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A SUPPLEMENTARY MATERIAL

A.1 THEORETICAL PROPERTIES OF THE OAPF ESTIMATORS

The theoretical properties of the estimators OAPF are analized from the importance sampling perspective. In the case of
the mixture proposals ψt, we assume that each time t, the support of ψt is a superset of the support of p(xt|y1:t), i.e.,
that ψt(xt) > 0 for all xt where p(xt|y1:t) > 0. Let us define the partial normalizing constants as Zt , p(yt|y1:t−1),
the joint normalizing constant as Z1:t , p(y1:t), and also Zt−h:t , p(yt−h:t|y1:t−h−1). In the OAPF framework, we can
build estimator of those quantities, e.g., the partial estimator Ẑτ , 1

M

∑M
m=1 w̃

(m)
τ , the joint estimator Ẑ1:t =

∏t
τ=1 Ẑτ ,

and also the estimator Ẑt−h:t =
∏t
τ=t−h Ẑτ , with and the estimator Ẑt , 1

M

∑M
m=1 w̃

(m)
t . We also assume that the

estimators of all the partial normalizing constants have finite variance (see for instance [Owen, 2013, Elvira et al., 2019]).
We define the set of weighted samples at time t as At , {x(m

t , w̃
(m
t }Mm=1. In order to avoid ambiguities when evaluating

pdfs, we define the functions g(yt|xt) , p(yt|xt), g(yt|xt−1) , p(yt|xt−1), g(yt,xt|xt−1) , p(yt,xt|xt−1) and
g(yt−h:t,xt|xt−1) , p(yt−h:t,xt|xt−1).

In the following, we show that OAPF provides an unbiased estimator of the normalizing constant p(y1:t), which follows
a proof by induction, in a similar spirit as in [Pitt et al., 2012], but with more generic results. In particular, here the
(approximate) filtering distribution is the marginalized version of the one in [Pitt et al., 2012] and is constituted by a mixture
in the numerator of the importance weights (see [Klaas et al., 2005] for an explanation). In OAPF the proposal density
can be any mixture ψt(xt) fulfilling the standard regularity conditions described above, hence in the denominator of the
importance weights, a second mixture appears. Theorem 1 is here the main result, and is supported by Lemmas 1 and 2
which we present first.

Lemma 1 We have that

E
[
Ẑt|At−1

]
=

M∑
m=1

w
(m)
t−1g(yt|x(m)

t−1). (1)

Proof:

E
[
Ẑt|At−1

]
= E

[ 1

M

M∑
m=1

w̃
(m)
t |At−1

]
(2)

= E
[ 1

M

M∑
m=1

g(yt|x(m)
t )

∑M
j=1 w

(j)
t−1f(x

(m)
t |x(j)

t−1)

ψ(x
(m)
t )

|At−1
]

(3)

=
1

M

M∑
m=1

E
[g(yt|x(m)

t )
∑M
j=1 w

(j)
t−1f(x

(m)
t |x(j)

t−1)

ψ(x
(m)
t )

|At−1
]
. (4)
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Now, since given At−1 the particles at time t are conditionally independent with pdf ψt(xt), then we have that the integrals
within (4) are identical:

E
[
Ẑt|At−1

]
=

∫
g(yt|xt)

∑M
j=1 w

(j)
t−1f(xt|x(j)

t−1)

ψ(xt)
ψ(xt)dxt (5)

=

∫
g(yt|xt)

M∑
j=1

w
(j)
t−1f(xt|x(j)

t−1)dxt (6)

=

M∑
j=1

w
(j)
t−1

∫
g(yt,xt|x(j)

t−1)dxt (7)

=

M∑
j=1

w
(j)
t−1g(yt|x(j)

t−1). (8)

�

Lemma 2 For any h ∈ {1, ..., t− 1} we have that

E
[
Ẑt−h:t|At−h−1

]
=

M∑
m=1

w
(m)
t−h−1g(yt−h:t|x(m)

t−h−1). (9)

Proof: We follow a proof by induction. First, note that (9) is true for h = 0 due to Lemma 1. Then, we assume that (9) holds
for a given h and we will prove that it then holds for h+ 1. Let us start developing the left-hand side of (9) for h+ 1 by first
noting that Ẑt−h−1:t = Ẑt−h:tẐt−h−1. Then,

E
[
Ẑt−h−1:t|At−h−2

]
= E

[
E
[
Ẑt−h:t|At−h−1

]
Ẑt−h−1|At−h−2

]
(10)

= E

[[ M∑
m=1

g(yt−h:t|x(m)
t−h−1)w

(m)
t−h−1

]
Ẑt−h−1|At−h−2

]
(11)

(12)

where we have simply substituted Eq. (9) that we assume to hold for h. Next,

E
[
Ẑt−h−1:t|At−h−2

]
= E

[[ M∑
m=1

g(yt−h:t|x(m)
t−h−1)

w̃
(m)
t−h−1∑M

j=1 w̃
(j)
t−h−1

] 1

M

M∑
j=1

w̃
(j)
t−h−1|At−h−2

]
(13)

= E

[
1

M

M∑
m=1

g(yt−h:t|x(m)
t−h−1)

g(yt−h−1|x(m)
t−h−1)

∑M
j=1 w

(j)
t−h−2f(x

(m)
t−h−1|x

(j)
t−h−2)

ψt−h−1(x
(m)
t−h−1)

|At−h−2

]
(14)

=
1

M

M∑
m=1

E

[
g(yt−h:t|x(m)

t−h−1)
g(yt−h−1|x(m)

t−h−1)
∑M
j=1 w

(j)
t−h−2f(x

(m)
t−h−1|x

(j)
t−h−2)

ψ(x
(m)
t−h−1)

|At−h−2

]
(15)

where we have substituted with the importance weights w̃(m)
t−h−1 of Eq. 7 of the manuscript. Since, given At−h−2, the



particles at time t are conditionally independent with pdf ψt−h−1(xt−h−1), all M expectations are identical:

E
[
Ẑt−h−1:t|At−h−2

]
=

∫
g(yt−h:t|xt−h−1)

g(yt−h−1|xt−h−1)
∑M
j=1 w

(j)
t−h−2f(xt−h−1|x(j)

t−h−2)

ψ(xt−h−1)
ψ(xt−h−1)dxt−h−1

(16)

=

∫
g(yt−h:t|xt−h−1)g(yt−h−1|xt−h−1)

M∑
j=1

w
(j)
t−h−2f(xt−h−1|x(j)

t−h−2)dxt−h−1 (17)

=

∫
g(yt−h−1:t|xt−h−1)

M∑
j=1

w
(j)
t−h−2f(xt−h−1|x(j)

t−h−2)dxt−h−1 (18)

Step (17) to (18) is justified since yt−h:t ⊥⊥ yt−h−1|xt−h−1, so we can replace g(yt−h:t|xt−h−1) in 17 with
g(yt−h:t|yt−h−1,xt−h−1) and then g(yt−h−1:t|xt−h−1) = g(yt−h:t|xt−h−1)g(yt−h−1|xt−h−1) follows by the chain
rule. Next,

=

M∑
j=1

w
(j)
t−h−2

∫
g(yt−h−1:t,xt−h−1|x(j)

t−h−2)dxt−h−1 (19)

=

M∑
j=1

w
(j)
t−h−2g(yt−h−1:t|x(j)

t−h−2) (20)

(21)

which is the right-hand side of (9). �

Theorem 1 The OAPF estimator of the normalizing constant is unbiased, i.e., E[Ẑ1:t] = p(y1:t).

Proof: The unbiasedness is a consequence of Lemma 2 with h = t− 1. �

Now we look at the variance of the normalizing constant estimators. First, we establish a superiority in performance (i.e.,
equal or less variance) of the OAPF importance weights. This result is also used below to prove the convergence of the
estimators by standard results in particle filtering.

Let us particularize importance weights in OAPF for the case with K = M as

w̃
(m)
t =

g(yt|x(m)
t )

∑M
i=1 w

(i)
t−1f(x

(m)
t |x(i)

t−1)∑M
i=1 λ

(i)
t q

(i)
t (x

(m)
t |x̄(i)

t−1)
. (22)

We also consider the generalized APF weights given by

ṽ
(m)
t =

g(yt|x(m)
t )w

(m)
t−1f(x

(m)
t |x(m)

t−1)

λ
(m)
t q

(m)
t (x

(m)
t |x̄(m)

t−1)
. (23)

These are generalized in the sense that the concrete APF described in the main paper is obtained by setting λ(m)
t ∝

w
(m)
t−1g(yt|µ(m)

t ) and propagating particles with transition kernels f(·), thus our following discussion holds for any choice
of λ(m)

t .

Lemma 3 The conditional variance of ẐOAPF
t using the OAPF weights in (22) is always less or equal than the same

estimator ẐAPF
t using the APF weights in (23).

Proof: First, note that ṽ(m)
t can be interpreted as an importance weight in an extended space on xt and the auxiliary variable

m (see for instance [Klaas et al., 2005, Section 3.1] and [Pitt and Shephard, 1999, Godsill, 2019]). Next, w̃(m)
t can be

interpreted as a version of ṽ(m)
t where both in the numerator (approximate filtering pdf) and denominator (proposal pdf),



the auxiliary variable has been marginalized. Then, the variance inequality for each importance weight holds from the
application of the variance decomposition lemma (also known as law of total variance). This proof generalizes the result in
[Klaas et al., 2005] for any set of mixture weights {λ(m)

t }Mm=1, with
∑M
j=1 λ

(j)
t and λ(m)

t ≥ 0, for all m. Finally, since both
ẐOAPF
t and ẐAPF

t are constructed as the average of the OAPF and APF weights, respectively, the conditional variance of
ẐOAPF
t is necessarily upper-bounded by that of ẐAPF

t . �

We now address the consistency of the normalizing constant, Ẑ1:t, and the self-normalized IS (SNIS) estimator Î(ht) =∑M
m=1 w

(m)
t ht(x

(m)
t ).

Corollary 1 The OAPF estimator of the normalizing constant Ẑ1:t and the SNIS estimator Î(ht) are consistent, i.e.,
limM→∞ Ẑ1:t = p(y1:t) and limM→∞ Î(ht) = I(ht) a.s. (almost surely) for a finite t.

Proof: The consistency of Ẑ1:t is a consequence of its unbiasedness, proved in Theorem 1, and the variance inequality in
Lemma 3, which ensures the variance convergence to zero a.s. whenN →∞ since the APF, which upper-bounds its variance,
is also consistent [Doucet and Johansen, 2009, Section 3.6]. A similar argumentation can be done for the SNIS estimator

Î(ht). Note that the SNIS estimator can be re-expressed as Î(ht) =
∑M
m=1

w̃
(m)
t

MẐt
ht(x

(m)
t ) = 1

M

∑M
m=1

w̃
(m)
t

Ẑt
ht(x

(m)
t ).

Since Ẑt is a consistent estimator of p(yt|y1:t−1), the denominator converges to p(yt|y1:t−1) while the numerator converges
to p(yt|y1:t−1)I(ht), when N →∞. Therefore, the ratio converges to I(ht) a.s. �

A.2 ADDITIONAL EXPERIMENTS AND RESULTS

A.2.1 Experiment 1

We provide all necessary parameters to reproduce Figure 1 in the main paper. We recall that in this toy example we do
the Bayesian recursion from t − 1 to t with M = 4 particles. In Figure 1(a), we have set the particles {x̄(m)

t−1}M=4
m=1 =

{2, 2.5, 3, 3.5}, the normalized weights {3/10, 3/10, 1/5, 1/5}, likelihood centered at 3, and σlik = 0.8, and σkern = 0.5.
In Figure 1(b), {x̄(m)

t−1}M=4
m=1 = {2, 2.5, 5, 5.5}, the normalized weights are {7/22, 1/11, 1/2, 1/11}, the likelihood is

centered at 3.5, and σlik = 1.2, and σkern = 0.5. The proposals of all algorithms are then calculated as:

4∑
m=1

λ
(m)
t f(xt|x(m)

t−1), (24)

where the mixture weights λ
(m)
t for BPF are w

(m)
t−1 , for APF are ∝ w

(m)
t−1g(yt|µ(m)

t ), for IAPF ∝
g(yt|µ(m)

t )
∑M
m=1 w

(m)
t−1f(µ

(m)
t |x(m)

t−1)/
∑M
m=1 f(µ

(m)
t |x(m)

t−1) and finally for OAPF they are the solution to the NNLS
optimization problem.
As specified in the main paper and can be seen from (24), we used transition kernels as proposal kernels for OAPF. Moreover,
we used the centers of the transition kernels µ(m)

t as evaluation points, which in this case they correspond to the resampled
particles {x̄(m)

t−1}M=4
m=1 .

A.2.2 Experiment 2

In this Section we provide results for estimation of the marginal likelihood, additional results in the estimation of the
posterior mean and relevant equations for the linear dynamical model (LDM) (Experiment 2 in the main paper). The model
is given by

p(x0) = Nx0
(m0,Σ0) (25)

f (xt | xt−1) = Nxt (Axt−1 + c,R) (26)
g (yt | xt) = Nyt (Cxt + g,Q) . (27)



The posterior filtering distribution can be computed in closed form via the Kalman filter:

p(xt | y1:t) = Nxt(µt,Σt) (28)
µt = µt + K (yt −Cµt − g) (29)

Σt = (I−KC) Σt (30)
µt = Aµt−1 + c (31)

Σt = AΣt−1A
> + R (32)

K = ΣtC
> (CΣtC

> + Q
)−1

. (33)

Moreover, p(y1:t) can also be computed in closed form from p(yt|y1:t−1). For numerical stability, one computes log p(y1:t)
and log p(yt|y1:t−1), which are given by:

log p(y1:t) = log p(y1) +

t∑
τ=2

log p(yτ |y1:τ−1) (34)

log p(yτ |y1:τ−1) = −1

2

[
log(|CΣτC

> + Q|) + (yτ −Cµτ − g)T(CΣτC
> + Q)−1(yτ −Cµτ − g) + dyτ ln(2π)

]
(35)

log p(y1) = −1

2

[
log(|CΣ0C

> + Q|) + (yτ −Cµ1 − g)T(CΣ0C
> + Q)−1(yτ −Cµ1 − g) + dy1

ln(2π)
]
.

(36)

We set R = 5I and Q = 2.5I. This setting is of particular interest, as the kernels overlap and the observations are very
informative. Therefore, the setting is particularly advantageous for IAPF, and hence it is more difficult to beat its performance.
Moreover, A = 1

2I and C = 1
2I. For dx = 2, then c = g = (−2, 2)> ; for dx = 5, then c = g = (−2, 2,−2, 2,−2)>;

similarly defined for dx = 10. The results for all dx in the estimation of the marginal likelihood are shown in Table 1. We
recall that OAPF ran withK = 5,E = 5. This implies large computational savings with respect to the IAPF (or similarly
to any other algorithm which uses the full mixture in the denominator of the importance weights). Finally, we also show
additional results in the estimation of the posterior mean in Figure 1.

Table 1: Additional results for Experiment 2 in main paper. The Table shows normalized MSE to the true marginal likelihood
p(y1:t), with standard errors over 100 Monte Carlo runs. Recall that whenever dx ∈ {2, 5} then M = 100 and when
dx = 10 then M = 1000.

Method dx = 2 dx = 5 dx = 10

BPF 3.19 · 10−7 ± 3.14 · 10−8 5.09 ·10−7 ± 4.40 ·10−8 1.539 · 10−7 ± 1.267 · 10−8

APF 3.51 · 10−7 ± 3.88 · 10−8 4.68 ·10−7 ± 4.49 ·10−8 1.333 · 10−7 ± 1.224 · 10−8

IAPF 2.15 · 10−7 ± 2.25 · 10−8 1.63 ·10−7 ± 1.58 ·10−8 6.330 · 10−8 ± 6.204 · 10−9

OAPF 1.35 · 10−7 ± 1.23 · 10−8 9.67 · 10−8 ± 9.03 · 10−9 4.771 · 10−8 ± 5.329 · 10−9

A.2.3 Experiment 3

In this experiment, we have used the standard parameters for the Lorenz model given by (s, r, b) = (10, 28, 2.667). We
set transition and observation noise as independent standard normally distributed random variables. In Figure 3, we show
visually, as stated in the main paper, how a small change in ∆t can lead to very different trajectories of xt. The sensitivity to
∆t, to the initialization, and even to the parameters (s, r, b), jointly with the strong non-linearity of the generated trajectories,
make the Lorenz model particularly challenging.

A.2.4 Experiment 4

In this experiment, we have used a challenging multivariate stochastic volatility model, which is common in related works
(see for instance [Guarniero, 2017]). Additional results with parameters m = 0,U0 = I,U = I, φ = 1 are shown in Table
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Figure 1: Here, we show results for the linear Gaussian model for additional settings (complement to Figure 2(a)). In
all settings, OAPF ran with K = 5,E = 5. Notice that the closed form FA-APF is often outperformed by OAPF, and
sometimes even by BPF.

2.

B DISCUSSION ON NUMBER OF EVALUATION POINTS AND KERNELS

We expand here our intuition for the need of only few kernels/evaluation points in many scenarios (see Figure 2 for
explanation).

C DISCUSSION ON THE FULLY ADAPTED PF

Previous works have discussed how the FA-APF described in [Pitt and Shephard, 1999, Pitt et al., 2012] optimality criterion
is not optimal in a global sense: the main intuition they provide is that it only minimizes the one-step variance of the
importance weights [Johansen and Doucet, 2008, Whiteley and Johansen, 2011, Chopin and Papaspiliopoulos, 2020]. Here,
we will provide a perspective inspired by MIS to informally explain how FA-APF can be suboptimal in general.
Let us assume that we have access to M samples simulated exactly from the filtering distribution at time t− 1:

x
(m)
t−1 ∼ p(xt−1|y1:t−1) m = 1, . . . ,M. (37)

These M samples can be used to form a particle approximation of p(xt−1|y1:t−1) simply as:

p(xt−1|y1:t−1) ≈ 1

M

M∑
m=1

δ
x
(m)
t−1
. (38)



Table 2: Results with additional parameters for Experiment 4. Note that when dx = 10 then M = 1000. Averaged ESS and
standard errors over 100 Monte Carlo runs.

Method dx = 2 dx = 5 dx = 10

BPF 50.8± 0.2 21.2± 0.4 46.6 ± 0.5
APF 59.7± 0.2 31.9± 0.4 83.9 ± 0.6
IAPF 80.5± 0.1 49.4± 0.5 199.9± 1.7
OAPF 92.6 ± 0.1 59.5 ± 0.7 229.5 ± 2.4

This particle approximation can in turn be used to approximate the intractable integral in the definition of the filtering
posterior and form an approximation to it:

p(xt|y1:t) ∝ g(yt|xt)
∫
f(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (39)

≈ g(yt|xt)
∫
f(xt|xt−1)

1

M

M∑
m=1

δ
x
(m)
t−1

dxt−1 substituting p(xt−1|y1:t−1) for approximation in Eq. (38)

(40)

= g(yt|xt)
1

M

M∑
m=1

f(xt|x(m)
t−1) (41)

Now, we will exploit the identity used by the FA-APF. The identity in question is:

p(xt|xt−1,yt) =
g(yt|xt)f(xt|xt−1)

p(yt|xt−1)
; (42)

often the term p(yt|xt − 1) is referred to as predictive likelihood. The FA-APF propagates each particle m using

p(xt|x(m)
t−1,yt) and resamples with weights

p(yt|x(m)
t−1)

M . It is easy to derive that this leads to constant importance weights
w

(m)
t , when these are defined as :

w
(m)
t =

p(x
(m)
1:t |y1:t)

q(x
(m)
1:t−1|y1:t)q(x

(m)
t |yt,x(m)

t−1)
(43)

using a joint proposal and target as common in SMC.
Our observation is that the choices made by FA-APF can be viewed as sampling from the mixture in Eq. (41), when
rearranged using (42):

1

M
g(yt|xt)

M∑
m=1

f(xt|x(m)
t−1) =

1

M

M∑
m=1

p(yt|x(m)
t−1)p(xt|x(m)

t−1,yt), (44)

since g(yt|xt)f(xt|x(m)
t−1) = p(xt|x(m)

t−1,yt)p(yt|x
(m)
t−1), where indeed i.i.d. sampling from this mixture is equivalent to

resampling and propagating in FA-APF.
This observation highlights some of the assumptions behind FA-APF from a different perspective: firstly, we assumed
i.i.d. samples from the true filtering distribution at t− 1 were available; secondly, we formed a particle approximation to
p(xt|y1:t−1) in Eq. (39) which may be more or less accurate depending on the situation. Therefore, the FA-APF choices
of resampling weights and kernels, even when analytically available, can still lead to very poor performance if (1) the
previous set of samples is a bad approximation of p(xt−1|y1:t−1), and consequently if the approximation to the predictive
distribution p(xt|y1:t−1) is poor.
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Figure 2: In blue, evaluations of a posterior generated by multiplying a mixture of 100 Gaussian kernels with a Gaussian
likelihood. Building the OAPF proposal would take approximately 1003 computation steps. However, one can see that it
seems highly wasteful to adapt the mixture of Gaussian kernels proposal by evaluating at all blue points: e.g., if the proposal
matches the posterior at the rightmost red point, it will probably go through the green point too: we do not need to include
that point in the optimization. Moreover, it may also be wasteful to match proposal and target at points where the target
has little probability mass. From these considerations, one may consider that trying to only match the three highlighted red
points (and perhaps a couple more), would likely result in a proposal that is closely as good as the one we would get by
using all blue points.
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Figure 3: In this figure, we show the noiseless versions of a trajectory for ∆t = 0.01 (a) and ∆t = 0.008 (b) to emphasize
how different trajectories can be in a Lorenz 63 model even with small parameter changes. Note that particle filters will have
to deal with both transition noise and observation noise.



References

Nicolas Chopin and Omiros Papaspiliopoulos. An introduction to sequential Monte Carlo. Springer, 2020.

Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing: Fifteen years later. Handbook of
nonlinear filtering, 12(656-704):3, 2009.

Víctor Elvira, Luca Martino, David Luengo, Mónica F Bugallo, et al. Generalized multiple importance sampling. Statistical
Science, 34(1):129–155, 2019.

Simon Godsill. Particle filtering: the first 25 years and beyond. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7760–7764. IEEE, 2019.

Pieralberto Guarniero. The Iterated Auxiliary Particle Filter and Applications to State Space Models and Diffusion Processes.
PhD thesis, University of Warwick, 2017.

Adam M Johansen and Arnaud Doucet. A note on auxiliary particle filters. Statistics & Probability Letters, 78(12):
1498–1504, 2008.

Mike Klaas, Nando de Freitas, and Arnaud Doucet. Toward practical n2 monte carlo: the marginal particle filter. In
Proceedings of the Twenty-First Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-05), pages
308–315, Arlington, Virginia, 2005. AUAI Press.

Art B Owen. Monte carlo theory, methods and examples. 2013.

Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle filters. Journal of the American statistical
association, 94(446):590–599, 1999.

Michael K Pitt, Ralph dos Santos Silva, Paolo Giordani, and Robert Kohn. On some properties of markov chain monte carlo
simulation methods based on the particle filter. Journal of Econometrics, 171(2):134–151, 2012.

Nick Whiteley and Adam M Johansen. Auxiliary particle filtering: recent developments. Bayesian time series models.
Cambridge University Press, Cambridge, 2011.


	Supplementary Material
	Theoretical Properties of the OAPF Estimators
	Additional Experiments and Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4


	Discussion on number of evaluation points and kernels
	Discussion on the fully adapted PF

