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A OMITTED PROOFS

In Appendix A.1, we show hardness for the “adversarial
MDP” problem. In Appendix A.2, we analyze the use of
bandit algorithms for reaching correlated equilibria in games
with stochastic rewards. In Appendix A.3, we introduce
a general formulation of Bayesian games, for which ob-
tain analogues of the results in Appendix A.2, which will
be later used for analysis of learning in “single-controller”
stochastic games. We prove our main results regarding
PLL in Appendix A.4, and FastPLL in Appendix A.5. Our
single-controller result is shown in Appendix A.6, and our
“shared randomness” result for extending PLL is given in
Appendix A.7.

A.1 PROOFS FOR SECTION 3: HARDNESS OF
LEARNING IN ADVERSARIAL MDPS

Here we prove our hardness result for the finite-horizon or
“episodic” adversarial MDP problem, where both transitions
and rewards can change arbitrarily between episodes. We as-
sume the adversary can pick the starting state as well, which
is without loss of generality up to increasing the horizon by
1. This problem was shown to be at least as hard as learning
parities with noise by Abbasi-Yadkori et al. [2013], and their
reduction involves creating episodic MDPs withH = Θ(S).
We strengthen this to NP-hardness, and for a horizon length
of only 3. We do this by showing that the batch version
of the problem, which we call the “multi-MDP”, problem
is at least as hard as 3-SAT, and as such is NP-hard to ap-
proximate within a factor of 7

8 + ε, for any ε > 0. By an
online-to-batch reduction, this implies that there is no al-
gorithm for the episodic adversarial MDP problem with
poly-time per-round computation and O(T 1−δ poly(S)) re-
gret, for any δ > 0, and for any dependence on N and H ,
unless NP ⊆ BPP. Like Abbasi-Yadkori et al. [2013], our
reduction only needs deterministic transitions, and so the
hardness result also holds for the simpler “adversarial online
shortest path problem”.

A.1.1 The Offline Problem.

Consider the batch version of the adversarial MDP problem,
which we call the “multi-MDP problem”, where we are
given a set of MDPsM. Each MDPM ∈M has a identical
state and action spaces X and A, as well as episode length
H , but the transition and reward functions p and r can differ
arbitrarily. GivenM as input, the goal for the maximization
problem is to output a single (possibly randomized and
non-stationary) policy π which maximizes the average per-
episode reward across all MDPs. The decision problem is
to determine if any single policy achieves average reward at
least R acrossM. We assume that the per-episode reward
in each MDP M is in [0, d] for all policies, and that all
instantaneous rewards are non-negative.

Theorem 1. The decision version of the multi-MDP problem
is NP-complete for horizon length H ≥ 3. Further, the
maximization version is NP-hard to approximate within a
factor of 7

8 + ε, for all ε > 0.

Proof. We reduce from 3-SAT. First we constrain ourselves
to only considering deterministic policies. The idea is to
encode each of the m clauses of a 3-SAT formula (on n
variables) as set of six (n+ 1)-state MDPs. The states cor-
respond to each of the variables as well as a “done” state,
and the action space at each state is {0, 1}, corresponding
to an assignment for the variable. Assume without loss of
generality that the variables in the input formula are lexi-
cographically ordered. Create one MDP for each of the six
possible permutations of the literals in a clause; the episode
will consist of three steps. For each of these MDPs, let the
starting state si at step h = 1 correspond to the first literal
xi in the ordering. If xi evaluates to True on input π(si, 1)
for a policy π, we transition to the “done” state, otherwise
we transition to the state for the second literal sj . Transi-
tions proceed here accordingly for π(sj , 2) and likewise
at the third state sk for π(sk, 3). Once at the “done” state,
we remain there until the end of the episode regardless of
action. Transitioning to the “done” state from some other
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state yields a reward of 1 and all other transitions yield a
reward of 0.

If the input formula is satisfiable, then the stationary pol-
icy corresponding to the satisfying assignment will clearly
obtain an average reward of 1. A non-stationary policy π
defines six (not necessarily distinct) assignments of values
to the n variables, for each permutation of the 3 timesteps.
We can split the 6n MDPs into 6 sets, each of size n cor-
responding to one permutation, which are evaluated on the
appropriate assignment of values. If the input formula is
unsatisfiable, at least one MDP in each set will result in a
reward of 0 Deciding whether any policy achieves an av-
erage reward of 1 or at most 1 − 1

n is clearly in NP, as
the best policy acts as a certificate, and so the problem is
NP-complete.

This reduction also implies hardness of approximation. As
is well-known, it is NP-hard to approximate MAX-3-SAT
within a factor of 7

8 + ε, for all ε > 0. Suppose we can could
compute a policy which obtains average reward at least 7

8 +ε
in a set of MDPs with maximum possible average reward
of 1. We can then apply to the above reduction to any input
3-SAT formula, resulting in a set of MDPs with a possible
average reward of 1 if and only if the formula is satisfiable.
If we can obtain average reward at least 7

8 + ε on this set,
we must have average reward at least 7

8 + ε on the subset of
MDPs corresponding to some permutation of literals. We
can then extract an assignment from that permutation of
timesteps in the policy which corresponds to an assignment
which satisfies at least a 7

8 + ε fraction of the clauses in the
input formula, implying the desired hardness result.

Any randomized policy can be derandomized without loss
in average reward in polynomial time, implying that ran-
domization does not help from a complexity perspective.

Lemma 1. For any set of finite-horizon MDPs, any ran-
domized policy can be converted to a deterministic non-
stationary policy in polynomial time without decreasing
average reward.

Proof. Consider the uniform distribution over MDPs in the
setM and the induced distribution over states in the final
timestep. By the Markov property and the assumption of a
fixed policy, the conditional distribution of actions at a state
is independent of the MDP as well as the sequence of states
visited. Each action with positive support has some expected
reward when taking the expectation over the MDP distribu-
tion, transitions, and previous action selections; playing the
maximum action at each state does not decrease expected
reward. We can apply this to each previous step by back-
ward induction, as downstream conditional expected values
for actions at each state are still defined, giving us a fully
deterministic policy.

As such, the hardness result holds even for algorithms which

output randomized non-stationary policies.

A.1.2 Hardness for Regret Minimization and
Black-Box NFCCEs in Stochastic Games

We use Theorem 9 to prove our hardness result for quickly
vanishing regret in the adversarial MDP problem.

Restatement of Theorem 2. Assuming NP 6⊆ BPP, there
is no algorithm with polynomial time per-round computa-
tion which has O(T 1−δpoly · (S)) regret algorithm for the
adversarial MDP problem with H ≥ 3, for any δ > 0.

Proof. By the standard online-to-batch reduction from Cesa-
Bianchi et al. [2004], we can convert an algorithm with small
regret to an algorithm for MAX-3-SAT. Suppose we had an
algorithm with regret O(T 1−δSk) for constants k and δ.
Take T � Sk/δ but still polynomial in S such that the aver-
age regret is o(1). Apply the reduction from Theorem 9 to a
3-SAT instance on S variables and then run the algorithm
for T steps, sampling from the uniform distribution over
the constructed MDPs at each episode. By the main result
(Theorem 4) from Cesa-Bianchi et al. [2004], the empiri-
cally optimal policy over the historical sequence achieves
a value within o(1) of the optimum with high probability.
This would imply a polynomial time algorithm which beats
a 7

8 + ε approximation for MAX-3-SAT, which is impossible
unless NP ⊆ BPP due to Håstad [1997].

This directly implies Corollary 2.1, where the horizon is
increased to 4 to account for the starting state in a finite-
horizon stochastic game being random rather than adver-
sarial (in our reduction, one can add a “starting state” from
which the adversary selects the next state).

A.2 GAMES WITH STOCHASTIC REWARDS

Recall that for a game with stochastic rewards, we consider
all players running an adversarial bandit algorithm B (such
as SR-MAB). A step in our analysis introduces an additional
log(1/ε) term beyond the runtime of SR-MAB for target
average regret ε, yet with less dependence on N . This is not
an issue ifN is sufficiently large as a function of ε, but if this
is not the case we extend the runtime to that which would
be required if N = Ω

(
3

√
log(1/ε)

log(log(1/ε))

)
, which can only

increase average regret; we denote this runtime function by
B(ε,N).

Theorem 3. When players in a game with stochastic re-
wards x select actions using B for T ≥ B(ε/4, N) rounds,
the sequence of action profiles is an ε-correlated equilibrium
for the game, where the expectation is taken with respect to
the tensor distribution as well as B.



Proof of Theorem 3. We begin with a lemma relating the
runtime of SR-MAB to the term which we will use in our
martingale analysis of the “sampling error” of the realized
sequence of reward tensors versus the average tensor θ̄.

Lemma 2. If N = Ω
(

3

√
log(1/ε)

log(log(1/ε))

)
then N3 log(N)

ε2 =

Ω
(
N log(N)+log(1/ε)

ε2

)
.

Proof of Lemma 2. It suffices to show that N3 log(N) =
Ω(log(1/ε)). Plugging in our expression for N , we have
that

N3 logN = Θ(N3 log(N3))

= Ω

(
log( 1

ε ) ·
(
log log( 1

ε )− log log log( 1
ε )
)

log log( 1
ε )

)
= Ω(log(1/ε)).

By the regret guarantee of B, each player has expected
average swap regret at most ε/4 with respect to the sampled
sequence of reward tensors {θt}t∈[T ], which we denote

Reg
{θt}
B . For a player i, consider some swap function f . Let

Xt
f = ui(f(ati); a

t
−i, θ

t) − ui(f(ati); a
t
i, θ̄) for an action

profile and tensor (at, θt), i.e. the difference between this
player’s reward from using f on θt versus the average tensor
θ̄, given the action profile at. Let Y tf =

∑t
j=1X

t
f . For a

distribution over tensors, and any sequence of action profiles
where at is independent of θt given actions and tensors for
1, . . . , t− 1, the sequence Y 1

f , . . . , Y
t
f is a martingale with

respect to the sequence Xf
t . To see this, note that for any

fixed at, Xt
f is in [−1, 1] as rewards are in [0, 1], and E[Y tf |

X1
f , . . . , X

t−1
f ] = Y t−1

f , as E[Xt
f | X1

f , . . . , X
t−1
f ] = 0 by

the definition of θ̄.

Let T ≥ 32(N log(N)+log(8/ε))
ε2 = 32 log(8NN/ε)

ε2 by
Lemma 2. By the Azuma-Hoeffding inequality we have
that

Pr[
∣∣Y Tf ∣∣ ≥ εT

4
] ≤ 2 exp

(
−ε2T

32

)
≤ ε

4NN
.

Union-bounding over all f ∈ F , we then have that

max
f∈F

∣∣∣∣∣ 1

T

T∑
t=1

ui(f(ati); a
t
−i, θ

t)− ui(f(ati); a
t
i, θ̄)

∣∣∣∣∣ ≤ ε

4

with probability at least 1− ε
4 . As such, the average utility of

a swap function on the sequence deviates from its expected
utility on the distribution by at most ε/4 with probability
at least ε/4, holding simultaneously for all functions, in-
cluding the identity function I (our benchmark for swap

regret). As such, with probability 1− ε/4, the difference in
swap regret on the sequence and the distribution, denoted

by
∣∣∣Reg

θ̄
B −Reg

{θt}
B

∣∣∣, is at most ε/2. Using the maximal de-
viation of 1 as a bound for the difference for the remaining
probability, we then have that

E
[∣∣∣Reg

θ̄
B −Reg{θ

t}
B

∣∣∣] ≤ (1− ε/4) · ε/2 + ε/4 ≤ 3ε

4
.

Therefore by our bound on E
[
Reg

{θt}
B

]
and linearity of

expectation:

E
[
Reg

θ̄
B

]
= E

[
Reg

{θt}
B

]
+ E

[
Reg

θ̄
B −Reg

{θt}
B

]
≤ E

[
Reg

{θt}
B

]
+ E

[∣∣∣Reg
θ̄
B −Reg

{θt}
B

∣∣∣]
≤ ε.

As no player can improve average utility in expectation
for θ̄ by more than ε with any swap function, the uniform
distribution over the sequence of action profiles is an ε-
correlated equilibrium for x when taking the expectation
over both the profile sequence and the generating process
using B and samples of reward tensors.

Corollary 1.1 (Restatement of Corollary 3.1). When all
agents in a game with stochastic rewards x play according
to B for at least 2 log(5M/δ)

η2 ·B(ε/8, N) rounds, simultane-
ously restarting B every B(ε/8, N) rounds, the resulting
sequence of actions is an (ε/2+η/2)-correlated equilibrium
for x with probability at least 1− δ/5.

Further, let V Bi (x) = EB,r
[

1
T

∑T
t=1 ui(a

t
i; a

t
−i, θ

t)
]

and

let V̂ Bi (x) be the average utility received by player i
over all rounds. With probability at least 1 − 2δ/5,∣∣∣V Bi (x)− V̂ Bi (x)

∣∣∣ ≤ η/2 simultaneously for all players.

Additionally, the computed estimate is within η of player i’s
expected average reward for playing the game according
to the resulting policy distribution with probability at least
1− 2δ/5.

Proof of Corollary 3.1. The swap regret of a sequence is
upper-bounded by the sum of the swap regret values of a
uniform partition of the sequence, as the latter may use a
different swap function on each sequence while the former
is restricted to only using a single function. As such, we can
bound the average regret of our sequence by averaging the
average swap regret values between restarts.

Both average utility and average swap regret (with respect
to x) over B(ε/8) are random variables taking values in
[0, 1], and the mean of the latter is at most ε/2 by Theorem
3. Recall from the proof of Theorem 3 that the expected
average reward deviation of the identity function on the
sequence and distribution has mean zero (by nature of it
being a martingale), and it takes values in [−1, 1]. The result



then follows from applying Hoeffding’s inequality to the
average of the samples we receive of the random variables,
bounding deviation by η/2 (or η), and union-bounding over
all players and failure probabilities.

A.3 CORRELATED EQUILIBRIA IN BAYESIAN
GAMES

We also give a convergence result for learning in Bayesian
games. The Bayesian game formulation we consider is quite
general (in particular, we remove the “independent private
value” assumption from the model considered in Hartline
et al. [2015], and allow signals and rewards to be arbitrarily
correlated across players), and can be viewed as a partial-
information generalization of games with stochastic rewards.
When all players use our described method, the sequence
of policy profiles played by all players converges to an
approximate Bayes correlated equilibrium in polynomial
time.

Definition 1 (Bayesian Games). A Bayesian game y =
(A,M, ψ, p, r, u) has M players and is specified by a set of
action profiles A = ×i∈[M ]Ai, a signal function ψ : X →
Ψ where Ψ = ×i∈[M ]Ψi, and a distribution over states
p ∈ ∆(X ). Each state x denotes a game with stochastic
rewards, with its distribution over reward tensors given by
r : X → ∆(Θ). Players’ utilities, given by u : A×Θ →
[0, 1]N , depend on the realization of θ ∼ r(x). Players only
observe a signal of the state ψi(x), and never observe θ or
x directly.

We assume that |Ai| = N for all agents, and we will let
Si = |Ψi| and S = maxi Si. In this model of a Bayesian
game, a state x is drawn from p, each agent i observes a
signal ψi(x) and selects an action ai, then receives utility
ui(ai; a−i, θ), where θ is drawn from r(x). We note that
Bayesian games are often defined in such a way where states
and reward tensors are treated as equivalent. This formu-
lation of a Bayesian game is similar to the “information
set” model often considered in partially-observable Markov
decision processes and extensive-form games. However, our
result for Bayesian games will not depend on the size of X
or Θ. Here, one could treat X and Θ as identical, but we
maintain the distinction for continuity in exposition with our
sections on stochastic games. It is without loss of generality
that we assume u depends only on a and θ, not x, as we can
encode arbitary distributions over reward vectors in [0, 1]M

for each state with a distribution over reward tensors.

The definition of correlated equilibrium in Bayesian games
given in Bergemann and Morris [2016] refers to a decision
rule, given by a distribution over action profile recommen-
dations for each state and set of types, which is obedient
in the sense that no player can improve by deviating from

the recommendations for any action-type pair. The method
we present here will converge to a joint distribution over
policy profiles, denoting an action recommendation for each
signal, which will be independent of the state and reward
tensor distributions, and which satisfies this definition of
Bayes correlated equilibrium. Several other definitions are
considered in the literature as well Forges [1993].

We are aware of only one paper, Hartline et al. [2015], which
considers learning correlated equilibria in Bayesian games
through the lens of polynomial time convergence, where
the primary focus is on analyzing the Price of Anarchy and
connections to learning in auctions. They consider the in-
dependent private value model of Bayesian games, There,
the assumption is made that players have “types” which
fully characterize their rewards for any action profile, and
further that these types are drawn from a product distribu-
tion. In their approach, each agent runs parallel copies of a
no-regret algorithm for each type, and actions are sampled
from each algorithm every round, which they interpret as
the sampling of a strategy mapping types to actions. Our
model is a generalization of this setting, as we allow types
(signals) to be arbitrarily correlated with eachother as well
as with the reward tensors. To our knowledge, the approach
we give here is the first which converges to a Bayes cor-
related equilibrium in polynomial time for such a general
formulation of Bayesian games.

Here will consider policies πi : Ψi → Ai for an agent
i, with πi ∈ Πi and Π = ×i∈[M ]Π, which are functions
mapping their signals to actions. In our setting, a Bayes
correlated equilibrium is a distribution over policy profiles
such that no agent can benefit by deviating from policy
recommendations.

Definition 2 (Bayes Correlated Equilibria). A Bayes corre-
lated equilibrium for a Bayesian game is a distribution over
policy profiles given by D ∈ ∆(Π) such that for all players
i and all swap functions f ∈ FΨi : Ai×Ψi → Ai,

E
π∼D,θ∼r(x),x∼p

[Ui] ≥ E
a∼D(x),θ∼r(x),x∼p

[Ufi ],

with Ui = ui(πi(ψi(x)); a−i, θ) and Ufi =
ui(f(πi(ψi(x)), ψi(x)); a−i, θ), where a−i is the vector
of actions [πj(ψj(x))] for agents j 6= i, and where the
policy vector π is sampled independently from x. Such a
distribution is an ε-Bayes correlated equilibrium if for all
players and swap functions,

E
π∼D,θ∼r(x),x∼p

[Ui] ≥ E
a∼D(x),θ∼r(x),x∼p

[Ufi ]− ε.

The smallest quantity ε for which the above holds for agent
i is their average FΨi -regret for a policy distribution.

We let BS denote the parallel bandit algorithm consisting of
S copies of B, with one copy for each type. At the beginning
of each round, agents sample actions from each copy of B,



thereby creating a policy πti for the round. Upon observing
their signal ψti , they play the action πti(ψ)it), update the
copy of B corresponding to ψi with their observed reward,
and record a record a reward of 0 for all other copies. We
show that when agents play according to BS , the sequence
of policies converges to an approximate equilibrium for the
Bayesian game.

Theorem 2. When players in a Bayesian game y select
actions using BS for T ≥ B( ε

4S , N) rounds, where the state
is sampled independently each round and the reward tensor
is sampled from that state’s distribution, the sequence of
policies is an ε-correlated equilibrium for the game, where
the expectation is taken with respect to the state, tensor, and
action profile distribution as well as the randomness of B.

Proof of Theorem 2. The proof is quite similar to that for
Theorem 3. We bound the expected average swap regret for
each copy of B by ε/S, which then bounds the total average
swap regret (with respect to the policy class) by ε.

By the guarantee of the algorithm B, each player’s copy
of B for a signal ψi has expected swap regret at most ε

4S
with respect to the sampled sequence of states and reward
tensors (where rewards are 0 when the corresponding signal

is not observed), which we denote Reg
{θt,xt}
B,ψi . The aver-

age swap regret for the entire sequence will be the sum

of the swap regrets for each signal, denoted Reg
{θt,xt}
BS =∑

ψi∈Ψi
Reg

{θt,xt}
B,ψi , as the deviations considered by the

function class FΨi are equivalent to choosing any f ∈ F
for each signal.

For a player i and signal ψi, upon fixing the vector of oppo-
nent policies π−i, there is some fixed expected reward for
each action, conditional on observing ψi, given by:

θ̄(ai;ψi, π−i) = E
x∼p,θ∼r(x)

[
Uψi × 1[ψi(x) = ψi]

]
,

where Uψi = ui(ai; (πj(ψj(x)))j 6=i, θ). In round t of the
game, the reward that player i’s copy of B associated with
ψi will receive for playing action ai is a random variable
in [0, 1] with mean θ̄(ai;ψi, π−i), where we view π−i as
being fixed prior to the realization of x and θ. The regret
bound for that copy of B holds for the realized sequence of
vectors (determined by πt−i, x

t, and θt) of these rewards for
all actions ai. We will be interested in bounding the average
reward deviation of swap functions between this sequence
and the sequence ((θ̄(ai;ψi, π

t
−i))ai∈Ai)t∈[T ].

Consider some swap function f ∈ F . We can again define
a martingale which tracks the deviation of the performance
of f on the sampled sequence versus the underlying game
distribution. Let Xt

f,ψi
= (ui(f(ati); (πtj(ψj(x

t)))j 6=i, θ
t) ·

1[ψi(x
t) = ψi] − θ̄(f(ati);ψi, π

t
−i)) for a policy profile,

signal, and tensor (πt−i, ψ
t
i , θ

t), i.e. the difference between
this player’s observed and expected reward from using

f with the copy of B associated with ψi, given oppo-
nent policies πt−i and their own sampled action ati for
signal ψi. Let Y tf,ψi =

∑t
j=1X

t
f,ψi

. For a distribution
over states and tensors, and any sequence of action pro-
files where at is independent of θt given actions and ten-
sors for 1, ..., t − 1, the sequence Y 1

f,ψi
, ..., Y tψi is a mar-

tingale with respect to the sequence Xt
f,ψi

. To see this,
note that for any fixed at, Xt

f,ψi
is in [−1, 1] as rewards

are in [0, 1], and E[Y tf,ψi | X
1
f,ψi

, . . . , Xt−1
f,ψi

] = Y t−1
f,ψi

, as
E[Xt

f,ψi
| X1

f,ψi
, . . . , Xt−1

f,ψi
] = 0 by the definition of θ̄.

Let T ≥ 32S2(N log(N)+log(8S/ε))
ε2 = 32S2 log(8SNN/ε)

ε2 by
Lemma 2. By the Azuma-Hoeffding inequality we have that

Pr[
∣∣Y Tf,ψi∣∣ ≥ εT

4S
] ≤ 2 exp

(
−ε2T
32S2

)
≤ ε

4SNN
.

Union-bounding over all f ∈ F , we then have that

max
f∈F

∣∣∣∣∣
T∑
t=1

Uψ,ti · 1[ψi(x
t) = ψi]− θ̄(f(ati);ψi, π

t
−i)

T

∣∣∣∣∣ ≤ ε

4S

where Uψ,ti = ui(f(ati); (πtj(ψj(x
t)))j 6=i, θ

t) with proba-
bility at least 1− ε

4S . As such, the average utility of a swap
function on the sequence applied to the copy of B for ψi
deviates from its expected utility on the distribution by at
most ε

4S with probability at least ε
4S , holding simultane-

ously for all functions in F , including the identity function
I (our benchmark for swap regret). As such, with proba-
bility 1− ε

4S , the difference in average swap regret on the
sequence and the distribution for this B copy, denoted by∣∣∣Reg

θ̄
B,ψi −Reg

{θt,xt}
B,ψi

∣∣∣, is at most ε
2S . Using the maximal

deviation of 1 as a bound for the difference for the remaining
probability, we then have that

E
[∣∣∣Reg

θ̄
B,ψi −Reg{θ

t,xt}
B,ψi

∣∣∣] ≤ (1− ε

4S
) · ε

2S
+

ε

4S
≤ 3ε

4
.

Therefore by our bound on E
[
Reg

{θt,xt}
B

]
and linearity of

expectation:

E
[
Reg

θ̄
B,ψi

]
= E

[
Reg

{θt,xt}
B,ψi

]
+ E

[
Reg

θ̄
B,ψi −Reg

{θt,xt}
B,ψi

]
≤ E

[
Reg

{θt,xt}
B,ψi

]
+ E

[∣∣∣Reg
θ̄
B,ψi −Reg

{θt,xt}
B,ψi

∣∣∣]
≤ ε.

Summing over each copy of B gives us that

E
[
Reg

{θt,xt}
BS

]
≤ ε, as average swap regret (with re-

spect to FΨi) for the distribution can be decomposed into
swap regret for each signal (with respect to F) just as
for the sequence of states and tensors. As no player can
improve average utility in expectation for θ̄ by more than



ε with any swap function FΨi , the uniform distribution
over the sequence of policy profiles is an ε-correlated
equilibrium for y when taking the expectation over both the
profile sequence and the generating process using BS and
samples of states and reward tensors.

Again, if desired we can simultaneously obtain an accurate
estimate of the value V BSi (y) of this equilibrium-generating
process for each player, and boost regret bounds to high
probability, with repeated restarts.

A.4 ANALYSIS FOR PLL

Showing Theorem 4 for BILL is straightforward and a proof
can be obtained by simplifying the analysis of PLL in Theo-
rem 5. We restate the description of PLL here, with explicit
constants for the terms whose asymptotic descriptions were
given in the body.

Algorithm 2: Parallel Local Learning. Initialize
V̂ Bi (x, h) = H − h + 1 for each pair (x, h), as
well as a visit counter c(x, h) for each pair set
to 0. Let W = max (W1,W2), where W1 =
128S4H6 log(2S/δ′)

ε2 , W2 = 512H4 log(5M/δ′)
ε2 , and

δ′ = εδ
192SH4((S+1)H+1)·max(S,4H7/ε)

. Let L ≥

max
(

64S2H3WB
ε , 256SH4WB

ε2

)
. Initialize a copy of B at

each pair, specified to run for B = B( ε
16H , N) steps. Until

termination, run the following procedure for each epoch:

• Run for L trajectories, using B at each pair, counting
rounds and updating actions for a copy of B only when
the corresponding pair is visited. Record rewards as
the sum of the observed reward as well as the value es-
timate for the next pair visited in that trajectory, scaled
to [0,1].

• Consider the last step h ∈ [H] where an unlocked
pair’s counter crossed 16H2WB

ε in the epoch. Lock
all unlocked states at this step with appropriate esti-
mates which were previously unlocked, compute value
estimates V̂ Bi (x, h) as the average reward over the cor-
responding 16H2WB

ε visits, then reset all copies of B,
counters, and estimates at earlier pairs (h′ < h).

• Terminate if no pair’s counter crosses 16H2WB
ε in the

epoch.

Restatement of Theorem 5. PLL terminates after at most
(S + 1)H + 1 epochs. After termination, for each pair (x,
h), consider the uniform distribution over action profiles
D(x, h) played since that pair was last reset. Let D be the
distribution over policy profiles where the action profile for
each pair (x, h) is sampled independently from D(x, h).
With probability at least 1 − δ, D is an ε-EFCE for the
game.

Proof of Theorem 5. We first give a worst-case bound on
the runtime, then proceed with our analysis of the regret of
the resulting action profile distributions. At termination, for
any pair (x, h) with no visits since it was last reset, we can
let the distribution D(x, h) over action profiles be arbitrary
for the purposes of our our analysis.

Lemma 3 PLL runs for at least H epochs, and at most
(S + 1)H + 1 epochs.

Proof. All pairs start unlocked, and some pair in each step
is visited at least 16H2WB

ε per epoch by pigeonhole, so the
algorithm will not terminate unless there is a locked pair for
every step. States are only moved from unlocked to locked at
one step per epoch, and so there must be at most H epochs
to lock some pair in all steps.

We can bound the number of epochs by bounding the num-
ber of epochs in which a pair at some step can become
locked. Observe that a locked pair at step H will only be-
come locked in one epoch and will never become unlocked
afterwards. A pair at step H − 1 will become locked in at
most S epochs, as it will only become locked after at least
one pair at step H is locked, and then can be unlocked at
most S − 1 times for the remaining unlocked pairs at step
H . In general, the number of epochs in which a state can be-
come locked is bounded by the number of epochs in which
a downstream state can become locked. Let g(h) denote this
bound on the number of epochs in which a pair at step h
can be locked, which is given by:

g(h) =

H∑
i=h+1

Sg(i)

= Sg(h+ 1) +

H∑
i=h+2

Sg(i)

= (S + 1)g(h+ 1)

= (S + 1)H−hg(H)

= (S + 1)H−h,

as g(H) = 1. The total number of epochs before termination
is then bounded by

1 +

H∑
i=1

Sg(i) = g(0) + 1 = (S + 1)H + 1,

accounting for the last epoch in which no states are locked.

We now show that each agent has small regret with respect
to F under the resulting policy distribution D with high
probability, which coincides with the definition of extensive-
form correlated equilibria we consider, as D is a product
distribution across pairs. An important object in this analy-
sis is the expected distribution over state visitations when



players use B at each pair with a fixed set of values. Just as
there is some fixed distribution over average rewards when
players play B in a game for many rounds, there is also a
fixed distribution over transitions when using B at a pair in
a stochastic game, given fixed sets of value estimates for
downstream states.

When all agents use a bandit algorithm B at a pair (x, h−1)
for B trajectories where (x, h − 1) is visited, augmenting
rewards with downstream value estimates V̂i(x′, h) for each
player i and state x′, there is some expected proportion of
those trajectories that each state will be visited at step h,
which we denote by:

pV̂ (x′;x, h) = E
B,p(h)

[
1

B

B∑
t=1

1
[
τ(at, x) = x′

]]

We can also define the probability that a pair is visited in
a trajectory, assuming that the distribution of transitions
between pairs is given by pV̂ , which we denote by qV̂ (·, ·):

qV̂ (x, 1) = p0(x),

qV̂ (x, h) =
∑
x′∈X

qV̂ (x′, h− 1) · pV̂ (x;x′, h− 1).

For a distribution D(x, h) of action profiles for each pair,
we can also define transition probabilities between pairs in
a trajectory when action profiles are selected independently
for each pair:

pD(x′;x, h) = Pr
D(x,h−1),p(h)

[τ(a, x) = x′] ,

as well as expected visitation frequencies for each pair in a
trajectory:

qD(x, 1) = p0(x),

qD(x, h) =
∑
x′∈X

qD(x′, h− 1) · pD(x;x′, h− 1).

If a pair (x, h) is visited sufficiently often with fixed down-
stream values V̂ , then both the empirical transition distribu-
tion and the transition distribution when transition functions
are resampled are close to pV̂ (x, h).

We prove a lemma about the composition of bounds on the
total variation distance in this setting.

Lemma 3. For distribution functions p and p̂ mapping
X ×[H] to ∆(X ), and q and q̂ mapping [H] to ∆(X),
where q(x, h+1) =

∑
x′∈X q(x

′, h)·p(x;x′, h) and q(x, 1)
can be arbitrary (and with q̂ defined likewise with respect
to p̂), then with dh+1

q = dTV (q(·, h+ 1), q̂(·, h+ 1)),

dh+1
q ≤ dTV (q(·, h+ 1), q̂(·, h+ 1))

+
∑
x′∈X

q(x′, h) · dTV (p(·;x′, h), p̂(·;x′, h)).

Proof of Lemma 3.

dh+1
q =

1

2

∑
x∈X

∣∣∣∣∣∑
x′∈X

q(x′, h)p(x;x′, h)− q̂(x′, h)p̂(x;x′, h)

∣∣∣∣∣
≤ 1

2

∑
x′∈X

(
q(x′, h)

∑
x∈X
|p(x;x′, h)− p̂(x;x′, h)|

)

+
∑
x′∈X

(
|q(x′, h)− q̂(x′, h)|

∑
x∈X

pD(x;x′, h)

)
= dTV (q(·, h), q̂(·, h))

+
∑
x′∈X

q(x′, h) · dTV (p(·;x′, h), p̂(·;x′, h)).

In Lemma 4 we show that in each epoch, for any pair where
qV̂ (x, h) is sufficiently large (for the estimates V̂ used in
that epoch), the number of times in that epoch (x, h) is vis-
ited is close to expectation. We then show that any state
which is unlocked at termination will almost surely be vis-
ited infrequently when agents play according to D(x, h) at
each state.

Lemma 4. In any epoch where current value estimates are
given by V̂ for each player and pair, with probability at least
1− δ

3((S+1)H+1)
, every pair (x, h) where qV̂ (x, h) ≥ ε

8SH2

reaches the locking threshold by the completion of the epoch.

Proof. We proceed by showing that in each epoch, with high
probability, the total variation distance between qV̂ (·, h) and
the empirical distribution over visited states at step h is small
for every h. We prove this inductively.

Consider a sequence of BW visits to a pair (x, h), where
W runs of B are completed. For each run of B, the number
of visits to a given pair (x′, h + 1) is a random variable
in [0, B] with mean B · pV̂ (x′;x, h), determined by the
randomness of each player’s copy of B as well as the game.
For such a pair (x′, h+ 1), let Xi denote the [0, 1] scaling
of this random variable for the ith of the W runs, which
has mean pV̂ (x′;x, h), and let X =

∑W
i=1Xi. Each run is

independent and so by Hoeffding’s inequality,

Pr

[
|X − E[X]| ≤ 2Wε′

S

]
≤ 2 exp

(
−8W (ε′)2/S2

)
which is at most δ

′

S if W ≥ S2 log(2S/δ′)
8(ε′)2 . This holds for all

states x′ with probability 1− δ′ by a union bound, at which
point we have that the empirical visitation frequency for
every state x′ is within ±2ε′/S of pV̂ (x′;x, h), implying
that the total variation distance is at most ε′.

Let ε′ = ε
32SH3 . We have that W ≥ W1 =

128S4H6 log(2S/δ′)
ε2 , and the empirical transition distribu-

tion for a window of BW steps at a state (x, h) has



total variation distance with qV̂ (·;x, h) at most ε
32SH3

with probability at least 1 − δ′. Recall that δ′ ≤
εδ

192SH4((S+1)H+1)·max(S,4H7/ε)
= δBW

3LH((S+1)H+1)
; there

are LH total steps in each epoch, which fall into at most
LH
BW completed windows of length BW , and so the above
holds for all windows in an epoch with probability at least
1− δ

3((S+1)H+1)
by a union bound. The bound then holds

for every pair and epoch with probability at least 1− δ/3.

Using bounds on the empirical outgoing visitation distribu-
tions for each pair which is visited sufficiently often, we
can obtain a bound on the total variation distance between
qV̂ and the empirical visitation distribution over the epoch
at each step, by Lemma 3. All but at most 2SWB of the
steps fall into separate but contiguous windows of length
WB, as there can be at most two “incomplete” windows (at
the start and end) for each state where we cannot apply the
above analysis. Observe that accounting for these unfinished
windows increases the total variation distance between qV̂
and the empirical visitation distribution by at most ε

32SH3 if
2SWB
L ≤ ε

32SH3 , as this bounds the fraction of trajectories
in which our original bound does not apply. This is the case
when L ≥ 64S2H3W1B

ε . It follows that the total variation
distance between qV̂ and the empirical visitation distribu-
tion increases by at most ε

16SH3 for each step in [H]. If the
total variation distance with qV̂ (·, h) is at most εh

16SH3 at
each step, then any state with qV̂ (x, h) · L expected visits
gets at least

(
qV̂ (x, h)− εh

16SH3

)
· L visits.

Each state with qV̂ (x, h) ≥ ε
8H2 is therefore visited

at least ε
16SH2 · L times when the above events hold.

States are locked after 16H2WB
ε visits; as such, if L ≥

max
(

64S2H3W1B
ε , 256SH4WB

ε2

)
all states with qV̂ (x, h) ≥

ε
8SH2 are visited enough to be locked in the epoch.

We now have that if a state has mass at least ε
8SH2 under qV̂ ,

it will be visited frequently enough to be locked in the epoch
corresponding to value estimates V̂ , with high probability.
Contrapositively, when this holds it implies that if a state is
unlocked (but not reset) after the termination of an epoch, it
must have had small mass under qV̂ for that epoch.

Let Uh = {x | (x, h) is unlocked at termination}. We can
then use a similar inductive argument (Lemma 6) to show
that unlocked states have small mass under qD at termina-
tion. An important step here is in bounding the total variation
distance with pV̂ (·;x, h), which we do in Lemma 5.

Lemma 5. Let DW,V̂ (x, h) be a set of action profiles at
a pair (x, h) generated by W completed runs of B for all
players.With probability at least 1− δ′, the total variation
distance between pV̂ (·;x, h) and (transition distribution
given a ∼ DW,V̂ (x, h)) is at most ε

32SH3 .

Proof. Each run of B generates a sequence of action pro-
files; for each action profile, there’s some fixed probability
that a state x′ will be visited next. Whether or not this state
is actually visited is a [0, 1] random variable with some ex-
pected value. The number of realized visits to x′ versus the
expected number of visits given the action profile can be ex-
pressed as a martingale, and as such the expectation over pro-
file generation and transition function resampling is equal to
the expected number of visits. Note that this number of vis-
its to x′ in a run of B is itself a random variable with mean
B · pV̂ (x′;x, h). and so E[pD,W (x′;x, h)] = pV̂ (x′;x, h).
We can then apply the same concentration analysis as in
Lemma 4 to give us that the total variation distance be-
tween pD,W (·;x, h) and pV̂ (·;x, h) is at most ε

32SH3 with
probability 1− δ′.

We now have that Lemma 4 and Lemma 5 hold for every
window across all epochs with probability at least 1− 2δ/3
by a union bound. The union-bound analysis for when
Lemma 5 holds for all epochs and pairs is equivalent to
that for Lemma 4.

Lemma 6. When the algorithm terminates, with probability
at least 1− 2δ

3 , for each step h
∑
x∈Uh qD(x, h) ≤ εh

4H .

Proof. When all events for events for Lemma 4 occur for all
epochs (at most (S + 1)H + 1), any state which is unlocked
and not reset after the end of an epoch must have qV̂ (x, h) ≤
ε

8SH2 for the corresponding qV̂ . For the final epoch and its
set of value estimates for all agents V̂ , this means that any
unlocked state (x, h) has qV̂ (x, h) ≤ ε

8SH2 at termination,
and so

∑
x∈Uh qV̂ (x, h) ≤ ε

8H2 for each h.

Immediately we have that the lemma holds for all pairs
(x, 1), as their probabilities are defined identically under qD
and qV̂ .

From Lemma 5, we can see that for every locked state
(x, h), we have that dTV (pV̂ (·;x′, h), pD(·;x′, h)) ≤ ε

8H2 .
Because we complete 16H2W

ε runs of B before locking any
state, the total variation distance between pD(·;x, h) and
pV̂ (·;x, h) is at most ε

32SH3 + ε
16H2 ≤ ε

8H2 , assuming
worst-case total variation distance for the final sequence
of up to BW trajectories for which our bound does not
apply. Further, each unlocked state has mass at most ε

8SH2

under qV̂ . We can bound the total variation distance between
qD and qV̂ at each step in terms of earlier steps as well as
the distance from pV̂ for each pair’s outgoing transition
distribution using Lemma 3.

Expanding out, we can explicitly bound the total vari-
ation distance at each step, using the fact that the dis-
tributions are identical for h = 1. With dhq,V,D =



dTV (qV̂ (·, h), qD(·, h)):

dh
q,V̂ ,D

≤
h−1∑
j=1

∑
x′∈X

qV̂ (x′, j) · dTV (pV̂ (·;x′, j), pD(·;x′, j))

≤
h−1∑
j

 ∑
x′∈Uj

qV̂ (x′, j) +
∑

x′∈X \Uj

qV̂ (x′, j) · ε

8H2


≤

h−1∑
j

( ε

8H2
+

ε

8H2

)
=
ε(h− 1)

4H2
.

Applying this to our bound on the mass of unlocked states
under qV̂ completes the proof of the lemma:∑
x∈Uh

qD(x, h) =
∑
x∈Uh

qV̂ (x, h) +
∑
x∈Uh

qD(x, h)− qV̂ (x, h)

≤ ε

8H2
+ dTV (qV̂ (·, h), qD(·, h))

≤ εh

4H2
.

We conclude by bounding the regret when agents play ac-
cording to D. First we analyze the regret each agent playing
according to D under the assumption that all agents receive
the maximal reward H − h + 1 for the remainder of the
trajectory upon reaching a state in Uh. We show that this is
small, and that it does not increase by much upon correcting
for the unlocked states.

It will be convenient for us to consider regret with respect
to function classes Fhi : Ai×X ×[h, . . . ,H]→ Ai, which
we deem Fh-regret. This is in [0, H − h+ 1] denoting the
maximum possible downstream per-trajectory improvement
by a swap function which only changes behavior in steps
h and onwards. Because we complete at least W runs of
B before locking each state, we can apply the guarantees
of Corollary 3.1, where B = B

(
ε

16H , N
)

and η = ε
16H2

at each pair, which holds simultaneously for all pairs and
players with probability 1− δ/3 by a union bound, giving
us a total failure probability of at most δ. For pairs at step
H , which are equivalent to games with stochastic rewards,
this gives us that

• the “local” FH -regret for a pair (x,H) is at most ε
4H +

ε
32H2 , and

• the estimated value is within ε
16H2 of the true expected

average value of running the bandit algorithm at that
pair.

For steps h < H these hold as well, but scaled by a factor
of H − h+ 1, under the assumption that estimates of pair

values reflect the true expected value of being at that pair.
The corresponding distribution over reward tensors for the
implicitly represented game with stochastic rewards can
be obtained by taking the product distribution over tran-
sition functions and reward tensors, then converting each
transition-reward pair to a tensor by adding each players’
value estimates for visited states at the next step to their
utility (recall that rewards and transitions are independent).
We will later account for this estimation error.

For every pair, there can be up to W runs of B at termina-
tion for which this bound doesn’t hold, but otherwise we
can average the contiguous sequences of W and apply the
same bounds for value and regret. Because we complete at
least 16WH2

ε runs of B before locking a state, even assum-
ing maximal average regret for this subsequence, the total
average regret increases by at most ε

16H2 . The same error
bound applies to value estimates.

We can then show that computed value estimates will not
be far from the true expected downstream utility of that
state when all agents play the correlated equilibrium. If we
can bound the estimation error for downstream pairs at step
h+ 1, the estimation error at step h is bounded by the sum
of the “local” and downstream error. We let d(j) denote this
bound for locked pairs (x,H − j + 1):

d(1) ≤ ε

8H2
,

d(j) ≤ εj

8H2
+ d(j − 1)

=

j∑
i=1

εi

8H2

=
j(j + 1)

2
· ε

8H2

We can also bound the regret of the distribution in a simi-
lar manner. Suppose each value estimate downstream from
some pair (x, h) was exactly accurate, and each such down-
stream subgame had no regret; then the local regret (from
the copy of B) constitutes the entire subgame regret. Re-
gret increases by at most twice the downstream error bound
(recall we are assuming for now that this bound applies to
locked and unlocked states), as this bounds the amount that
any pair of swap functions f, f ′ ∈ Fh (including I) can
deviate in the difference of their utilities when considering
average reward from playing the game according to the spec-
ified action distributions. Finally, we add the downstream
regret. As such, the following expression bounds the total
regret at a pair:

(x, h) regret ≤ local regret + 2× downstream error
+ downstream regret

Here, all terms are defined with respect to the resulting
distribution of profiles and the true distribution over rewards
and transitions the game. We let r̂(j) denote the total regret



(under qD, assuming maximal reward from unlocked states)
at a pair at step j = H − j + 1 and let `(j) denote the local
regret. For each, we have that

`(j) = j
( ε

4H
+ 2 · ε

16H2

)
and so total regret is bounded by

r̂(j) ≤ `(j) + 2d(j − 1) + r̂(j − 1)

= `(j) +

j−1∑
i=1

`(i) + 2d(i)

≤ j
( ε

4H
+

ε

8H2

)
+

j−1∑
i=1

i

(
ε

4H
+

ε

8H2
+

(i+ 1) ε

8H2

)

≤ (j + j2/2)
( ε

4H
+

ε

8H2

)
+

j−1∑
i=1

(i2 + i) ε

8H2

≤ (j + j2/2)
( ε

4H
+

ε

8H2

)
+

j3ε

24H2
.

For j = H , corresponding to the regret bound for each state
at step 1, we have that

r̂(H) ≤ (H +H2/2)
( ε

4H
+

ε

8H2

)
+
εH

24

≤ ε

4
+

ε

16
+
εH

8
+

ε

8H
+
εH

24
.

All of the (maximal) value estimates for unlocked states are
overestimates; because no swap function can improve aver-
age expected utility by more than the above bound before
correcting for unlocked states, we can use the frequency
of unlocked states to bound the true regret. If all unlocked
states at step h have

∑
x∈Uh qD(x, h) ≤ hε

4H2 , their contri-
bution to the average regret of D is bounded by

H∑
h=1

(H − h+ 1)
h ε

4H2
=
H(H + 1)(H + 2)

6
· ε

4H2

≤ εH

4
.

Adding in the maximal contributions from unlocked states,
we have that

r(H) ≤ ε

4
+

ε

16
+
εH

8
+

ε

8H
+
εH

24
+
εH

4
≤ 0.855εH

for all ε ≤ 1 andH ≥ 1. As this bound holds simultaneously
at each pair (x, 1) for all players, and captures the expected
regret over an entire trajectory when players play according
to D, the average F -regret per step of the game is less than
ε. Thus, the policy distribution constitutes an ε-EFCE for
the game.

A.5 ANALYSIS FOR FAST PLL

We restate the description of FastPLL with L given pre-
cisely.

Algorithm 4: Fast PLL. Let B = B
(
ε

8H , N
)
, and the

epoch length (in trajectories) be given by

L ≥

√
log(2SH/δ) +

1024BH4γ log( 10SHM
δ )

ε2

4γ2

+
log(2SH/δ) +

512BH4γ log( 10SHM
δ )

ε2

4γ2
.

Run H epochs, one corresponding to each step (beginning
with step H) as follows:

• Epoch for Step h: Use a copy of B to select actions at
each pair (x, h), augmenting rewards with computed
values for pairs (x′, h+ 1) transitioned to for the next
step (if h < H). At the end of the epoch, let V̂ Bi (x, h)
be the average reward received from all completed runs
of B.

• Upstream (h′ < h): Select actions uniformly at ran-
dom for each pair.

• Downstream (h′ > h): Use B at each signal as in
the epoch for step h′, augmenting rewards with value
estimates for pairs transitioned to. Restart B after every
B rounds in which it is used, which can include rounds
from a prior epoch.

Restatement of Theorem 6. After Algorithm 3 termi-
nates, for each pair (x, h), consider the uniform distribution
over action profiles D(x, h) played since epoch H − h+ 1
began. Let D be the distribution over policy profiles where
the action profile for each pair (x, h) is sampled indepen-
dently from D(x, h). With probability at least 1 − δ, D is
an ε-correlated equilibrium for the game.

Lemma 7. With probability at least 1 − δ/2, every state

x is visited at step h at least
128BH4 log( 10SHM

δ )
ε2 times in

epoch H − h+ 1.

Proof. Fix some pair (x, h). Let X =
∑L
i=1Xi be a sum

of indicator random variables denoting the number of times
(x, h) is visited in epoch H − h + 1. By the fast-mixing
assumption, E [X] ≥ γL. For L as specified, we have that

γL−
√
L log(2SH)

2
≥

128BH4 log
(

10SHM
δ

)
ε2

by the quadratic formula. By Hoeffding’s inequality, with



Y being the event where X ≤ 128BH4 log( 10SHM
δ )

ε2 :

Pr [Y ] = Pr

[
E[X]−X ≥ E[X]−

128BH4 log
(

10SHM
δ

)
ε2

]

≤ Pr

[
E[X]−X ≥ γL−

128BH4 log
(

10SHM
δ

)
ε2

]

≤ Pr

[
E[X]−X ≥

√
L log(2SH/δ)

2

]
≤ exp (− log(2SH/δ))

≤ δ

2SH
,

and the lemma follows from union-bounding over all pairs.

Proof of Theorem 6. First we see that after epoch 1, the
value estimates V̂i(x,H) are within B( ε

8H , N) Let η =
ε /8H2. From Lemma 7, each pair is visited at least
128BH4 log( 10SHM

δ )
ε2 times in its corresponding epoch with

probability at least 1− δ/2. When this holds, we can apply
the guarantees of Corollary 3.1, whereB = B

(
ε

8H , N
)

and
η = ε

8H2 at each pair, which holds simultaneously for all
pairs and players with probability 1− δ/2 by a union bound,
giving us a total failure probability of δ. For pairs at step H ,
which are equivalent to games with stochastic rewards, this
gives us that

• the “local” FH -regret for a pair (x,H) is at most ε
2H +

ε
16H2 , and

• the estimated value is within ε
8H2 of the true expected

average value of running the bandit algorithm at that
pair.

Again for steps h < H these hold as well, scaled by a factor
of H − h+ 1, under the assumption that estimates of pair
values reflect the true expected value of being at that pair.
We will account for this estimation error below.

Note that we can take these bounds to hold after all epochs
terminate rather than simply the corresponding epoch. This
is because neither the algorithm nor downstream values
change for each step in future epochs once its value is com-
puted. This ignores the sole possibly truncated run of B
when the final epoch terminates. Assuming maximal av-
erage regret for this subsequence, the total average regret
increases by at most ε2

128H4 log( 10SHM
δ )

≤ ε2

128H4 given the

number of resets of B per epoch. The same error bound
applies to value estimates.

We can then show that computed value estimates will not
be far from the true expected downstream utility of that
state when all agents play the correlated equilibrium. If we
can bound the estimation error for downstream pairs at step

h+ 1, the estimation error at step h is bounded by the sum
of the “local” and downstream error. We let d(j) denote this
bound for pairs (x,H − j + 1):

d(1) ≤ ε

8H2
+

ε2

128H4

d(j) ≤ εj

8H2
+

ε2j

128H4
+ d(j − 1)

=

j∑
i=1

εi

8H2
+

ε2i

128H4

=
j(j + 1)

2
·
(

ε

8H2
+

ε2

128H4

)
≤ j2

(
ε

8H2
+

ε2

128H4

)

We can also bound the regret of the distribution in a similar
manner. As in the proof of Theorem 5, the total regret at a
pair can be bounded as:

(x, h) regret ≤ local regret + 2× downstream error
+ downstream regret

Here, all terms are defined with respect to the resulting
distribution of profiles and the true distribution over rewards
and transitions for the game. We let r(j) denote the total
regret at a pair at step j = H − j + 1 and let `(j) denote
the local regret. For each, we have that

`(j) ≤ j
(

ε

2H
+

ε

16H2
+

ε2

128H4

)
and so total regret is bounded by

r(j) ≤ `(j) + 2d(j − 1) + r(j − 1)

= `(j) +

j−1∑
i=1

`(i) + 2d(i)

≤ j
(

ε

2H
+

ε

16H2
+

ε2

128H4

)
+

j−1∑
i=1

i

(
ε

2H
+

ε

16H2
+

ε i

4H2
+

(2i+ 1)ε2

128H4

)
≤ (j + j2/2)

(
ε

2H
+

ε

16H2
+

ε2

128H4

)
+

j−1∑
i=1

(
ε i2

4H2
+

ε2i2

64H4

)
≤ (j + j2/2)

(
ε

2H
+

ε

16H2
+

ε2

128H4

)
+
j3

3

(
ε

4H2
+

ε2

64H4

)



For j = H , corresponding to the regret bound for each state
at step 1, we have that

r(H) ≤ (H +H2/2)

(
ε

2H
+

ε

16H2
+

ε2

128H4

)
+
H3

3

(
ε

4H2
+

ε2

64H4

)
≤ ε

2
+

ε

32
+
εH

4
+
εH

12
+

ε

16H

+
ε2

192H
+

ε2

256H2
+

ε2

128H3

≤ 0.945εH.

As this bound holds simultaneously at each pair (x, 1) for
all players, and captures the expected regret over an entire
trajectory, the averageF1-regret (equivalent toF -regret) per
step of the game is less than ε. Thus, the policy distribution
constitutes an ε-correlated equilibrium for the game.

A.6 ANALYSIS FOR SINGLE-CONTROLLER
STOCHASTIC GAMES

Restatement of Theorem 7. With probability at least 1−δ,
the uniform distribution over the sequence of policy profiles
played by Algorithm 4 is an ε-NFCCE for the game.

Proof of Theorem 7. The theorem follows directly from
Lemma 8 and Lemma 9.

Lemma 8. After T ≥ 8BL(ε/8) log(M/δ)
ε2 trajectories, the

controller has average regret εH per trajectory with proba-
bility at least 1− δ/M .

Proof of Lemma 8. Consider the sampled reward tensors
(for every pair) in each trajectory. When all followers select
policies in this trajectory, the current task for the controller
is equivalent to an MDP (consider the fixed distribution
of transitions for each action, identical across trajectories,
defined by p). The task for the controller is equivalent to that
of optimizing over MDPs with unknown but fixed transitions
and adversarial losses; an expected per-trajectory regret
bound of εH/8 for the policy class follows from Theorem
7.2 of Rosenberg and Mansour [2019] with the appropriate
polynomial runtime (obtainable from inverting their regret
bound), holding with respect to the set of tensors sampled
in that round. Their state count corresponds to SH in our
setting, as they assume a “loop-free” episodic MDP, which
can be created from any MDP with an increase by a factor
of at most H for the state space.

As we saw in the analysis of Theorem 3, we can again
view the performance difference for each policy on the
realized and expected sequence of sets of reward tensors
as a martingale — given opponent policies, the reward re-
ceived in the trajectory by any policy is a random variable.

If T ≥ 128(SH log(N)+log(16/ε))
ε2 , then by Azuma-Hoeffding

the probability that a policy’s per-step reward deviates more
than ε

8 from expectation is at most ε
8NSH

. As in the analysis
of Theorem 3, by chaining deviation bounds and union-
bounding over all NSH policies, it then follows that the
expected policy regret for the sequence of policy profiles,
given the distribution of rewards and transitions at each
state, is at most ε/2. Given the runtime of Shifted Bandit
U-CO-REPS, T is sufficiently large for this to hold extend-
ing the runtime as we did in Theorem 3. As such, for the
policy sequence over BL(ε/8) the expected average per-step
regret for the controller when sampling reward tensors and
transition functions independently at each state is at most
ε/2.

Again, this is boosted to ε average regret with probabil-
ity 1 − δ

M after repeating for 8 log(M/δ)
ε2 such sequences,

at which point the average regret is at most 3ε
4 with prob-

ability at least 1 − δ
M by Hoeffding’s inequality. If T is

some arbitrary fixed (but sufficiently large) number of tra-
jectories, there may be at most one run of length BL(ε/8)
which is incomplete, in that we cannot apply the above
analysis; however, even assuming maximum regret across
this sequence, the total average regret increases by at most

ε2

8 log(M/δ) < ε/4, completing the proof.

Lemma 9. After T ≥ 8BF ( ε8 ) log(M/δ)

ε2 trajectories, every
follower has average swap regret across all pairs of at most
εH per trajectory with probability at least 1− δ(M−1)

M .

Proof of Lemma 9. Followers run copies of Bayesian game
algorithmBS in parallel at each step, and the analysis largely
follows from that in Appendix A.3. The key ideas are to
observe that regret can be decomposed stepwise (any devia-
tions cannot affect transitions), and that we did not explicitly
need the distribution over signals to be static in a Bayesian
game, so long as our notion of regret tracks this shifting dis-
tribution. The analysis of BS in Theorem 2 carries through
directly if we consider a sequence of distributions over states
and we aim for small regret with respect to this sequence, as
we can equivalently define martingales to track deviations
from expectation for each swap function at each step. As
such, after B( ε

8S , N) trajectories, the local expected per-
step regret is at most ε

2 at each step with respect to the
distribution over states induced by opponents’ policies at
that step. As swap regret bounds traditional regret and fol-
lowers’ actions don’t affect transitions, the expected average
regret per trajectory is at most εH2 , holding with respect to
the randomness in the game. Concentration analysis and
handling truncation of a final sequence is equivalent to that
in Lemma 8, and we union-bound over the M − 1 follow-
ers.



A.7 ANALYSIS OF SIMULTANEOUS NO-REGRET
WITH SHARED RANDOMNESS

Restatement of Theorem 8 With respect to F , PLL-SR
has regret Õ(T

6
7 ) and FastPLL-SR has regret Õ(T

4
5 ).

Proof of Theorem 8. Let TPLL denote the maximum run-
time of PLL (in steps), calibrated for an ε1-EFCE. Our

choice of ε1 = Θ̃

(
7

√
N3SO(H)

T

)
is calibrated such that

TPLL + ε1(T − TPLL) = Õ(T
6
7 ). Each step after termina-

tion is equivalent to playing according to the equilibrium
PLL generates, as we are sampling action profiles indepen-
dently across timesteps using the shared randomness (we
can use the same random string to select actions at non-
visited states at that step for the purposes of defining a full
policy sequence). Assuming a maximum per-step regret of 1
during the runtime of PLL (we can consider arbitrary “poli-
cies” for that window at pairs not visited in those trajectories,
as PLL only chooses an action for visited pairs) and apply-
ing Theorem 5 to bound the regret for the remainder gives
us the result for PLL-SR. The analysis for FastPLL-SR is
symmetric.
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