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1 HYPOTHESIS TESTING WITH PÓLYA TREE PRIORS

In general, our setup for independence testing will assume availability of independent samples X1, ..., Xn of a random
variable X with continuous distribution P . We let X denote the domain of X , and let M be the space of continuous
distributions on X . Our hypotheses will be of the form

H0 : X ∼ P with P ∈M0, H1 : X ∼ P with P ∈M1, (1)

whereM0,M1 ⊂M, andM0 ∩M1 = ∅. Since we wish to device a Bayesian test, we will define prior distributions Π0

and Π1 with support onM0 andM1 respectively. Then we compare the evidence of the models given the data via the
Bayes factor, i.e.

BF01 =
P(H0|X1:n)

P(H1|X1:n)
=
p(X1:n|H0)

p(X1:n|H1)

P(H0)

P(H1)
=

∫
M
∏n
i=1 p(Xi)dΠ0(P )∫

M
∏n
i=1 p(Xi)dΠ1(P )

(2)

where we have placed equal prior weights on H0 and H1, so P(H0) = P(H1) = 1/2.

A canonical choice for a prior on a space of probability distributions is the Dirichlet Process. However, samples from the
Dirichlet process are almost surely discrete distributions, so the Dirichlet Process is not a suitable choice for our setup. The
Pólya tree prior does not suffer from this characteristic [Ferguson, 1974], and can be parametrised to be a suitable prior on
M. Since the elements ofM have support on X , we will speak of a Pólya tree on X . We will first construct a Pólya tree on
X ⊆ R, and then extend this definition to a Pólya tree on X × Y ⊆ R2.

First we recall the construction of the one-dimensional Pólya tree as described in the main paper. In particular, we construct
a Pólya tree on (X ,B(X )), where X ⊆ R, and B(X ) denotes the Borel sigma-algebra on X . In order to construct a random
measure on B(X ), we will assign random probabilities to a family of subsets T of X which generates the Borel sets. The
family of subsets that we consider are the dyadic partitions of [0, 1], mapped under the inverse of some cumulative distribution
function G on X . This results in the canonical family of partitions of X , where for level j we have X =

⋃
κ∈{0,1}j Bκ,

with
Bκ := [G−1(k−12j ), G−1( k2j )), (3)

and k is the natural number corresponding to the bit string κ ∈ {0, 1}j . A schematic depiction of this binary tree of partitions
is shown in Figure 1. We define the index set by K := {{0, 1}j : j ∈ N}, so the family of subsets of X that we consider is
T := {Bκ : κ ∈ K}. From basic measure theory we know that T indeed generates B(X ). We assign random probabilities to
the elements of T by first assigning random probabilities to B0 and B1, and randomly subdividing these masses among the
children of B0 and B1. In particular, for the first level of the partition we assign the random probabilities P(B0) = θ0 and
P(B1) = θ1 with (θ0, θ1) ∼ Dir(α0, α1), for some hyper-parameters α0 and α1. Then, for every Bκ ∈ T we split the mass
that is assigned toBκ by assigning a fraction θκ0 toBκ0 and a fraction θκ1 toBκ1, where we let (θκ0, θκ1) ∼ Dir(ακ0, ακ1).
This construction yields a Pólya tree on X , which is a random measure on B(X ):

Definition 1.1 (Lavine, 1992) A random probability measure P on (X ,B(X )) is said to have a Pólya tree distribution
with parameter (T ,A), written P ∼ PT(T ,A), if there exist nonnegative numbers A = {(ακ0, ακ1) : κ ∈ K} and random
variables Θ = {(θκ0, θκ1) : κ ∈ K} such that the following hold:
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Figure 1: Construction of a one-dimensional Pólya tree based on canonical partitions.

1. all the random variables in Θ are independent;

2. for every κ ∈ K, we have (θκ0, θκ1) ∼ Dir(ακ0, ακ1);

3. for every j ∈ N and every κ ∈ {0, 1}j we have P(Bκ|Θ) =
∏j
i=1 θκ1...κi .

The support of the Pólya tree is determined by the choice of T and A. In general, any separating binary tree of partitions of
X can be considered. In this paper we only consider partitions of the type of equation (3). Ferguson [1974] shows that the
Pólya tree is a Dirichlet process if ακ = ακ0 +ακ1. The parameter of this Dirichlet process is the mean of the Pólya tree, i.e.
the probability measure G0 on B(X ) defined by G0(B) := E(P(B)) for all B ∈ B(X ) [Lavine, 1994]. This implies that
for this choice of A, the support of the Pólya tree is contained in the space of discrete distributions. Sufficient conditions on
A for samples of the Pólya tree to be continuous distributions are given by the following theorem:

Theorem 1.1 (Kraft, 1964) Let σ̄j := sup{Var(θκ) : κ ∈ {0, 1}j}. If E(θκ) = 1/2 for all κ ∈ K and
∑∞
j=1 σ̄j < ∞,

then with probability one, samples from P are absolutely continuous with respect to Lebesgue measure.

This condition is satisfied if for each κ ∈ {0, 1}j we take ακ0 = ακ1 = j2, which is promoted as a ‘sensible canonical
choice’ by Lavine [1992]. In this case we indeed have E(θκ) = 1/2, and thus for every j ∈ N, the mass is (in expectation)
split uniformly over the Bκ for all κ ∈ {0, 1}j . As a consequence the Pólya tree is centred on the base distribution with
cumulative distribution function G, i.e. E(P(Bκ)) =

∫
Bκ
G′(x)dx. As mentioned in the main paper we only consider

partitions up to a pre-determined level J(n).

Let X be a continuous random variable with a distribution that lies in the support of the Pólya tree P ∼ PT(T ,A). Drawing
a distribution from P is done by drawing from each of the random variables in Θ. If we let X1, ..., Xn be a sample from X ,
then the likelihood of that sample with respect to a sampled distribution Θ from the Pólya tree PT(T ,A) is

p(X1:n|Θ, T ,A) =
∏
κ∈K

θnκ0κ0 θnκ1κ1 , (4)

where nκ denotes the number of observations lying in Bκ, i.e. nκ := |X1:n ∩Bκ|. If we integrate over all possible values of
all θκ, we obtain the marginal likelihood

p(X1:n|T ,A) =
∏
κ∈K

B(ακ0 + nκ0, ακ1 + nκ1)

B(ακ0, ακ1)
, (5)

where B(·) denotes the Beta function. Note that this quantity corresponds to the marginal likelihood
∫
M
∏n
i=1 p(Xi)dΠ(P ),

a version of which occurs in the numerator and denominator of the right-hand side of equation (2). This marginal likelihood
will therefore be a fundamental quantity in the Bayesian tests that we consider.

1.1 A NONPARAMETRIC TWO-SAMPLE TEST

In order to use the Pólya tree prior for Bayesian testing, we have to formulate our hypotheses H0 and H1 in terms of the
relevant spaces of distributionsM0 andM1, as suggested by equation (1). This is done by picking Pólya tree prior Pi ∼ Πi



under Hi, and defining Mi to be the support of Πi, for i = 0, 1. Given data to test our hypothesis with, we calculate
marginal likelihoods via equation (5) for both Pólya trees P0 and P1, which are in turn used for calculating the Bayes factor
via (2).

We first use this procedure to describe the nonparametric two-sample test, as proposed by Holmes et al. [2015]. Given a sample
{(X1, B1), ..., (Xn, Bn)} from binary variable C and continuous variable X , define X(0) := {Xi : Ci = 0, i = 1, .., n}
and X(1) := {Xi : Ci = 1, i = 1, .., n}. Let F denote the distribution of X , and let F (0) and F (1) denote the distributions
of X(0) and X(1). We formulate the independence between X and C as a two-sample test, i.e.

H0 : X |= C ⇐⇒ F (0) = F (1) = F (6)

H1 : X 6 |= C ⇐⇒ F (0) 6= F (1). (7)

Under H0 we standardise the sample X1:n, and compute its marginal likelihood using equation (5). Under H1, we model
X(0) and X(1) as being samples from independent random variables, having different distributions. Since separately
normalising X(0) and X(1) may erase distinctive features between the samples, we first standardise X , and then subdivide
X into X(0) and X(1).

We formulate the Bayes factor as

BF01 =
p(X1:n|T ,A)

p(X(0)|T ,A)p(X(1)|T ,A)
. (8)

Upon inspection of equation (5) we see that the Bayes factor can be written as an infinite product of fractions, being

BF01 =
∏
κ∈K

B(ακ0 + nX|κ0, ακ1 + nX|κ1)B(ακ0, ακ1)

B(ακ0 + nX(0)|κ0, ακ1 + nX(0)|κ1)B(ακ0 + nX(1)|κ0, ακ1 + nX(1)|κ1)
, (9)

where nX|κ := |X1:n ∩Bκ|, and nX(0)|κ, nX(1)|κ are defined similarly. We note that whenever nX|κ ≤ 1 the fraction has a
value of 1, so we calculate the marginal likelihoods until we either reach the maximum partitioning depth J(n), or until
nX|κ ≤ 1.

1.2 TWO-DIMENSIONAL PÓLYA TREES

Now that we have defined a Pólya tree on (X ,B(X )) with X ⊆ R, we extend this definition to a Pólya tree on (X ×
Y,B(X × Y)) with X × Y ⊆ R2. This construction is done similarly to the construction on X . We consider a base
measure with cumulative distribution function G on X ∪ Y , and partition X × Y into the four quadrants B0, B1, B2

and B3, where the boundaries of the Bi are determined by G−1. We assign random probability θi to quadrant Bi with
(θ0, ..., θ3) ∼ Dir(α0, ..., α3). Then we recursively partition Bκ into quadrants Bκ0, ..., Bκ3, and split the mass assigned to
Bκ according to (θκ0, ..., θκ3) ∼ Dir(ακ0, ..., ακ3). This partitioning scheme is shown in Figure 2a. We will denote this
two-dimensional canonical family of partitions with T2, the set of parameters ακ with A2, and the set of splitting variables
θκ with Θ2, where the subscript 2 emphasises the dimension of the space X × Y . This leads to the following definition of
the two-dimensional Pólya tree:

Definition 1.2 (Hanson [2006]) A random probability measure P on (X ×Y,B(X ×Y)) is said to have a Pólya tree distri-
bution with parameter (T2,A2), written P ∼ PT(T2,A2), if there exist nonnegative numbers A2 = {(ακ0, ακ1, ακ2, ακ3) :
κ ∈ K2} and random variables Θ2 = {(θκ0, θκ1, θκ2, θκ3) : κ ∈ K2} such that the following hold:

1. all the random variables in Θ2 are independent;

2. for every κ ∈ K2 we have (θκ0, θκ1, θκ2, θκ3) ∼ Dir(ακ0, ακ1, ακ2, ακ3);

3. for every j ∈ N and every κ ∈ {0, 1, 2, 3}j we have P(Bκ|Θ2) =
∏j
i=1 θκ1...κi .

Similarly to the one-dimensional case, samples from the Pólya tree P ∼ PT(T2,A2) are continuous with respect to the
two-dimensional Lebesgue measure if we take ακ0 = ακ1 = ακ2 = ακ3 = (j+1)2, where j denotes the length in the string
κ ∈ K2 [Walker and Mallick, 1999]. Similar to the one-dimensional case, we only consider partitions up to a pre-specified
depth J(n).
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When observing a sample (X1, Y1), ..., (Xn, Yn) from continuous random variables X and Y of which the joint distribution
lies in the support of the two-dimensional Pólya tree P , we have that the marginal likelihood of that sample is

p((X,Y )1:n|Θ2, T2,A2) =
∏
κ∈K

θnκ0κ0 θnκ1κ1 θnκ2κ2 θnκ3κ3 . (10)

If we integrate over all possible values of all θκ, we obtain the marginal likelihood

p((X,Y )1:n|T2,A2) =
∏
κ∈K

B̃(nκ0 + ακ0, nκ1 + ακ1, nκ2 + ακ2, nκ3 + ακ3)

B̃(ακ0, ακ1, ακ2, ακ3)
, (11)

where B̃ denotes the multivariate Beta function.1

Under the assumption X |= Y , we construct a prior similar to the two-dimensional Pólya tree. First we note that the
two-dimensional family of partitions T2 can be regarded as the per-level Cartesian product of the partitions, i.e.

T2 =
{
{Bκ ×B` : Bκ ∈ TX , B` ∈ TY , κ, ` ∈ {0, 1}j} : j ∈ N

}
(12)

where TX and TY are one-dimensional canonical partitions X and Y respectively. For every level κ, we first split the mass
over the elements of TX according to (θXκ0, θ

X
κ1) ∼ Dir(αXκ0, α

X
κ1), and then independently split the mass over the elements

of TY according to (θYκ0, θ
Y
κ1) ∼ Dir(αYκ0, α

Y
κ1). We denote the set of parameters αXκ with AX , and the parameters αYκ with

AY . This prior yields a marginal likelihood of

p((X,Y )1:n|T2,AX ,AY ) =
∏
κ∈K

B(nκ0 + nκ2 + αXκ0, nκ1 + nκ3 + αXκ1)

B(αXκ0, α
X
κ1)

× B(nκ0 + nκ1 + αYκ0, nκ2 + nκ3 + αYκ1)

B(αYκ0, α
Y
κ1)

,

(13)

as shown by Filippi and Holmes [2017]. We notice that this equals the product of the marginal likelihoods of X and Y
according to independent one-dimensional Pólya tree priors PX ∼ PT(TX ,AX) on X and PY ∼ PT(TY ,AY ) on Y , i.e.

p((X,Y )1:n|T2,AX ,AY ) = p(X1:n|TX ,AX)p(Y1:n|TY ,AY ), (14)

where the univariate marginal likelihoods are computed according to equation (5). To ensure that this prior is not biased when
considered in conjunction with the two-dimensional Pólya tree, we consider parameters αXκ0 = ακ0+ακ2, αXκ1 = ακ1+ακ3,
αYκ0 = ακ0 + ακ1 and αYκ1 = ακ2 + ακ3 [Filippi and Holmes, 2017]. When using the set of standard parameters A2 for the
two-dimensional Pólya tree, we have A′ := AX = AY = {2j2 : j ∈ N}.

1which is defined as B̃(α1, α2, α3, α4) :=
∏4

i=1 Γ(αi)
/

Γ(
∑4

i=1 αi).



1.3 A NONPARAMETRIC INDEPENDENCE TEST

A Bayesian independence test that utilises two-dimensional Pólya trees is proposed by Filippi and Holmes [2017]. Consider-
ing one-dimensional continuous random variables X and Y , we test the hypotheses

H0 : X |= Y, H1 : X 6 |= Y (15)

using the Bayes factor

BF01 =
p(X1:n|T ,A′)p(Y1:n|T ,A′)

p((X,Y )1:n|T2,A2)
, (16)

where the marginal likelihoods are computed according to equations (5) and (13).

Using similar arguments as for the two-sample test, the Bayes factor can be denoted as an infinite product, of which the
terms are equal to one when nXY |κ ≤ 1. Therefore we compute the marginal likelihoods up to level J(n), or until all
elements of the partition contain at most one observation.

2 PROTEIN EXPRESSION DATA

In the main paper we apply the LCD algorithm, implemented with the Bayesian ensemble of independence tests, to protein
expression data [Sachs et al., 2005]. The data set consists of measurements of 11 phosphorylated proteins and phospholipids
(Raf, Erk, p38, JNK, Akt, Mek, PKA, PLCg, PKC, PIP2 and PIP3) and 8 indicators of different interventions, performed by
adding reagents to the cellular system, which are depicted in Table 1.2 The biological details of these proteins, phospholipids,
and reagents are described in Sachs et al. [2005]. Using flow cytometry, the activity of the 11 proteins and phospholipids are
measured from a single human immune system cell. Flow cytometry allows for simultaneous, independent observation of
hundreds of cells, producing a statistically large sample, and thus allowing for the application of causal inference algorithms
[Sachs et al., 2005]. The ‘expert network’ from Sachs et al. [2005] is depicted in Figure 3. We note that, as argued in the
main paper, we do not accept this network as the true causal graph, but merely display it suggestively.

Table 1: Interventions from the data set of Sachs et al. [2005].

Description Nr. of observations

1 CD3, CD28 853
2 CD3, CD28, Akt-inhibitor 911
3 CD3, CD28, G0076 723
4 CD3, CD28, Psitectorigenin 810
5 CD3, CD28, U0126 799
6 CD3, CD28, LY294002 848
7 PMA 913
8 β2CAMP 707

We assume that adding the reagents is not caused by the activity of the proteins and phospholipids, which justifies the
application of the LCD algorithm to this dataset, as per Proposition 3.1 of the main paper. When performing a statistical test
we always use the entire set of observations. As is common when analysing flow cytometry data, we preprocessed the data
by taking the log of the raw measurement values.

2Similarly to most analyses of this data, we restrict our attention to 8 out of 14 experimental conditions, namely those in which no
ICAM was added.
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Figure 3: The ‘expert network’ as provided by Sachs et al. [2005]. Edges indicate direct causal effects between the nodes.
Interventions and their direct causal effects are indicated with light-coloured and dashed nodes and edges.
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