Faster Lifting for Two-Variable Logic Using Cell Graphs (Supplementary Material)

Timothy van Bremen

Ondřej Kuželka

${ }^{1}$ KU Leuven, Belgium
${ }^{2}$ Czech Technical University in Prague, Czech Republic

1 COMPLETE PSEUDOCODE

The pseudocode for the functions GetGTerm and GetJTerm are given in Algorithms 1 and 2 . The latter also makes use of another function, GetDTerm, which is given in Algorithm 3

```
Algorithm 1 GetGTerm
    Input: \(p, N, n_{k+l+1}, \ldots, n_{\left|\mathcal{F}_{C}\right|}\)
    Output: \(g_{p}\left(n_{k+l+1}, \ldots, n_{\left|\mathcal{F}_{C}\right|}, N\right)\)
    if \(\left[p, N, n_{k+l+1}, \ldots, n_{\left|\mathcal{F}_{C}\right|}\right]\) in cache then
        return cache \(\left[p, N, n_{k+l+1}, \ldots, n_{\left|\mathcal{F}_{C}\right|}\right]\)
    \(s \leftarrow 0\)
    if \(p=0\) then
        for \(i \in\{1, \ldots, k\}\) do
            \(t \leftarrow w_{i}\)
            for \(j \in\left\{k+l+1, \ldots,\left|\mathcal{F}_{C}\right|\right\}\) do
                \(t \leftarrow r_{i j}^{n_{j}}\)
            \(s \leftarrow s+t\)
        \(s \leftarrow s^{n-N-n_{k+l+1}-\cdots-n_{\left|\mathcal{F}_{C}\right|}}\)
    else
        for \(n_{k+p} \in\left\{0, \ldots, n-N-n_{k+l+1}-\cdots-n_{\left|\mathcal{F}_{C}\right|}\right\}\)
    do
            \(t \leftarrow\binom{n-N-n_{k+l+1}-\cdots-n_{\left|\mathcal{F}_{C}\right|}}{n_{k+p}} \cdot w_{k+p}^{n_{k+p}}\)
            \(t \leftarrow t \cdot \operatorname{GetJTerm}\left(k+p, n_{k+p}\right)\)
            for \(j \in\left\{k+l+1, \ldots,\left|\mathcal{F}_{C}\right|\right\}\) do
                \(t \leftarrow t \cdot r_{p j}^{n_{p} n_{j}} \cdot \operatorname{GetGTerm}(p-1, N+\)
    \(\left.n_{k+p}, n_{k+l+1}, \ldots, n_{\left|\mathcal{F}_{C}\right|}\right)\)
            \(s \leftarrow s+t\)
    cache \(\left[p, N, n_{k+l+1}, \ldots, n_{\left|\mathcal{F}_{C}\right|}\right] \leftarrow s\)
    return \(s\)
```

```
```

Algorithm 2 GetJTerm

```
```

Algorithm 2 GetJTerm
Input: c, \widehat{n}
Input: c, \widehat{n}
Output: $J_{c}(\widehat{n})$
Output: $J_{c}(\widehat{n})$
if $[c, \widehat{n}]$ in cache then
if $[c, \widehat{n}]$ in cache then
return $[c, \widehat{n}]$
return $[c, \widehat{n}]$
$/ * s$ and r are arbitrary $r_{i j}$ and s_{i} terms in $c * /:$
$/ * s$ and r are arbitrary $r_{i j}$ and s_{i} terms in $c * /:$
if c is a clique of length 1 then
if c is a clique of length 1 then
$o \leftarrow s^{\widehat{n}(\widehat{n}-1) / 2}$
$o \leftarrow s^{\widehat{n}(\widehat{n}-1) / 2}$
else
else
$o \quad \leftarrow \quad r^{\widehat{n}(\widehat{n}-1) / 2}$
$o \quad \leftarrow \quad r^{\widehat{n}(\widehat{n}-1) / 2}$
$\operatorname{GetDTerm}(c, 1, \widehat{n}$, CliqueLength $(c))$
$\operatorname{GetDTerm}(c, 1, \widehat{n}$, CliqueLength $(c))$
cache $[i, \widehat{n}] \leftarrow o$
cache $[i, \widehat{n}] \leftarrow o$
return o

```
```

 return \(o\)
    ```
```

```
```

Algorithm 3 GetDTerm

```
```

Algorithm 3 GetDTerm
Input: c, i, k, \widehat{n}
Input: c, i, k, \widehat{n}
Output: $d_{i, c}(\widehat{n})$
Output: $d_{i, c}(\widehat{n})$
if $[c, i, \widehat{n}]$ in cache then
if $[c, i, \widehat{n}]$ in cache then
return $[c, i, \widehat{n}]$
return $[c, i, \widehat{n}]$
$/ * s$ and r are arbitrary $r_{i j}$ and s_{i} terms in $c * /:$
$/ * s$ and r are arbitrary $r_{i j}$ and s_{i} terms in $c * /:$
if $i=k$ then
if $i=k$ then
$o \leftarrow\left(\frac{s}{r}\right)^{\widehat{n}(\widehat{n}-1) / 2}$
$o \leftarrow\left(\frac{s}{r}\right)^{\widehat{n}(\widehat{n}-1) / 2}$
else
else
$o \leftarrow 0$
$o \leftarrow 0$
for $n_{i} \in\{0, \ldots, \widehat{n}\}$ do
for $n_{i} \in\{0, \ldots, \widehat{n}\}$ do
$m \leftarrow\binom{\widehat{n}}{n_{i}} \cdot\left(\frac{s}{r}\right)^{n_{i}\left(n_{i}-1\right) / 2}$
$m \leftarrow\binom{\widehat{n}}{n_{i}} \cdot\left(\frac{s}{r}\right)^{n_{i}\left(n_{i}-1\right) / 2}$
$m \leftarrow m \cdot \operatorname{GetDTerm}\left(c, i+1, k, \widehat{n}-n_{i}\right)$
$m \leftarrow m \cdot \operatorname{GetDTerm}\left(c, i+1, k, \widehat{n}-n_{i}\right)$
$o \leftarrow o+m$
$o \leftarrow o+m$
cache $[c, i, \widehat{n}] \leftarrow o$
cache $[c, i, \widehat{n}] \leftarrow o$
return o

```
```

 return \(o\)
    ```
```

\qquad

The first-order logic encodings of the experiment benchmarks are given below. As mentioned in the main text, the 3 -regular and derangements benchmarks are specified in \mathbf{C}^{2}, and have been translated into $\mathbf{F O}{ }^{2}$ sentences

2 SENTENCES FROM EXPERIMENTS

(also given below). Support for cardinality constraints are required to obtain the final solutions in these instances. The details for enforcing these cardinality constraints are beyond the scope of this paper (one way is to make repeated calls to an $\mathbf{F O}^{2}$ WFOMC oracle with varying weights), but we refer interested readers to [Kuzelka, 2021] for details.
-3-regular:

$$
\begin{aligned}
\forall x \neg E(x, x) \\
\forall x \forall y E(x, y) \rightarrow E(y, x) \\
\forall x \exists^{=3} y E(x, y)
\end{aligned}
$$

Transformed version:

$$
\begin{aligned}
& \forall x \neg E(x, x) \\
& \forall x \forall y E(x, y) \rightarrow E(y, x) \\
& \forall x \forall y E(x, y) \leftrightarrow F(x, y) \\
& \forall x \forall y F_{1}(x, y) \rightarrow S_{1}(x) \\
& \forall x \forall y F_{2}(x, y) \rightarrow S_{2}(x) \\
& \forall x \forall y F_{3}(x, y) \rightarrow S_{3}(x) \\
& \forall x \forall y F(x, y) \leftrightarrow F_{1}(x, y) \vee F_{2}(x, y) \vee F_{3}(x, y) \\
& \forall x \forall y \neg F_{1}(x, y) \vee \neg F_{2}(x, y) \\
& \forall x \forall y \neg F_{1}(x, y) \vee \neg F_{3}(x, y) \\
& \forall x \forall y \neg F_{2}(x, y) \vee \neg F_{3}(x, y)
\end{aligned}
$$

with $\bar{w}\left(S_{1}\right)=\bar{w}\left(S_{2}\right)=\bar{w}\left(S_{3}\right)=-1$, and all other weights set to 1 . The cardinality constraint one needs to add to obtain the number of 3-regular graphs is then $|F|=3 n$. Since these cardinality constraints are handled in [Kuzelka, 2021] by multiple calls to an oracle for the $\mathbf{F O}^{2}$ sentence above, we ignore them here as they are not important for comparing the performance of the $\mathbf{F O}^{2}$ algorithms.

- 4-coloured:

$$
\begin{aligned}
& \forall x \neg E(x, x) \\
& \forall x \forall y E(x, y) \rightarrow E(y, x) \\
& \forall x C_{1}(x) \vee C_{2}(x) \vee C_{3}(x) \vee C_{4}(x) \\
& \forall x \neg C_{1}(x) \vee \neg C_{2}(x) \\
& \quad \vdots \\
& \forall x \neg C_{2}(x) \vee \neg C_{4}(x) \\
& \forall x \neg C_{3}(x) \vee \neg C_{4}(x) \\
& \forall x \forall y E(x, y) \rightarrow\left(\left(C_{1}(x) \wedge \neg C_{1}(y)\right) \vee \cdots \vee\right. \\
& \left.\quad\left(C_{4}(x) \wedge \neg C_{4}(y)\right)\right)
\end{aligned}
$$

In this case no cardinality constraints are needed.

- derangements:

$$
\begin{array}{r}
\forall x \neg F(x, x) \\
\forall x \exists=1 y F(x, y) \\
\forall x \exists=1 y F(y, x)
\end{array}
$$

Transformed version:

$$
\begin{aligned}
& \forall x \neg F(x, x) \\
& \forall x \forall y S_{1}(x) \vee \neg F(x, y) \\
& \forall x \forall y S_{2}(x) \vee \neg F(y, x)
\end{aligned}
$$

with $\bar{w}\left(S_{1}\right)=\bar{w}\left(S_{2}\right)=-1$, and all other weights set to 1 . The cardinality constraint one would need to add to obtain the number of derangements is $|F|=n$.

- 3-matchings:

$$
\begin{aligned}
& \forall x \neg E_{1}(x, x) \\
& \forall x \neg E_{2}(x, x) \\
& \forall x \neg E_{3}(x, x) \\
& \forall x \forall y E_{1}(x, y) \rightarrow E_{1}(y, x) \\
& \forall x \forall y E_{2}(x, y) \rightarrow E_{2}(y, x) \\
& \forall x \forall y E_{3}(x, y) \rightarrow E_{3}(y, x) \\
& \forall x \exists^{=1} y E_{1}(x, y) \\
& \forall x \exists^{=1} y E_{2}(x, y) \\
& \forall x \exists^{=1} y E_{3}(x, y) \\
& \forall x \forall y E_{1}(x, y) \rightarrow \neg E_{2}(y, x) \\
& \forall x \forall y E_{1}(x, y) \rightarrow \neg E_{3}(y, x) \\
& \forall x \forall y E_{2}(x, y) \rightarrow \neg E_{3}(y, x)
\end{aligned}
$$

Transformed version:

$$
\begin{aligned}
& \forall x \neg E_{1}(x, x) \\
& \forall x \neg E_{2}(x, x) \\
& \forall x \neg E_{3}(x, x) \\
& \forall x \forall y E_{1}(x, y) \rightarrow E_{1}(y, x) \\
& \forall x \forall y E_{2}(x, y) \rightarrow E_{2}(y, x) \\
& \forall x \forall y E_{3}(x, y) \rightarrow E_{3}(y, x) \\
& \forall x \forall y S_{1}(x) \vee \neg E_{1}(x, y) \\
& \forall x \forall y S_{2}(x) \vee \neg E_{2}(x, y) \\
& \forall x \forall y S_{3}(x) \vee \neg E_{3}(x, y) \\
& \forall x \forall y E_{1}(x, y) \rightarrow \neg E_{2}(y, x) \\
& \forall x \forall y E_{1}(x, y) \rightarrow \neg E_{3}(y, x) \\
& \forall x \forall y E_{2}(x, y) \rightarrow \neg E_{3}(y, x)
\end{aligned}
$$

with $\bar{w}\left(S_{1}\right)=\bar{w}\left(S_{2}\right)=\bar{w}\left(S_{3}\right)=-1$, and all other weights set to 1 . The cardinality constraints one needs to add to obtain the number of ways of constructing three non-overlapping maximal matchings on $K_{2 n}$ are $\left|E_{1}\right|=\left|E_{2}\right|=\left|E_{3}\right|=n$

3 PROOF OF THEOREM 2

We have:

$$
\begin{aligned}
& \operatorname{WFOMC}(\phi, n, w, \bar{w})=\sum_{n_{k+1}+\cdots+n_{|M|} \leq n}\binom{n}{n_{k+1}, \ldots, n_{|M|}} \prod_{i, j: i, j \notin\{1,2, \ldots, k\} i<j} r_{i j}^{n_{i} n_{j}} \prod_{i \notin\{1,2, \ldots, k\}} w_{i}^{n_{i}} s_{i}^{n_{i}\left(n_{i}-1\right) / 2} . \\
& \sum_{n_{1}+\cdots+n_{k}=n-n_{k+1}-\ldots n_{|M|}}\binom{n-n_{k+1}-\ldots n_{|M|}}{n_{1}, n_{2}, \ldots, n_{k}} \prod_{j \in\{1,2, \ldots, k\}} w_{j}^{n_{j}} \prod_{i \in\{k+1, \ldots,|M|\}} r_{j, i}^{n_{j} n_{i}}= \\
& \sum_{n_{k+1}+\cdots+n_{|M|} \leq n}\binom{n}{n_{k+1}, \ldots, n_{|M|}} \prod_{i, j: i, j \notin\{1,2, \ldots, k\} i<j} r_{i j}^{n_{i} n_{j}} \prod_{i \notin\{1,2, \ldots, k\}} w_{i}^{n_{i}} s_{i}^{n_{i}\left(n_{i}-1\right) / 2} \\
& \sum_{n_{1}+\cdots+n_{k}=n-n_{k+1}-\ldots n_{|M|}}\binom{n-n_{k+1}-\ldots n_{|M|}}{n_{1}, n_{2}, \ldots, n_{k}} \prod_{j \in\{1,2, \ldots, k\}}\left(w_{j} \prod_{i \in\{k+1, \ldots,|M|\}} r_{j, i}^{n_{i}}\right)^{n_{j}}= \\
& \sum_{n_{k+1}+\cdots+n_{|M|} \leq n}\binom{n}{n_{k+1}, \ldots, n_{|M|}} \prod_{i, j: i, j \notin\{1,2, \ldots, k\}} r_{i<j}^{n_{i} n_{j}} \prod_{i \notin\{1,2, \ldots, k\}} w_{i}^{n_{i}} s_{i}^{n_{i}\left(n_{i}-1\right) / 2} \cdot\left(\sum_{i=1}^{k} w_{i} \prod_{j \notin\{1,2, \ldots, k\}} r_{i, j}^{n_{j}}\right)
\end{aligned}
$$

In the derivations above, we used the fact that $s_{i}=1$ and $r_{i j}=1$ for all $i, j \in\{1,2, \ldots, k\}$ and then we applied the multinomial theorem. This finishes the proof.

References

Ondrej Kuzelka. Weighted first-order model counting in the two-variable fragment with counting quantifiers. J. Artif. Intell. Res., 70:1281-1307, 2021.

