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1 SPECIFICATIONS OF FROZENLAKE PROBLEM

FrozenLake is a classic benchmark problem for Q-learning, in which an agent controls the movement of a character in an
n x n grid world. Some tiles of the grid are walkable, and others lead to the agent falling into the water. Additionally, the
movement direction of the agent is uncertain and only partially depends on the chosen direction. The agent is rewarded for
finding a feasible path to a goal tile. As shown in Figure T[] with a Frozenlake-8 x 8 task, “S" is the safe starting point, “F"
is the safe frozen surface, “H" stands for the hole that terminates the game, and “G" is the target state that comes with an
immediate reward of 1. This forms a problem with the state-space size n?, the action-space size 4 and the reward space
R = {0, 1}. For tabular Q-learning algorithms with finite state-action problems of relatively small dimensions, FrozenLake-
4 x 4 and FrozenLake-8 x 8 are two typical benchmark tasks. As the grid world becomes large, e.g., FrozenLake-128 x 128,
Q-learning with linear function approximation is then adopted to solve the problem.
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Figure 1: The FrozenLake-8 x 8 task environment.

2 PROOF OF LEMMA 1

We bound the expectation of bias via constructing a new Markov chain and applying some techniques from information
theory. Before deriving the bound, we first introduce some technical lemmas.

Lemma 1. Suppose Assumptions (I and |3| hold. Then for g, defined in (12), we have ||gi|ly < Gmax for all k, where
Gmax = 2Dmax + Rmax~
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Proof. Following from the definition of g, and the assumptions that ||®(z,u)||, < 1, 0]y < Dmax, and ||R(z,u)||, <
Rinax, we have

llgkll, = H(fb(;vk,uk)TGk — R(zp,up) —y max  P(zpi1,u)? 0p)®(xp, up)

w €U (Tp+41) 2

<||®(zk, uk) 0k|{2 + [|[R(zk, uk)|l, + max ||<I>(ask+1,u’)T0k||2
w €U (Tr41)
SQDIH&X + RmaX7
where we use Cauchy-Schwartz inequality and the triangle inequality. L

For notational simplicity, throughout this section we use O = (x, u, z’) to denote the sample tuple and Oy, = (zp, ug, Tr+1)
to denote the sample tuple at time k.

Lemma 2. Let £(0;0) := (g(0;0) — g(0))T (6 — 0*). Then £(8; O) is uniformly bounded by
|§(97 O)| S 2DmaxGmaX7 VG S Bv
and it is Lipschitz continuous with

1£(0;0) — £(0";0)] < 2((1 + ) Dimax + Gmax) [0 — 0", V0,0 € B.

Proof. The first statement is straightforward based on Assumption [3]and Lemma[l] That is,

Next to prove the Lipschitz condition, we first prove the Lipschitz condition of g(6; Oy ) with respect to 6.

()
g(6;0) — g(0';0)|l, <|®(x,u)" (0 — 0') + +, max &, u')'e' —, max &(, u')"|

(i)
<|®(2,u)T (0 —0)] + |y e )@(m Ju)To — Jmax )@(w’,u’)THL
u' €U (z’

where (i) follows from Cauchy-Schwartz inequality and the assumption ||®||, < 1, and (ii) follows from the triangle

inequality.

Now we consider two cases. If the item in the second norm of (ii) is non-negative, we let u* = arg max®(z’,u')7¢’. Then
uw' €U (x’)

ma(x )<I>(x ,u')T0 > ®(2',u*)T0. Thus, we continue to bound the above inequality as
u' €U (x’

l9(6; 0) = g(0; O)ll <|®(z,w)" (0 — 0")] +~D(a’,u*)" (0"~ 0)
(2, u)" (0 = )| +|® (2", u*) (0 — 0))] ey
Similarly, if this item is negative, we let u* = arg max®(2’, u’)76. Then max ®(a',u’')70 > &(2’,u*)T¢’. Thus, we

u’EU(a:’) U'EU(II)
have

lg(050) = g(0": O)l, <|®(,u)" (0 = )| + 4®(a’, u)" (0 — 0')
|®(a,u)"(0 = )| +|® (2", u*) (0 — 0)] @
Then it follows from (T)) and () that
l9(6; 0) = g(¢"; O)lly < (1 +7) (16 — 6" -

Similarly, we obtain the same result for g(#) as follows.

15(6) = 3(O")l2 < E ll9x(8) — g (6l < (1 +7) 16 = €.



Then we focus on obtaining the second statement,

[£(6;0) = £(6"; 0))
=1(g(6;0) = 3(0)" (0 = ") — (9(6";0) — g(6"))" (0" — 6"))|
< 9(6;0) = g(O)2 10 = 0"ll + 116" — 67[I, | (9(6; O) — 9(6)) — (9(6";0) = g())]I,

S 2Gmax ||0 - 6/”2 + DmaX ||(g(97 O) - g(gl, O)) - (g(a) - g(al))HQ

(ii)
< 2Gmax [[0 = 0'[ly + 2Dmax(1 +7) |0 = 6’|,
= 2((1 +7)Dmax + Gmax) |0 — 9/H2 )

where (i) follows from Assumption [3]and Lemmal([T} and (ii) follows from triangle inequality and (T). O

We use X — Z — Y to indicate that the random variable X and Y are independent conditioned on Z.
Lemma 3. /|Bhandari et al.| 2018, Lemma 9] Consider two random variables X and 'Y such that
X = 2p = Tpgr = Y, (€)]

for fixed k and T > 0. Suppose Assumptionholds. Let X', Y are independent copies drawn from the marginal distributions
of X andY, thatisP(X' = - Y' =) =P(X = - )P(Y = ). Then, for any bounded v, we have

E[p(X,Y)] - E[p(X",Y')]| < 2[jvll (op7).

We continue the proof of Lemma We first develop the connection between £(6y; Ox) and (6 —.; Oy) via Lemma To
do so, we first observe that

10i+1 — Oilly =118i(0; — 0i—1) + ai(1 + bi)gi + aibigi—1ll,
< 18:(0: — Oim1)lly + llai(1 + bi)gilly + [laibigi-1ll
(iﬁi)Dmaxﬁi + 3G maxai,
where (i) follows from the triangle inequality and (ii) from the Assumptions[3|and[T]and the fact b; < 1. Then we have

||9k:_9k ‘r||2 Z ||97,+1_9 ||2§Dmax Z Bz"’_gGmaX Z a;.

i=k—T1 i=k—T1 i=k—T1

Thus, we can relate £(6y; Oy) and £(0),—,; Oy,) by using the Lipschitz property established in Lemma 2] as follows:

§(O0k; Ok) — E(Ok—r; Ok) <I§(0k; Ok) — E(Ok—r; Ok
SQ((l + ’7)Dmax + Gmax) Hek - 9’6—7’”2

k—1 k—1
SQ((I + ’Y)Dmax + Gmax) (Dmax Z Bi + 3G max Z ai> . @

i=k—T1 i=k—T1

Next, we bound E[¢(6,—-; Oy )] using Lemma 3] Observe that given any deterministic § € B3, we have
E[£(0; Ok)] = (E[g(6; Ox)] — 3(6))" (0 — 6) = 0

Since 6 is a fixed constant, we have E[£(0y, Ox)] = 0. Now we are ready to bound E[¢(6x—_-, Oy)] via Lemma [3| by
constructing a random process satisfying (3). To do so, consider random variables 6}, __ and O}, drawn independently from
the marginal distribution of 0;,_, and Ok, so that P(0},__ = -, 0}, = -) = P(0y_, = -)P(Oy = -). We further obtain
E[£(6},_.,01)] = E[E[E(6),_ ., O1)|0},_.]] = Osince 6, and O, are independent. Combining Lemmasand we have

E[§(Ok—r, Or)] < 2(2DmaxGmax)(0p")- ®)



Finally, we are ready to bound the bias. We first take expectation for both sides of @) and obtain

k—1 k—1
]E[g(@k, Ok)] S ]E[f(&k_.,., Ok)] + 2((]— + V)Dlnax + Gmax) (Dmax Z ﬂz + 3Gmax Z ai) .

i=k—T1 i=k—T

When k < 7% (), we choose 7 = k and have
k—1 k—1
E[g(elm Ok)] SE[§(907 Ok)] + 2((1 + V)Dmax + Gmax) <Dmax Z ﬁi + 3CTVmax Z ai)
i=0 i=0

k—1 k—1
:2((1 + W)Dmax + Gmax) <Dmax Z ﬁz + 3Gmax Z ai> .
=0 =0

When k > 7% (), we choose T = 7* := 7™ (k) and have

E[£(0r; Or)]

k—1 k—1
S E[g(ekfﬁ* 5 Ok)] + 2((]- + V)Dmax + Gmax) (Dmax Z ﬁz + 3Gmax Z ai)

i=k—T1* 1=k—T1*

. k—1 k—1
() .
S 4DmaxGmax(UpT ) + 2((1 + 'Y)Dmax + Gmax) (Dmax Z Bl + 3Gmax Z ai)

i1=k—T1* 1=k—T1%*

.. k—1 k—1
(ii)
S 4DmaxGmaxKJ + 2((1 + V)Dmax + Gmax) (Dmax Z ﬂz + 3Gmax Z ai)

i=k—T1* i=k—T1*
(iii)
S 4DmaxGmaxK/ + 2((1 + V)Dmax + Gmax) (Dmax’r*ﬁkf‘r* + 3Gmax7_*ak:7’r*) )

where (i) follows from (3)), (ii) follows due to the definition of the mixing time, and (iii) follows because ag, () are
non-increasing.

3 PROOF OF THEOREM 1

Recall that MomentumQ with linear function approximation updates as (12). Given the unique fixed point 6* and denoting
b + cx = B, we have
16k+1 — 9*||§ =0k — 0" + Br(0k — Ok—1) — ar(1 + bg)gr + akbkgk—lng
=110 = 07115 + 18 (B — 6—1) — ar (1 + bi)gi + arbrgi—1 3
+ 2(0k — 0%, Br(0k — Ok—1) — ar(1 + bk)gr + arbrgr—1)
=16k — 9*H§ + |8k (0 — Or—1) — ar(1 + by)gr + akbkgkflllg
+ 20k — 0%, Br(0r — Ok—1) + arbrgr—1) — 2ax(1 + b) (O — 0%, gr)-

Next, taking the expectation over all the randomness up to time step k on both sides, we have
2
E ||‘9k+1 - 9*”2

=E [|6) — 0" + E |85 (6x — Ox—1) — ar (L + bi)gr + arbrge—1ll5
+2E(0, — 0%, Br (0 — Ox—1) + arbrgr—1) — 2ax(1 + bx)E(Or — 0, gx)

(i)
<E |0 — "3 +E || Br(0x — Ox—1) — ar(1 + bi)gx + axbrgr—1l5
+ 2Bk E |0k — 0% ||y 10k — Ok—1l5 + 2abkE [0k — 0|5 [|gx—1l5 — 2ax(1 + bx)E(O) — 6%, gr)

(i)
<E|0 — 0*[|5 + 3B2E [0k — O—1]3 + 3a3 (1 + be)’E llgx |5 + 3a2b2E l|lgr—1]5
+ 2Bk E |0k — 0% |5 10k — Ok—1l5 + 2axbkE [0k — 0|5 [|gx—1l5 — 2ax (1 + bx)E(O) — 0%, gr)



(iii)
<E |0 — 0*||3 + 382D2,, + 3a3 (1 + by)2G2,. + 3a203 G2,

max

+ 2Bk D2 o + 2015k Dinax Grnax — 2ax (1 + by )E(0x — 0%, g)

max

(iv)
<E |0k — 0%]|2 4 58k D2, + 15a2G2,.. + 201D Dinax Grmax — 2ax(1 4 bp)E(O — 6, g1.), ©6)

max

where (i) follows from Cauchy-Schwartz inequality, (ii) holds due to the fact (x + y + 2)? < 322 + 3y? + 322, (iii) holds
because of the boundedness of the parameter domain in Assumption [3|and because of Lemma [T} and (iv) follows since
b < Br < 1.

Since the samples are generated in a non-i.i.d. manner, we have

E[(0x — 0*) gc] =E[(6x — 0°)"g(0k)] +E [(6x — 0°)" (96 — 5(0k))]
=E [(0r — 0*)"g(0k)] + E[£(0k; O)]. (7

Then, we continue to bound (6) and obtain

E [|0k11 — 0%]3
<E |0k — 0%||3 + 58k D2, + 1563 G2, + 2a1b1 Dinax Gimax — 2ax (1 + b )E (0 — 0%, g1.)
=E |0y — 0%|[3 + 5Bk D2y + 15a7.G2,,, + 201bk Dinax Grnax
—2a,(1 4 bp)E(Or — 6%, 9(0k)) — 2a,(1 + bi)E[£(0k; Or)]
< E|0x — 0*3 + 58k D2 + 1507 G2, + 20kbk DinaxGrnax — 2ai(1 + by )OE [0 — 0%
— 2ax (1 + bg )E[§(0r; Or)]
= (1= 2a,0(1 + bp))E |0, — 0% + 585 D2,y + 1562G2,. + 2a5b; Dinax Gmax
— 2a5,(1 + b )E[£(0r; O)], (8)

where the last inequality follows from Assumption 2]

We consider a constant stepsize o, = «. For notational simplicity, we denote f, = 58,D2. . + 15aiG2 .. +
2a1bk DimaxGmax, and ( = —2ag (1 + by )E[£(0); Oy )]. Then for k > 7* we have

E [|6x-41 — 0%I3
< (1 —2a8(1 + bp))E |0 — 6|2 + fr + Cr
<.
k k k
<[ =206t +0:) 160 — 0*15+ > fi [] (1 —2a5(1+1)))
i=0 i=0  j=i+l
k k T* k
+ ) G T =205 +0)+> ¢ [ (12061 +1b;))
i=rr41 j=itl =0 g=itl
k k
< JJ(1—2a0(1 +0:)) 166 — 0%]5+ > fi(1 — 208)F"
=0 =0
k T
+ Y G =200)F 7+ G(1 - 2068)F 7,
i=T7*4+1 1=0

where the last inequality follows because by, > 0, Vk. Further, we bound the term Zfzo(l —2a8)F 7 f; as

k
> (1 —20a)*
1=0
k _ k _ k _
=5D2 Y (1 =260)F7'B; + 150°Go0 D (1= 260)F ™" + 20 DiyasxGinax Y (1 — 260)* b,
=0 =0 1=0



k k
<150°G, > (1= 200)"7" + (5D2,., + 20 DimaxGinax) Y (1 — 260) 7 3;
=0

=0
15aG? 2 ey A i
< 227 max -
< 5+ (0Dhax + 20 DmaxGinax) B(1 — 200) ;:0 (1 - 25a>
0 15aG? 1
< 22% max D2 20.D,.., , 1—26a)f ————
< T + (5D + 20 DmaxGmax) B(1 = 200)* T,

where (i) follows from o < %. It remains to bound the last two tail terms. From Lemma we obtain

k-1 k—1
G= 20((1 + b;) (771 Zﬁi + 12 Zai> <da(mT* B+mnTa), <71

=1 =1
4o (4DmaxGmaxK/ + an*/Bi—T* + 7727'*04) s 7> T*,

where 171 = 2Dpax((1 4+ ¥)Dmax + Gmax), 72 = 6Gmax((1 + 7) Dmax + Gmax)- Then we obtain

k T
> G =200 4> G - 208)8
=77 +1 =0
i .
< dmpt*a? Z(l —208)F 7" 4 dam 77 B Z(l — 2a6)
i=0 i=0
k k
+ 16D nax Gmax KO Z (1 —2a6)*~ " + dam * Z Bi—re (1 — 2a6)*~

1=7*+1 1=7*+1

2ot a2 TG
5 T

k
* 8DmaxGmax
(1= 206)k~7" 4 Zmax Tmaxft

i=7*+1
8DmaxGmaxK3
1)

k i—7"
. A
+4aBmr(1 - 206)F77 Y ()
M/l 1—2ad

- 8D nax Gmaxk dafm A
0 1—2a6— A

_ 2noT* v n 2mT* B

_ k—1*
5 5 (1 —2a9) +

< 29T v n 2m T3

— k7
<=5 3 (1 —2a9)

(1 —2ad)k~

where the last inequality follows due to the fact that o < %. Thus, we can conclude that

5 +dafmr > AT (1 2a0)

B [|0x41 — 0%|I5
k k
< JJ(1—2a0(1+0:) 160 — 075+ > fi(1 — 2a8)*~
=0 i=0
k o 4
+ Y G =200)F7 + > T G(1 = 2a0)k
i=T*+1 i=0
k
15aG? B(5D2 . + 20D maxGmax) (1 — 26a)*
< 1—2a6(1+b; 00 — O* 2 max max max U max
< 10~ 20000+ ) oo = 1 + =52 e
2ot e 2m TP ier  8DmaxGmaxk dafm A b
1-— T 1—
;T (m2ad)T A 5 =200 — a1~ 209)
k
15aG? 2ot 8 DpmaxGmaxk
< 1—2 1 . __pA* 2 max max ™~ max
< TT0 20800+ 00) 6o 0"+ =g S5 4 ==

2m 1" 5D2 + 20D axGmax + damy A o
max 1 _ 25
+h < 1— 260 — A (1 = 20a)

©))



4 PROOF OF THEOREM 2

Before proving this theorem, we introduce two lemmas of series sum that will help to streamline the presentation.

Lemmad. Let ay = 5 and B = BAE witha > 0,8,\ € (0,1) fork =1,2,.... Then

B

Ty

M=
@‘Q

>
Il

1

Proof. The proof is based on taking the standard sum of geometric sequences as follows:

B BNVE - BN 3 = 3
DX e SXa Taiw <;)\k_T)\T>Sa(1)\)2'

Lemma 5. Let ay, = % Then

T
Zak < 20V/T.

k=1
Proof. We use the comparison principle to bound the series sum as follows:

T T o T+1 a - \f
— ———dt =2aVt — 1T = 2aVT.
kz::l Z\/% / Vi—1 I

k=1

The proof of Theorem [2]is partially similar to that of Theorem|[I] The steps are the same until (8], where we have
%112
£ ||9k+1 —0 ||2

<E ||9k - 9*”2 + 56kDmaX + 15ak7G
—2a1,(1 + by )E[£(0k; Ok))-

+ 201D DinaxGinax — 2k (1 + by )OE |0, — 0%||3

max

Then we continue the proof with rearranging the previous inequality:

26E [0 — 0*]13
< 2(1 + by,)OE ||6), — 6%/

< B0k = 0"l — Bl — 671l5 55k
< =

max+15akG?nax+2kamaxGmax +4‘E[£(0k7 Ok)] |

Then we sum over time step k from 1 to T'(T > 7*) and obtain

T
26 > E [0 — 0*5
k=1

T 2 2 T* T
E|0,. — 0|5 — E||fr1 — 0
<3 Bl =07, ~Efeer =07 |y S~ e 00) 4 3 [EEG:00)]
k=1 @k k=1 k=r"+1
T

+ 5Dr2nax Z + 15Gr2nax Z ag + 2DmaxGmax Z bk
k=1 k=1

0, — 0 1 1 E (|67, — 6%
:” 1 ||2 +ZE||6/€_9*H§ (Clk_ 1) _ ” T+1 ||2

a ap— a
1 i k T+1

(10)

)



+5D2 XT:B + 15G2 zT:a 2D ax G 3 b
max ap max k+ max Y max Z k
=1

T* T

+4) [BEOG ORI +4 > E[E(0k; O]

k=1 k=7*+1

W01 =0"1l3 , o s~(1 1
<= 2.4D § - -
— al + max ak;

Qj—
k—2 k—1

, & B , & T
—+ 5Dmax Z an + 15Gmax Z ap + 2DmaxGmax Z bk

T T

+4) B0 00l +4 Y [E[E(0k; O]
k=1 k=1*+1
(11)D ﬂ T T
<—= max + 5D?nax Z b + 15G12nax Z ak + 2DmaxGmax Z Bk
=1 k=1
T* T
+4§:WEWMOHH+4 > E[EO: Ol
k=1 k=1*+1
Gi)pD2 /T  5BD? ) 2D maxGmaxBA
< max max
=74 a(l—nZ " 300G VT + =975
T T
+4) [BEOG ORI +4 > EIE(0k; O],
k=1 k=1*4+1

where (i) follows from Assumption [3| and the fact that a, < ag—1, and E ||@r1 — 0*||2 Jars1 > 0, (ii) holds due to
Assumption 3] and (iii) follows from Lemmas [T} @] and 5]

It remains to bound 4 22;1 [E[£(0k; Op)]| + 4 Zfﬂ*“ |E[£(0k; Ok )]|- We bound the tail term by using LemmaEl

For simplicity, in the following we denote

m = 2Dmax((1 + 'Y)Dmax + Gmax)7 T2 = 6Gmax((1 + '-Y)Dmax + Gmax)-

Following from Lemmal[T} we have

| ok,Ok |<ZWIZBZ+ZU2ZQ1

k=1
<7m Z B + 7702 Z ark
k=1 k=1
*mpBA
ST mp + 27*neaV/T.
1—A
Similarly, we obtain
T T
Z |E[f(0kvok)]| < Z (4DmaxGmax"5 + 7717—*51677* + 7727—*04]@77-*)
k=7*+1 k=7*+1
T—1* T—71*
S4DmaxGmaxHT + T*Th Z Bk + 7—*772 Z ag
k=1 k=1

*mBA
§4DmaxGmaxl‘$T + Tl 7715)\ + 2’7'*77204\/T.



Thus, we have

T
26 > |6y, — 0*I3

k=1

D2 58D2 2DmaxGmaxSA
max\/>_~_ ﬁ max +300¢G2 \/>_|_ a; aB

= a a(l = \)2 max 1—A
T T
+4) B0 Ol +4 Y [E[E(0k; Op)]]
k=1 k=7*+1
_DhaVT | 58D, 2 2D1naxGimaxSA
S iy +30aGmaX\f+—1_A
87 N1 BA

+ 16 DiaxGmaxkT + + 167 naV/T.

1-A

Finally, we apply Jensen’s inequality and complete the proof as

IZT C ZT
* * 2
k=1

max/a + 300(GmdX +167*any  8DmaxGmaxk
S +
20T 1)
l I: 56Dmax DmaxGmaxﬁA + 47—*771ﬂ)\

E [|fou — 0%]|2 =E

206(1 — \)2 31— N
5 PROOF OF PROPOSITION 1

Proof. For convenience, we denote MQg(yx) := max,cy(y,) @k (Yr, u), then T:Qr = R+ MQ(yx) and TeQr1 =
R+ MQk_1(yx). If k = 0, we have from (20) that

Do [Qo, Q@ —1]

5Qo| < IRI + 7 [MQu (o)l
SRIH&X + ’}/VHlaX'

Now, considering £ > 1 we have

IIDk [Qk, Qr—1]

< IR +AII(1 + b)) MQp — bp MQp—1||
< Ruax + YI[(1+ b )M (Qr—1 — ak—1Qr—2 + k—1Dp—1 [Qi—1, Qi—2]) — bpMQp—1||

(ii)
< Rupax + 7 [|Qr—1l] + 7|1 + bglar—1 |Qr—2|| +¥|1 + br|ar—1 | Dr—1 [Qr—1, Qr—2]|| s (12)

where (i) follows from the triangle inequality and (ii) follows from the definition of the infinity norm.

To proceed to bound (I2)), we consider two cases. If k < 2, there are at most a finite number of Dj’s, which are obviously
bounded. If & > 2, we have |1 + by|ar—1 = le—m| 7'"‘ <1. It follows from (T2)) that

| D [Qr, Qr—1]]]
< Ruax + 7 |Qr—1|l + 7 [|Qr—2l| + 7 |1 Pr—1 [Qr—1, Qr—2]||

(@)
S Rmax + 2fy‘/max + Y ||Dk71 [Qk717 Qk72] ||
T L] k—lm/2|

< Ruax Z 7' + 2Vinax Z Y+ AN D ) [Qing2)s Qiny2g—1] | (13)
=0 =1



where | x| denotes the largest integer that is no larger than x. Note that (i) follows from the boundedness of @y (Assump-
tion [3)), and (ii) follows from applying (i) to D; fort = k — 1,k — 2,..., |m/2] + 1 iteratively. Since v < 1, the first two
items in (ii) are bounded. Obviously, the third item is also bounded. Therefore, there exists some constant D, such that
Dkl < D, Yk > 0.

The bound on €, follows directly from its definition as

lexll = [[Ep (Dr [Qk, Qr—1] (7, w)| Fr—1) — D [Qr, Qr—1]ll
< 2| Dy, [Qk, Qr-1]|| < 2D.

Thus we conclude our proof. O

6 PROOF OF THEOREM 3

We first prove two lemmas that will be useful for establishing the main results. The first lemma derives the dynamics of Qy,
in terms of E},.

Lemma 6. Consider MomentumQ as in Algorithm[l| For any k > 1, we have

(Qk_l — Qo + (k —m — 1)7-Qk_1) + %((m + 1)TQO — Ek—l)- (14)

| =

Qr =

Proof. We prove the lemma by substituting the learning rates ay;, by, ¢x, in Algorithm|Ifand using induction. From (M9, we
see that Q1 = T1Qo = T Qo — Ey, Thus || holds when £ = 1. Now assume holds for a certain integer k£ > 1 we
prove it also holds for k& + 1. To see this, we rewrite (19) as

1 1 k 1 o N
Quar =@ — 577 Qu1 + @+ g [k = m)TeQi = (k= m = )TiQun |
1 1 1
i 1Qk T h 1Qk71 + m(@kq — Qo+ (k—m—1)TQr1
1 - .
+(m+1)TQo— Ex_1)+ T [(k —m)TQr — (k—m — 1)77ka—1]
1 1 1
=i le “ia 1Qk71 + m(@kq Qo+ (k—=m—1)TQr1
1
+(Mm+1)TQo— Ex_1) + 1 [(E—m)TQr — (k—m—1)TQr—1 — €]
1
:m(Qk - QO + (k — m)TQk + (m + I)TQO — Ek),
which shows that holds for k + 1. Therefore, by induction holds for all £ > 1. O

The second lemma derives the propagation of the approximation errors €, in the process of Q-function iteration, which can
be proved conveniently using Lemmal6]

Lemma 7. Suppose Assumptionholds and m > % asin Algorithm Then for all k > m + 1, we have

~ k—|m|—2
hVine 1 -
*x < max - ) E. . 1
10 -Gul < g2y 3 B, (1s)

where h = 2y(m + |m| +2) + 2.



Proof. For k > m + 1, expand @y, using (T4) in Lemma [§]iteratively, yielding

Q" — Qxll :%”QO — Qi1+ k—m—-1)(TQ* —TQr-1)+(m+1)(TQ" —TQo) + Ei||

Oy(k—m—1)+1, . m+1 E
Q== DE L r - Quoaf + L L ygr — o+ 1221
i)y (k — o E
DAV _ g+ 2oy, 4 U] kkn
e o | k—|m]|—2 kLmj2~
(111)7’“ [m]-1 N thmax
ST () 4 D)Q" — Qg + Soae X Flmd
k—|m]|—2

y(lm] +1)+h 1 i
<2—‘/max 7 E,—i )
M s 3 B

where (i) follows from the triangle inequality and the contraction property (3), (ii) follows from Assumption [5]and because
m > %, h =~(m+ 1)+ 1, and (iii) follows from applying (ii) to ||@Q* — Q:|| fort =k — 1,k — 2,..., |m] + 2 iteratively.
Then (T3) follows from the definition of /. O

Lemma 8. (Maximal Hoeffding-Azuma Inequality) [|Alon and Spenceri |2008, Chapter 7]

Let {My,Ms,...,Mr} be a martingale difference sequence with respect to a sequence of random variables
{X1,X2,..., X7} (i.e. E(Myy1| X1, Xo, ..., Xy) = 0,V1 < k < T) and uniformly bounded by M > 0 almost surely. If
we define Sy, = Zle M;, then for any € > 0, we have

2
—€
< — ] .
*(e>) <00 (573
Now we are ready to prove the main results of Theorem 3]

Proof of Theorem[3] The proof applies Lemma [7]and the Maximal Hoeffding-Azuma Inequality (Lemma ).
Applying Lemma[7]with k£ = 7', we obtain

Vmax 1 - LmJ -

0 —Qrll < g™+ 5 Y VB

=0

It suffices to bound the second term. For convenience, we denote K = T' — | m] — 2. Observe that

LS B < 15 o e g < i U] 16)
T Tl = T & ' o<i<K Tl = (1—yT '
In remains to bound Jmax |E7—;||- Notice that X |Er—:| = 1(&1&))(021%)( |Er_i(z,u)|. For a given (z,u) and € > 0,

we have

]P’(max |Er_ Zqu)|>5>

0<i<K
=P ({OQ@(E“(:M)) > 5} U {Orgniz%ﬁ(—ETi(Lu)) > g}>
=P (Og%{(ET_i(x,u)) > 5) +P (OQ%(ET%(:E,U)) > 5) , 17)

where D is specified in Proposition Since {e(x, u) }r>0 is a martingale difference sequence with respect to the filtration
Fi; as defined previously, we apply the Maximal Hoeffding-Azuma inequality (see Lemma|[g)) and obtain

P (Oglza&(ET i(z,u)) > 5) < exp (ES(K,T;DQ) :



and

P (Ogliz%)%(—ETi(m,u)) > 5> < exp (smfnm) .

Then we further bound as

} < __TF ).
P (Ogliz@IETz(x,UN > 5) < Zexp (S(K + 1)D2)

Since we consider a finite state-action space where the number of state-action pairs is defined by n, we use the union bound

to obtain )
—&
; < - .
F (o@as)%”ETZ” ~ 5) < nexp <8(K n 1)D2)

, and we have

_ 2n
P (022)%ET1|| < Dy/8(K +1)log 5 ) >1-9,

where K =T — |m] — 2. By substituting the above bound into (T6)) yields the desired result. U

Letting § = 2n exp (ﬁ)

7 PROOF OF COROLLARY 1

In Theorem , take § = %, and denote by A the event “inequality (24) holds". Then the conclusion of Theorem
becomes P[Ar] > 1 — 7z, or equivalently, P[AS] < 7, for all T > m, where the superscript ¢ meaning taking the
set complement. It follows that 7 P[AS] < >°7_ 7 < co. By the Borel-Cantelli lemma (see, for example,
Chapter 2.3, Theorem 2.3.1 of [Durrett, 2019]), this implies P[AS. i.0.] = 0, where i.0. stands for infinitely often. This is

. V(T=|m]—1)lognT
equivalent to the statement that Q)7 converges to Q* almost surely at a rate of at least O( ( (LEJW)Q% osn ), where note

that in (24) the constant D is proportional to ﬁ Using the O notation which i gnores the log T factor, the order of the

\(T—|m]|—1)logn

a—)°T

convergence rate can be written as @( ). Thus it completes the proof. O
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