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A CONVERGENCE RATES FOR THEOREM 5.1

In Ji and Telgarsky [2019], Theorem 4.2, they show the following for logistic regression initialized at zero and a certain
learning rate schedule. The margin of the learned classifier is γ

2
where γ is the max-margin after O ( 1

γ2 ) iterations.1 They
show this for normalized points with norm 1. In our case (see the proof of Theorem 5.1), the max margin after normalizing
the points to have norm 1, is 1

√
d

. Thus, under their assumptions, after O(d) iterations we converge to a solution whose

margin is a 1
2

-multiplicative approximation of the max margin. Therefore, we obtain for this solution, up to a constant, the
same generalization guarantees as the max margin classifier (which we provide in the theorem).

B PROOF OF LEMMA 5.2

By definition of the initialization we have P (i ∈ A+) = 1
2

. Furthermore, we have that P (i ∈W+
0 ) =

(1−2−d+1)

d−1
. This follows,

since with probability 2−d+1, for all o ∈ O ∖ {2}, w(0)
i ⋅ o ≤ 0. On the other hand, with probability (1 − 2−d+1), there exists

at least one o ∈ O ∖ {2} such that w(0)
i ⋅ o > 0. Assume we condition on the latter event. Then, we get by symmetry that o1

maximizes the dot product with w
(0)
i , among patterns in O ∖ {2}, with probability 1

d−1
.

By independence of W0 and a(0), we have: P (i ∈W+
0 ∩A+) =

(1−2−d+1)

2(d−1)
. Then, by Hoeffding’s inequality we get:

P
⎛
⎝

RRRRRRRRRRR

∣W+
0 ∩A+∣
k

−
(1 − 2−d+1)
2(d − 1)

RRRRRRRRRRR
> 1

4d

⎞
⎠
≤ 2e−2k(

1
4d

)
2

≤ 2e−d (1)

where in the last inequality we used the assumption on k. Since (1−2−d+1)

2(d−1)
≥ 1

2d
and (1−2−d+1)

2(d−1)
≤ 1
d

for d ≥ 3, we get that with

probability at least 1 − 2e−d, ∣W+
0 ∩A+∣ ≥

(1−2−d+1)k

2(d−1)
− k

4d
≥ k

4d
and ∣W+

0 ∩A+∣ ≤
(1−2−d+1)k

2(d−1)
+ k

4d
≤ k
d

. By the symmetry
of our problem and definitions of the sets W+

0 , W−
0 , A+, A−, we similarly get that with probability at least 1 − 2e−d,

k
4d

≤ ∣W−
0 ∩A−∣ ≤ k

d
. Applying the union bound concludes the proof.

C PROOF OF LEMMA 5.3

We first prove the following two auxiliary lemmas.

Lemma C.1. For all 0 ≤ t ≤ T1 and all 1 ≤ i ≤ k, ∥w(t)
i ∥ ≤ η1(t + 1).

1O hides a dependency on logm.
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Proof. First we notice that for all 1 ≤ i ≤ k, ∥ ∂L1

∂wi
(W,a(0))∥ ≤ 1. This follows since for all 1 ≤ j ≤ n and all x ∈ S1,

∥x[j]∥ = 1 (recall that ∥o∥ = 1 for o ∈ O).

Therefore, for all 0 ≤ t ≤ T1 and 1 ≤ i ≤ k, ∥w(t)
i ∥ ≤ r + η1t ≤ η1(t + 1).

Lemma C.2. For all x ∈ S1 and 0 ≤ t ≤ T1 ∣NCNN (x; (W (t), a(0)))∣ ≤ 1
2

.

Proof. By Lemma C.1 we have for all x ∈ S1:

∣NCNN (x; (W (t), a(0)))∣ = ∣
k

∑
i=1

a
(0)
i [max

j
{σ (w(t)

i ⋅x[j])} ]∣

≤ kmax
1≤i≤k

∥w(t)
i ∥ max

1≤j≤n
∥x[j]∥

≤ kη1(t + 1)

≤ 1

2

where the last inequality follows by the assumption on η1.

Lemma 5.3 follows by the following lemma.

Lemma C.3. With probability at least 1 − 4e−
m
36 , for all 0 ≤ t ≤ T1 and all i ∈W+

0 ∩A+ the following holds:

1. o1 ⋅w(t)
i ≥ tη1

9
.

2. For all j ≠ 1, it holds that oj ⋅w(t)
i ≤ r.

Proof. We will prove the claim for i ∈W+
0 ∩A+. We prove the two claims by induction on t. In the proof by induction we

also show a third claim that: for all x+ ∈ S+1 , p(i)
t (x+) = o1.

For the proof, we condition on the event:
∣S+1 ∣
m1

,
∣S−1 ∣
m1

≥ m1

3
(2)

This holds with probability at least 1 − 4e−
m
36 by applying Hoeffding’s inequality and a union bound (over positive and

negative samples).

For t = 0, we have by definition for all i ∈ W+
0 ∩ A+, o1 ⋅ w(t)

i > 0. The second claim holds by the definition of the
initialization. The third claim follows by the definition ofW+

0 ∩A+.

Assume the three claims above hold for t = T . We will prove them for t = T + 1.

Proof of Claim 1. By the gradient update in the first layer, the following holds for i ∈W+
0 ∩A+:

w
(T+1)
i =w

(T )

i − η1
m1

∑
x+∈S

+

1

`′ (NCNN (x+; (W (T ), a(0))))p(i)
T (x+)

+ η1
m1

∑
x−∈S

−

1

`′ (−NCNN (x−; (W (T ), a(0))))p(i)
T (x−) (3)

where l′(z) = − 1
1+ez

is the derivative of the logistic loss. Note that for all z, ∣`′(z)∣ ≤ 1. Therefore, for all x− ∈ S−1 , we have:

∣`′ (−NCNN (x−; (W (T ), a(0))))∣ ≤ 1 (4)

By Lemma C.2 we have for all x ∈ S1 ∣NCNN ((; (W (t), a(0)))x)∣ ≤ 1
2

. Therefore, for all x+ ∈ S+1 :

∣`′ (NCNN (x+; (W (T ), a(0))))∣ ≥ 1

1 +√
e
≥ 1

3
(5)



By the induction hypothesis, we have for i ∈W+
0 ∩A+ and all x+ ∈ S+1 that p(i)

T (x+) = o1. Therefore we have:

p
(i)
T (x+) ⋅ o1 = 1 (6)

For all x− ∈ S−1 , we have p
(i)
T (x−) = oj for j ≠ 1 that depends on x−. Therefore:

p
(i)
T (x−) ⋅ o1 = 0 (7)

By the facts above we complete the proof of the first claim:

w
(T+1)
i ⋅ o1 ≥

Eq. 3,4,5
w

(T )

i ⋅ o1 +
η1
3m1

∑
x+∈S

+

1

p
(i)
T (x+) ⋅ o1

− η1
m1

∑
x−∈S

−

1

p
(i)
T (x−) ⋅ o1

≥
Eq. 2,6,7

w
(T )

i ⋅ o1 +
η1
9

≥ (T + 1)η1
9

(8)

where the last inequality follows from the induction hypothesis.

Proof of Claim 2. Since for all x+ ∈ S+1 , p(i)
T (x+) = o1 we have for all 1 ≤ j ≤ d, j ≠ 1:

p
(i)
T (x+) ⋅ oj = 0 (9)

By the facts (1) for all x− ∈ S−1 and j ≠ 1 it holds that p(i)
T (x−) ⋅ oj ≥ 0 and (2) l′(z) < 0 for all z, we have:

η1
m1

∑
x−∈S

−

1

`′ (−NCNN ((; (W (T ), a(0)))x−))p(i)
T (x) ⋅ oj ≤ 0 (10)

Therefore we have for j ≠ 1:

w
(T+1)
i ⋅ oj ≤

Eq.9,10
w

(T )

i ⋅ oj ≤ r (11)

where the right inequality follows by the induction hypothesis.

Proof of Claim 3. Since r < η1(T+1)
9

we conclude by Eq. 8 and Eq. 11 that for all x+ ∈ S+1 , p(i)
T+1(x+) = o1.

D PROOF OF LEMMA 5.5

By Lemma C.1, for all 1 ≤ t ≤ T1 and 1 ≤ i ≤ k, ∥w(t)
i ∥ ≤ η1(t + 1). Therefore, for all 1 ≤ j ≤ d and x sampled from D,

x[j] ⋅w(t)
i ≤ 2η1t.

E PROOF OF PART 3 OF THEOREM 5.1

Here we condition on the events of previous lemmas which hold with probability at least 1 − 4e−d − 4e−
m
36 . For each x

sampled from D, define z(x) ∈ Rk such that for all 1 ≤ i ≤ k, its ith entry is zi(x) =maxj {σ (w(T1)

i ⋅x[j])}. Notice that

by Eq. 3 we have zi(x) =w
(T1)

i ⋅ p(T1)

i (x). Define a new distribution of points Dz over Rk × {±1}, which samples a point
(z(x), y) where (x, y) ∼ D.

Our goal is to show that Dz is linearly separable and can be separated with a classifier of relatively low norm. Then, we will
use recent results on logistic regression, which show that GD converges to low norm solutions. Therefore, by optimizing the



second layer, LWCNN will converge to a low norm solution. Finally, we will apply norm-based generalization bounds to
obtain a generalization guarantee for LWCNN.

First we will show that Dz is linearly separable. Indeed define v∗ ∈ Rk as follows. For i ∈W+
0 ∩A+ let v∗i = 80d

kη1T1
and for

i ∈W−
0 ∩A− let v∗i = − 80d

kη1T1
. Set all other entries of v∗ to 0. Then for any z(x+) such that (x+,1) ∼ D, we have:

z(x+) ⋅ v∗ =
80d

kη1T1
∑

i∈W+

0∩A
+

w
(T1)

i ⋅ p(T1)

i (x+)

− 80d

kη1T1
∑

i∈W−

0∩A
−

w
(T1)

i ⋅ p(T1)

i (x+)

> ( 80d

kη1T1
)( k

4d
)(η1T1

10
)

− ( 80d

kη1T1
)(k

d
)(η1T1

80
)

= 1

where the inequality follows by Lemma 5.2, Lemma 5.3 and Corollary 5.4. By symmetry, we have −z(x−) ⋅ v∗ > 1 for all
(x−,−1) ∼ D.

Next, we proceed to apply Theorem 3 in Soudry et al. [2018]. It requires that η2 < 2β−1σ−2max (Z)m2,2 where β is the
smoothness parameter of the logistic loss, Z ∈ Rk×m2 is the matrix which contains z(xi+⌈m

2 ⌉) in its ith column and σmax(Z)
is the maximum singular value of Z. In our setting, β = 1 and by Lemma 5.5 σ2

max(Z) ≤ ∥Z∥2F ≤ 4m2kη
2
1T

2
1 ≤ m2

4k
. Thus,

by our assumption η2 < 8k ≤ 2σ−2max (Z)m2 holds.

Therefore, by this theorem we are guaranteed that:

lim
t→∞

a(t)

∥a(t)∥
= â

∥â∥ (12)

where
â = argmin

v∈Rk

∥v∥2 s.t. ∀i yiv ⋅ z(xi) ≥ 1 (13)

Specifically, gradient descent converges to zero training loss, i.e., limT2→∞L2 ((WT1 ,aT2)) = 0.

By optimality of â and Lemma 5.2 we have ∥â∥2 ≤ ∥v∗∥2 ≤ 802d2

k2η21T
2
1

2k
d

= 2⋅802d
kη21T

2
1

. Furthermore, ∥z(x)∥2 ≤ 4kη21T
2
1 by

Lemma 5.5. Therefore, we have ∥â∥2 ∥z(x)∥2 = O(d). Thus, by a standard margin generalization bound (e.g. Theorem
26.13 in Shalev-Shwartz and Ben-David [2014] or Bartlett and Mendelson [2002]) we have with probability at least 1 − δ:

lim
T2→∞

P(x,y)∼D (sign (NCNN (x; (W (T1),a(T2)))) ≠ y)

= P(x,y)∼D (sign(NCNN (x;(W (T1),
â

∥â∥))) ≠ y)

= O
⎛
⎝

√
d

m

⎞
⎠

where O hides an additive term which depends on δ.
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