∈ RK , core-set size M , tolerance ε)
. normalize vectors and initialize weights to 0

2: β ← b
‖b‖2

, ∀ n ∈ [N ] : αn ← A·en
‖A·en‖2

3: w0 ← 0, β0 ← 0, ε0 ← ‖b‖2
4: for t ∈ {0, . . . ,M − 1} do

. compute the geodesic direction for each data point
5: dt ←

β−〈β, βt〉βt

‖β−〈β, βt〉βt‖
2

, ∀n ∈ [N ] : dt,n ←
αn−〈αn, βt〉βt

‖an−〈αn, βt〉βt‖
2

. choose the best geodesic
6: nt ← argmaxn∈[N ] 〈dt, dt,n〉
7: ζ0 ← 〈β, ant

〉 , ζ1 ← 〈β, βt〉 , ζ2 ← 〈ant
, βt〉

. compute the step size
8: γt ← ζ0−ζ1ζ2

(ζ0−ζ1ζ2)+(ζ1−ζ0ζ2)

. update the core-set
9: wt+1 ←

(1−γt)wt+γt1nt

‖(1−γt)βt+γtαnt‖2
, βt+1 ←

(1−γt)βt+γtant

‖(1−γt)βt+γtαnt‖2
10: εt+1 ← ‖A · wt+1 − b‖2

. check improvement in numerical precision
11: if εt+1 > εt · (1 + ε) then
12: wM ← wt, βM ← βt
13: break
14: end if
15: end for

. scale the weights optimally
16: ∀ n ∈ [N ] : (wM )n ← (wM )n ·

‖b‖2
‖A·en‖2

〈β, βM 〉
17: return wM
18: end procedure



2.2.1 Generative Model

The prior and likelihood of the NIW model read

p0(m,Σ) = p (m,Σ | µ0, σ0,Ψ0, ν0) = N
(
m | µ0,

Σ

σ0

)
W−1(Σ | Ψ0, ν0) (1)

p (x | m,Σ) = N (x | m,Σ) . (2)

2.2.2 Core-Set Posterior

The conjugacy of the standard NIW model generalizes to the case of weighted observations: Denoting by |w| :=
∑
n wn and

x := 1
|w|
∑
n wn · xn the total weight and the weighted mean of observations, the sufficient statistics of the exact posterior

p1 after observing the weighted data batch (wn, xn)n are

σ1 = σ0 + |w| ν1 = ν0 + |w| µ1 =
σ0 · µ0 + |w| · x

σ0 + |w|
(3)

Ψ1 = Ψ0 +
σ0 · |w|
σ0 + |w|

(µ0 − x) (µ0 − x)
T

+
∑
n

wn (xn − x) (xn − x)
T
. (4)

This can be shown as follows: Using 〈x, y〉Σ := xTΣ−1y and ‖x‖2Σ := 〈x, x〉Σ for the inner product and norm induced by
Σ,

(
p0(·)
p1(·)

·
∏
n

p(xn | ·)wn

)
(m,Σ)

(1),(2)
=
N
(
m |µ0,

Σ
σ0

)
N
(
m |µ1,

Σ
σ1

) · W−1 (Σ |Ψ0, ν0)

W−1 (Σ |Ψ1, ν1)
· exp

{∑
n

wn · log N (xn |m,Σ)

}

N ,W∝
exp

{
− 1

2

[
ln | Σ

σ0
|+ ‖m− µ0‖2Σ/σ0

]}
exp

{
− 1

2

[
ln | Σ

σ1
|+ ‖m− µ1‖2Σ/σ1

]} · exp
{
− 1

2

[
(ν0 +D + 1) ln |Σ|+ Tr

(
Ψ0Σ−1

)]}
exp

{
− 1

2 [(ν1 +D + 1) ln |Σ|+ Tr(Ψ1Σ−1)]
}

· exp

{
−1

2

[
|w| · ln |Σ|+

∑
n

wn ‖xn −m‖2Σ

]}

(3)∝ exp

{
Tr
(
[Ψ1 −Ψ0] Σ−1

)
−
∑
n

wn ‖xn −m‖2Σ − σ0 ‖m− µ0‖2Σ + σ1 ‖m− µ1‖2Σ

} 1
2

(3)
= exp

{
Tr
(
[Ψ1 −Ψ0] Σ−1

)
− |w| ‖m‖2Σ + 2 〈m, |w|x〉Σ −

∑
n

wn ‖xn‖2Σ − σ0 ‖m− µ0‖2Σ

+ (σ0 + |w|)
∥∥∥∥m− σ0 · µ0 + |w| · x

σ0 + |w|

∥∥∥∥2

Σ

} 1
2

(5)
= exp

{
σ0

(
Tr
(
µ0µ

T
0 Σ−1

)
− ‖µ0‖2Σ

)
− σ1

(
Tr
(
µ1µ

T
1 Σ−1

)
− ‖µ1‖2Σ

)
+
∑
n

wn

(
Tr
(
xnx

T
nΣ−1

)
− ‖xn‖2Σ

)} 1
2

Tr
= 1 ,



Experiment ασ αν β

NIW 2 2 1.015
BLR 0.002 – 1

AR(1) 1.5 – 1

Table 1: Parameters for the rejuvenation kernels.

where the penultimate step uses the following identity:

Ψ1 −Ψ0
(4)
=

σ0 · |w|
σ0 + |w|

(µ0 − x) (µ0 − x)
T − |w| · x · xT +

∑
n

wn
{
xnx

T
n + 2 · x · xT −

(
xnx

T + xxTn
)}

=
σ0 · |w|
σ0 + |w|

{
µ0µ

T
0 +

(
1−

(
|w|
σ0

+ 1

))
x · xT −

(
µ0x

T + xµT0
)}

+
∑
n

wn · xnxTn

= σ0 · µ0µ
T
0 −

1

σ0 + |w|

{
σ2

0 · µ0µ
T
0 + |w|2 · x · xT + σ0|w|

(
µ0x

T + xµT0
)}

+
∑
n

wn · xnxTn

(3)
= σ0 · µ0µ

T
0 − σ1 · µ1µ

T
1 +

∑
n

wn · xnxTn (5)

2.2.3 Convergence Metric

Posterior convergence in this experiment was measured using the maximum mean discrepancy,

MMD2
k(π, π̂) := Ex,x′∼π[ k(x, x′) ] + Ey,y′∼π̂[ k(y, y′) ]− 2Ex∼π,y∼π̂[ k(x, y) ] ,

a reproducing kernel Hilbert space metric which is well-suited for comparing distributions in different representations
[Gretton et al., 2012]. The kernel k : Θ ×Θ → [0, 1] in the space of Gaussian sufficient statistics was chosen as a Gaussian
RBF, with a radius provided by the analytically computable Jeffrey divergence between model parameters,

k
(
m,Σ |m̂, Σ̂

)
∝ exp

{
− 1

α
DJ
(
N (m,Σ) ‖N (m̂, Σ̂)

)2
}
,

and with a scale adjusted as α = 1
2 DJ (p0 ‖ pT ) in terms of the prior p0 and the exact posterior pT .

2.2.4 Rejuvenation Proposal

Given σt, νt according to (3) for the SMC step t, the Metropolis-Hastings proposal kernel used for rejuvenation in the NIW
experiments is constructed as follows:

qt

(
m̂, Σ̂ | m,Σ ; ασ, αν , β

)
= N

(
m̂ | m, Σ̂

ασσ
β
t

)
W−1

(
Σ̂ | (αννβt − n− 1)Σ, ανν

β
t

)
.

2.3 LOGISTIC REGRESSION

Unless stated otherwise in Section 5.3, we use the same setup for our Bayesian logistic regression experiment as in [Huggins
et al., 2016]. The rejuvenation proposal is a Gaussian kernel centred at each particle,

qt (· | Σ ; ασ, β) = N

(
· | 0, Σ

ασσ
β
t

)
, (6)

where the tuning parameters are listed in Table 1, and clipping is introduced to ensure that ασσ
β
t > 1.0 for all t. To calibrate

all SMC variants equally well, Σ is chosen by estimation from 10, 000 posterior samples of a STAN [Carpenter et al., 2017]
oracle. We set only two control parameters for STAN explicitly: adapt_delta = 0.9 and max_treedepth = 15.
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