An Optimization and Generalization Analysis for Max-Pooling Networks Supplementary Material

Alon Brutzkus
Amir Globerson ${ }^{1}$
${ }^{1}$ The Blavatnik School of Computer Science, Tel Aviv University

A CONVERGENCE RATES FOR THEOREM 5.1

In Ji and Telgarsky [2019], Theorem 4.2, they show the following for logistic regression initialized at zero and a certain learning rate schedule. The margin of the learned classifier is $\frac{\gamma}{2}$ where γ is the max-margin after $O\left(\frac{1}{\gamma^{2}}\right)$ iterations ${ }^{1}$ They show this for normalized points with norm 1. In our case (see the proof of Theorem 5.1 , the max margin after normalizing the points to have norm 1, is $\frac{1}{\sqrt{d}}$. Thus, under their assumptions, after $O(d)$ iterations we converge to a solution whose margin is a $\frac{1}{2}$-multiplicative approximation of the max margin. Therefore, we obtain for this solution, up to a constant, the same generalization guarantees as the max margin classifier (which we provide in the theorem).

B PROOF OF LEMMA 5.2

By definition of the initialization we have $\mathbb{P}\left(i \in \mathcal{A}^{+}\right)=\frac{1}{2}$. Furthermore, we have that $\mathbb{P}\left(i \in \mathcal{W}_{0}^{+}\right)=\frac{\left(1-2^{-d+1}\right)}{d-1}$. This follows, since with probability 2^{-d+1}, for all $\boldsymbol{o} \in \mathcal{O} \backslash\{2\}, \boldsymbol{w}_{i}^{(0)} \cdot \boldsymbol{o} \leq 0$. On the other hand, with probability $\left(1-2^{-d+1}\right)$, there exists at least one $\boldsymbol{o} \in \mathcal{O} \backslash\{2\}$ such that $\boldsymbol{w}_{i}^{(0)} \cdot \boldsymbol{o}>0$. Assume we condition on the latter event. Then, we get by symmetry that \boldsymbol{o}_{1} maximizes the dot product with $\boldsymbol{w}_{i}^{(0)}$, among patterns in $\mathcal{O} \backslash\{2\}$, with probability $\frac{1}{d-1}$.
By independence of W_{0} and $\boldsymbol{a}^{(0)}$, we have: $\mathbb{P}\left(i \in \mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}\right)=\frac{\left(1-2^{-d+1}\right)}{2(d-1)}$. Then, by Hoeffding's inequality we get:

$$
\begin{align*}
\mathbb{P}\left(\left|\frac{\left|\mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}\right|}{k}-\frac{\left(1-2^{-d+1}\right)}{2(d-1)}\right|>\frac{1}{4 d}\right) & \leq 2 e^{-2 k\left(\frac{1}{4 d}\right)^{2}} \\
& \leq 2 e^{-d} \tag{1}
\end{align*}
$$

where in the last inequality we used the assumption on k. Since $\frac{\left(1-2^{-d+1}\right)}{2(d-1)} \geq \frac{1}{2 d}$ and $\frac{\left(1-2^{-d+1}\right)}{2(d-1)} \leq \frac{1}{d}$ for $d \geq 3$, we get that with probability at least $1-2 e^{-d},\left|\mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}\right| \geq \frac{\left(1-2^{-d+1}\right) k}{2(d-1)}-\frac{k}{4 d} \geq \frac{k}{4 d}$ and $\left|\mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}\right| \leq \frac{\left(1-2^{-d+1}\right) k}{2(d-1)}+\frac{k}{4 d} \leq \frac{k}{d}$. By the symmetry of our problem and definitions of the sets $\mathcal{W}_{0}^{+}, \mathcal{W}_{0}^{-}, \mathcal{A}^{+}, \mathcal{A}^{-}$, we similarly get that with probability at least $1-2 e^{-d}$, $\frac{k}{4 d} \leq\left|\mathcal{W}_{0}^{-} \cap \mathcal{A}^{-}\right| \leq \frac{k}{d}$. Applying the union bound concludes the proof.

C PROOF OF LEMMA 5.3

We first prove the following two auxiliary lemmas.
Lemma C.1. For all $0 \leq t \leq T_{1}$ and all $1 \leq i \leq k,\left\|\boldsymbol{w}_{i}^{(t)}\right\| \leq \eta_{1}(t+1)$.

[^0]Proof. First we notice that for all $1 \leq i \leq k,\left\|\frac{\partial \mathcal{L}_{1}}{\partial \boldsymbol{w}_{i}}\left(W, \boldsymbol{a}^{(0)}\right)\right\| \leq 1$. This follows since for all $1 \leq j \leq n$ and all $\boldsymbol{x} \in S_{1}$, $\|\boldsymbol{x}[j]\|=1$ (recall that $\|\boldsymbol{o}\|=1$ for $\boldsymbol{o} \in \mathcal{O}$).
Therefore, for all $0 \leq t \leq T_{1}$ and $1 \leq i \leq k,\left\|\boldsymbol{w}_{i}^{(t)}\right\| \leq r+\eta_{1} t \leq \eta_{1}(t+1)$.
Lemma C.2. For all $\boldsymbol{x} \in S_{1}$ and $0 \leq t \leq T_{1}\left|N_{\mathrm{CNN}}\left(\boldsymbol{x} ;\left(W^{(t)}, a^{(0)}\right)\right)\right| \leq \frac{1}{2}$.
Proof. By LemmaC. 1 we have for all $\boldsymbol{x} \in S_{1}$:

$$
\begin{aligned}
\left|N_{\mathrm{CNN}}\left(\boldsymbol{x} ;\left(W^{(t)}, a^{(0)}\right)\right)\right| & =\left|\sum_{i=1}^{k} a_{i}^{(0)}\left[\max _{j}\left\{\sigma\left(\boldsymbol{w}_{i}^{(t)} \cdot \boldsymbol{x}[j]\right)\right\}\right]\right| \\
& \leq k \max _{1 \leq i \leq k}\left\|\boldsymbol{w}_{i}^{(t)}\right\| \max _{1 \leq j \leq n}\|\boldsymbol{x}[j]\| \\
& \leq k \eta_{1}(t+1) \\
& \leq \frac{1}{2}
\end{aligned}
$$

where the last inequality follows by the assumption on η_{1}.
Lemma 5.3 follows by the following lemma.
Lemma C.3. With probability at least $1-4 e^{-\frac{m}{36}}$, for all $0 \leq t \leq T_{1}$ and all $i \in \mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}$the following holds:

1. $\boldsymbol{o}_{1} \cdot \boldsymbol{w}_{i}^{(t)} \geq \frac{t \eta_{1}}{9}$.
2. For all $j \neq 1$, it holds that $\boldsymbol{o}_{j} \cdot \boldsymbol{w}_{i}^{(t)} \leq r$.

Proof. We will prove the claim for $i \in \mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}$. We prove the two claims by induction on t. In the proof by induction we also show a third claim that: for all $\boldsymbol{x}_{+} \in S_{1}^{+}, \boldsymbol{p}_{t}^{(i)}\left(\boldsymbol{x}_{+}\right)=\boldsymbol{o}_{1}$.

For the proof, we condition on the event:

$$
\begin{equation*}
\frac{\left|S_{1}^{+}\right|}{m_{1}}, \frac{\left|S_{1}^{-}\right|}{m_{1}} \geq \frac{m_{1}}{3} \tag{2}
\end{equation*}
$$

This holds with probability at least $1-4 e^{-\frac{m}{36}}$ by applying Hoeffding's inequality and a union bound (over positive and negative samples).
For $t=0$, we have by definition for all $i \in \mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}, \boldsymbol{o}_{1} \cdot \boldsymbol{w}_{i}^{(t)}>0$. The second claim holds by the definition of the initialization. The third claim follows by the definition of $\mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}$.
Assume the three claims above hold for $t=T$. We will prove them for $t=T+1$.
Proof of Claim 1. By the gradient update in the first layer, the following holds for $i \in \mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}$:

$$
\begin{align*}
\boldsymbol{w}_{i}^{(T+1)} & =\boldsymbol{w}_{i}^{(T)}-\frac{\eta_{1}}{m_{1}} \sum_{\boldsymbol{x}_{+} \in S_{1}^{+}} \ell^{\prime}\left(N_{\mathrm{CNN}}\left(\boldsymbol{x}_{+} ;\left(W^{(T)}, a^{(0)}\right)\right)\right) \boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{+}\right) \\
& +\frac{\eta_{1}}{m_{1}} \sum_{\boldsymbol{x}_{-} \in S_{1}^{-}} \ell^{\prime}\left(-N_{\mathrm{CNN}}\left(\boldsymbol{x}_{-} ;\left(W^{(T)}, a^{(0)}\right)\right)\right) \boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{-}\right) \tag{3}
\end{align*}
$$

where $l^{\prime}(z)=-\frac{1}{1+e^{z}}$ is the derivative of the logistic loss. Note that for all $z,\left|\ell^{\prime}(z)\right| \leq 1$. Therefore, for all $\boldsymbol{x}_{-} \in S_{1}^{-}$, we have:

$$
\begin{equation*}
\left|\ell^{\prime}\left(-N_{\mathrm{CNN}}\left(\boldsymbol{x}_{-} ;\left(W^{(T)}, a^{(0)}\right)\right)\right)\right| \leq 1 \tag{4}
\end{equation*}
$$

By LemmaC. 2 we have for all $\boldsymbol{x} \in S_{1}\left|N_{\mathrm{CNN}}\left(\left(;\left(W^{(t)}, a^{(0)}\right)\right) \boldsymbol{x}\right)\right| \leq \frac{1}{2}$. Therefore, for all $\boldsymbol{x}_{+} \in S_{1}^{+}$:

$$
\begin{equation*}
\left|\ell^{\prime}\left(N_{\mathrm{CNN}}\left(x_{+} ;\left(W^{(T)}, a^{(0)}\right)\right)\right)\right| \geq \frac{1}{1+\sqrt{e}} \geq \frac{1}{3} \tag{5}
\end{equation*}
$$

By the induction hypothesis, we have for $i \in \mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}$and all $\boldsymbol{x}_{+} \in S_{1}^{+}$that $\boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{+}\right)=\boldsymbol{o}_{1}$. Therefore we have:

$$
\begin{equation*}
\boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{+}\right) \cdot \boldsymbol{o}_{1}=1 \tag{6}
\end{equation*}
$$

For all $\boldsymbol{x}_{-} \in S_{1}^{-}$, we have $\boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{-}\right)=\boldsymbol{o}_{j}$ for $j \neq 1$ that depends on \boldsymbol{x}_{-}. Therefore:

$$
\begin{equation*}
\boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{-}\right) \cdot \boldsymbol{o}_{1}=0 \tag{7}
\end{equation*}
$$

By the facts above we complete the proof of the first claim:

$$
\begin{align*}
\boldsymbol{w}_{i}^{(T+1)} \cdot \boldsymbol{o}_{1} & \underset{\mathrm{Eq} \cdot \frac{\geq 3 \mid 5}{}}{ } \boldsymbol{w}_{i}^{(T)} \cdot \boldsymbol{o}_{1}+\frac{\eta_{1}}{3 m_{1}} \sum_{\boldsymbol{x}_{+} \in S_{1}^{+}} \boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{+}\right) \cdot \boldsymbol{o}_{1} \\
& -\frac{\eta_{1}}{m_{1}} \sum_{\boldsymbol{x}_{-} \in S_{1}^{-}} \boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{-}\right) \cdot \boldsymbol{o}_{1} \\
& \quad \frac{\geq}{\mathrm{Eq} \cdot \frac{2|6| 7}{\boldsymbol{w}_{i}^{(T)}} \cdot \boldsymbol{o}_{1}+\frac{\eta_{1}}{9}} \\
& \geq \frac{(T+1) \eta_{1}}{9} \tag{8}
\end{align*}
$$

where the last inequality follows from the induction hypothesis.
Proof of Claim 2. Since for all $\boldsymbol{x}_{+} \in S_{1}^{+}, \boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{+}\right)=\boldsymbol{o}_{1}$ we have for all $1 \leq j \leq d, j \neq 1$:

$$
\begin{equation*}
\boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{+}\right) \cdot \boldsymbol{o}_{j}=0 \tag{9}
\end{equation*}
$$

By the facts (1) for all $\boldsymbol{x}_{-} \in S_{1}^{-}$and $j \neq 1$ it holds that $\boldsymbol{p}_{T}^{(i)}\left(\boldsymbol{x}_{-}\right) \cdot \boldsymbol{o}_{j} \geq 0$ and (2) $l^{\prime}(z)<0$ for all z, we have:

$$
\begin{equation*}
\frac{\eta_{1}}{m_{1}} \sum_{\boldsymbol{x}_{-} \in S_{1}^{-}} \ell^{\prime}\left(-N_{\mathrm{CNN}}\left(\left(;\left(W^{(T)}, a^{(0)}\right)\right) \boldsymbol{x}_{-}\right)\right) \boldsymbol{p}_{T}^{(i)}(\boldsymbol{x}) \cdot \boldsymbol{o}_{j} \leq 0 \tag{10}
\end{equation*}
$$

Therefore we have for $j \neq 1$:

$$
\begin{equation*}
\boldsymbol{w}_{i}^{(T+1)} \cdot \boldsymbol{o}_{j} \underset{\mathrm{Eq}}{\stackrel{1}{910}} \boldsymbol{w}_{i}^{(T)} \cdot \boldsymbol{o}_{j} \leq r \tag{11}
\end{equation*}
$$

where the right inequality follows by the induction hypothesis.
Proof of Claim 3. Since $r<\frac{\eta_{1}(T+1)}{9}$ we conclude by Eq. 8 and Eq. 11 that for all $\boldsymbol{x}_{+} \in S_{1}^{+}, \boldsymbol{p}_{T+1}^{(i)}\left(\boldsymbol{x}_{+}\right)=\boldsymbol{o}_{1}$.

D PROOF OF LEMMA 5.5

By Lemma C. 1 for all $1 \leq t \leq T_{1}$ and $1 \leq i \leq k,\left\|\boldsymbol{w}_{i}^{(t)}\right\| \leq \eta_{1}(t+1)$. Therefore, for all $1 \leq j \leq d$ and \boldsymbol{x} sampled from \mathcal{D}, $\boldsymbol{x}[j] \cdot \boldsymbol{w}_{i}^{(t)} \leq 2 \eta_{1} t$.

E PROOF OF PART 3 OF THEOREM 5.1

Here we condition on the events of previous lemmas which hold with probability at least $1-4 e^{-d}-4 e^{-\frac{m}{36}}$. For each \boldsymbol{x} sampled from \mathcal{D}, define $\boldsymbol{z}(\boldsymbol{x}) \in \mathbb{R}^{k}$ such that for all $1 \leq i \leq k$, its i th entry is $z_{i}(\boldsymbol{x})=\max _{j}\left\{\sigma\left(\boldsymbol{w}_{i}^{\left(T_{1}\right)} \cdot \boldsymbol{x}[j]\right)\right\}$. Notice that by Eq. 3 we have $z_{i}(\boldsymbol{x})=\boldsymbol{w}_{i}^{\left(T_{1}\right)} \cdot \boldsymbol{p}_{i}^{\left(T_{1}\right)}(\boldsymbol{x})$. Define a new distribution of points $\mathcal{D}_{\boldsymbol{z}}$ over $\mathbb{R}^{k} \times\{ \pm 1\}$, which samples a point $(\boldsymbol{z}(\boldsymbol{x}), y)$ where $(\boldsymbol{x}, y) \sim \mathcal{D}$.
Our goal is to show that \mathcal{D}_{z} is linearly separable and can be separated with a classifier of relatively low norm. Then, we will use recent results on logistic regression, which show that GD converges to low norm solutions. Therefore, by optimizing the
second layer, $\mathrm{LW}_{\mathrm{CNN}}$ will converge to a low norm solution. Finally, we will apply norm-based generalization bounds to obtain a generalization guarantee for $\mathrm{LW}_{\mathrm{CNN}}$.

First we will show that $\mathcal{D}_{\boldsymbol{z}}$ is linearly separable. Indeed define $\boldsymbol{v}^{*} \in \mathbb{R}^{k}$ as follows. For $i \in \mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}$let $\boldsymbol{v}_{i}^{*}=\frac{80 d}{k \eta_{1} T_{1}}$ and for $i \in \mathcal{W}_{0}^{-} \cap \mathcal{A}^{-}$let $\boldsymbol{v}_{i}^{*}=-\frac{80 d}{k \eta_{1} T_{1}}$. Set all other entries of \boldsymbol{v}^{*} to 0 . Then for any $\boldsymbol{z}\left(\boldsymbol{x}_{+}\right)$such that $\left(\boldsymbol{x}_{+}, 1\right) \sim \mathcal{D}$, we have:

$$
\begin{aligned}
\boldsymbol{z}\left(\boldsymbol{x}_{+}\right) \cdot \boldsymbol{v}^{*} & =\frac{80 d}{k \eta_{1} T_{1}} \sum_{i \in \mathcal{W}_{0}^{+} \cap \mathcal{A}^{+}} \boldsymbol{w}_{i}^{\left(T_{1}\right)} \cdot \boldsymbol{p}_{i}^{\left(T_{1}\right)}\left(\boldsymbol{x}_{+}\right) \\
& -\frac{80 d}{k \eta_{1} T_{1}} \sum_{i \in \mathcal{W}_{0}^{-} \cap \mathcal{A}^{-}} \boldsymbol{w}_{i}^{\left(T_{1}\right)} \cdot \boldsymbol{p}_{i}^{\left(T_{1}\right)}\left(\boldsymbol{x}_{+}\right) \\
& >\left(\frac{80 d}{k \eta_{1} T_{1}}\right)\left(\frac{k}{4 d}\right)\left(\frac{\eta_{1} T_{1}}{10}\right) \\
& -\left(\frac{80 d}{k \eta_{1} T_{1}}\right)\left(\frac{k}{d}\right)\left(\frac{\eta_{1} T_{1}}{80}\right) \\
& =1
\end{aligned}
$$

where the inequality follows by Lemma 5.2. Lemma 5.3 and Corollary 5.4 By symmetry, we have $-\boldsymbol{z}\left(\boldsymbol{x}_{-}\right) \cdot \boldsymbol{v}^{*}>1$ for all $\left(\boldsymbol{x}_{-},-1\right) \sim \mathcal{D}$.

Next, we proceed to apply Theorem 3 in Soudry et al. [2018]. It requires that $\eta_{2}<2 \beta^{-1} \sigma_{\max }^{-2}(Z) m_{2}{ }^{2}$ where β is the smoothness parameter of the logistic loss, $Z \in \mathbb{R}^{k \times m_{2}}$ is the matrix which contains $\boldsymbol{z}\left(\boldsymbol{x}_{i+\left\lceil\frac{m}{2}\right\rceil}\right)$ in its i th column and $\sigma_{\max }(Z)$ is the maximum singular value of Z. In our setting, $\beta=1$ and by Lemma $5.5 \sigma_{\max }^{2}(Z) \leq\|Z\|_{F}^{2} \leq 4 m_{2} k \eta_{1}^{2} T_{1}^{2} \leq \frac{m_{2}}{4 k}$. Thus, by our assumption $\eta_{2}<8 k \leq 2 \sigma_{\max }^{-2}(Z) m_{2}$ holds.
Therefore, by this theorem we are guaranteed that:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\boldsymbol{a}^{(t)}}{\left\|\boldsymbol{a}^{(t)}\right\|}=\frac{\hat{\boldsymbol{a}}}{\|\hat{\boldsymbol{a}}\|} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\boldsymbol{a}}=\underset{\boldsymbol{v} \in \mathbb{R}^{k}}{\arg \min }\|\boldsymbol{v}\|^{2} \text { s.t. } \forall i \quad y_{i} \boldsymbol{v} \cdot \boldsymbol{z}\left(\boldsymbol{x}_{i}\right) \geq 1 \tag{13}
\end{equation*}
$$

Specifically, gradient descent converges to zero training loss, i.e., $\lim _{T_{2} \rightarrow \infty} \mathcal{L}_{2}\left(\left(W_{T_{1}}, \boldsymbol{a}_{T_{2}}\right)\right)=0$.
By optimality of $\hat{\boldsymbol{a}}$ and Lemma 5.2 we have $\|\hat{\boldsymbol{a}}\|^{2} \leq\left\|\boldsymbol{v}^{*}\right\|^{2} \leq \frac{80^{2} d^{2}}{k^{2} \eta_{1}^{2} T_{1}^{2}} \frac{2 k}{d}=\frac{2 \cdot 80^{2} d}{k \eta_{1}^{2} T_{1}^{2}}$. Furthermore, $\|\boldsymbol{z}(\boldsymbol{x})\|^{2} \leq 4 k \eta_{1}^{2} T_{1}^{2}$ by Lemma5.5. Therefore, we have $\|\hat{\boldsymbol{a}}\|^{2}\|\boldsymbol{z}(\boldsymbol{x})\|^{2}=O(d)$. Thus, by a standard margin generalization bound (e.g. Theorem 26.13 in Shalev-Shwartz and Ben-David [2014] or Bartlett and Mendelson [2002]) we have with probability at least $1-\delta$:

$$
\begin{aligned}
& \lim _{T_{2} \rightarrow \infty} \mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left(\operatorname{sign}\left(N_{\mathrm{CNN}}\left(\boldsymbol{x} ;\left(W^{\left(T_{1}\right)}, \boldsymbol{a}^{\left(T_{2}\right)}\right)\right)\right) \neq y\right) \\
& =\mathbb{P}_{(\boldsymbol{x}, y) \sim \mathcal{D}}\left(\operatorname{sign}\left(N_{\mathrm{CNN}}\left(\boldsymbol{x} ;\left(W^{\left(T_{1}\right)}, \frac{\hat{\boldsymbol{a}}}{\|\hat{\boldsymbol{a}}\|}\right)\right)\right) \neq y\right) \\
& =O\left(\sqrt{\frac{d}{m}}\right)
\end{aligned}
$$

where O hides an additive term which depends on δ.

References

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3(Nov):463-482, 2002.

Ziwei Ji and Matus Telgarsky. A refined primal-dual analysis of the implicit bias. arXiv preprint arXiv:1906.04540, 2019.

[^1]Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):2822-2878, 2018.

[^0]: ${ }^{1} O$ hides a dependency on $\log m$.

[^1]: ${ }^{2}$ We added the factor m_{2} because Soudry et al. 2018 consider the empirical loss without dividing by the number of samples.

