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Abstract

Max-Pooling operations are a core component of
deep learning architectures. In particular, they are
part of most convolutional architectures used in ma-
chine vision, since pooling is a natural approach to
pattern detection problems. However, these archi-
tectures are not well understood from a theoretical
perspective. For example, we do not understand
when they can be globally optimized, and what is
the effect of over-parameterization on generaliza-
tion. Here we perform a theoretical analysis of a
convolutional max-pooling architecture, proving
that it can be globally optimized, and can gen-
eralize well even for highly over-parameterized
models. Our analysis focuses on a data generating
distribution inspired by pattern detection problem,
where a “discriminative” pattern needs to be de-
tected among “spurious” patterns. We empirically
validate that CNNs significantly outperform fully
connected networks in our setting, as predicted by
our theoretical results.

1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved re-
markable performance in various computer vision tasks
[Krizhevsky et al., 2012, Xu et al., 2015, Taigman et al.,
2014]. Such networks typically combine convolution and
max-pooling layers, and can thus be used for detecting com-
plex patterns in the input. In practice, CNNs typically have
more parameters than needed to achieve zero train error
(i.e., are overparameterized). Despite the potential problem
of non-convexity in optimization and overfitting because
of overparameterization, training these models with gradi-
ent based methods leads to solutions with low test error.
Furthermore, overparameterized CNNs significantly out-
perform fully connected networks (FCNs) on classifying

image data [Malach and Shalev-Shwartz, 2020a]. Thus, a
key question immediately arises:

Why do overparameterized CNNs generalize well on image
data and outperform FCNs?

To the best of our knowledge, this question remains largely
unanswered. We note that the question contains two sig-
nificant challenges: the first is to show that minimization
of the non-convex training loss leads to high training accu-
racy (where non-convexity is a result of both max-pooling
and ReLU activations), and the other is that over-fitting is
avoided despite over-parameterization. The latter challenge
is known as the question of inductive bias of gradient de-
scent [Zhang et al., 2017], and understanding it is a key goal
of deep learning theory.

In this work, we provide the first results which address
the above question. We theoretically analyze learning a
simplified pattern recognition task with overparameterized
CNNs and overparameterized FCNs. We consider a CNN
with a convolution layer, max pooling and fully connected
layer and compare it to a one-hidden layer non-linear FCN.
Figure 1 shows an example of our setup. We summarize our
contributions as follows:

1. Expressive Power of CNNs with max-pooling: We
prove a novel VC dimension lower bound in our set-
ting which is exponential in d, the filter dimension of
the CNN. This result implies that there exists ERM
algorithms which have sample complexity which is
exponential in d in our setting.

2. Optimization and Generalization for learning
CNNs with max-pooling: We analyze learning over-
paramaterized CNNs with a layerwise gradient descent
optimizer. We show that the algorithm converges to
zero training loss and the learning has a sample com-
plexity of O(d). This is despite the above VC result,
which shows that general ERM optimizers can poten-
tially overfit. In our proof, we analyze the dynamics
of training the first layer. We show that it induces a
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representation in the last layer which is separable with
large margin and thus implies a good generalization
guarantee.

3. Generalization of FCNs: We apply recent results of
Brutzkus et al. [2018] which show a generalization
bound for overparameterized FC networks that is in-
dependent of the network size. We prove that in our
setting, their bound can be at bestO(d2r) for r ≥ 1, and
can thus be much larger than the sample complexity
we derive for the CNN.

4. Empirical Evaluation: We empirically validate our
theoretical results. We show that CNNs generalize well
and significantly outperform FCNs in our setting as
predicted by our theory. We empirically confirm that
this holds also for several extensions of our setup.

Our results make a significant headway on the challenging
problem of understanding why overparameterized CNNs
can generalize better than overparameterized FCNs on im-
age classification tasks. In particular, to the best of our
knowledge, we provide the first optimization and generaliza-
tion results for overparameterized CNNs with max pooling.

2 RELATED WORK

Two recent works have provided theoretical support that that
CNNs outperform FCNs. Li et al. [2020] consider a simpli-
fied image classification task and prove a sample complexity
gap between FCNs and single channel CNNs. Malach and
Shalev-Shwartz [2020a] prove that for simplified pattern
detection tasks, there is a computational separation between
overparameterized CNNs and FCNs. Their generalization
bound for overparameterized CNNs depends on the number
of channels of the CNN. Therefore, both works do not show
that over-parameterized CNNs are reslient to over-fitting,
which is the main focus of our work.

Several recent works have studied the generalization prop-
erties of overparameterized CNNs. Some of these propose
generalization bounds that depend on the number of chan-
nels [Long and Sedghi, 2020, Jiang et al., 2019]. Others pro-
vide guarantees for CNNs with constraints on the weights
[Zhou and Feng, 2018, Li et al., 2018]. Convergence of
gradient descent to KKT points of the max-margin problem
is shown in Lyu and Li [2020] and Nacson et al. [2019] for
homogeneous models. However, their results do not provide
generalization guarantees in our setting. Gunasekar et al.
[2018] study the inductive bias of linear CNNs.

Yu et al. [2019] study a pattern classification problem simi-
lar to ours. However, their in analysis the sample complex-
ity guarantee depends on the network size, and thus does
not explain why large CNNs do not overfit. Other works
have studied learning under certain ground truth distribu-
tions. For example, Brutzkus and Globerson [2019] study a

simple extension of the XOR problem, showing that over-
parameterized CNNs generalize better than smaller CNNs.
Single-channel CNNs are analyzed in [Du et al., 2018b,a,
Brutzkus and Globerson, 2017, Du et al., 2018c]. CNNs
were analyzed via the NTK approximation [Li et al., 2019,
Arora et al., 2019c]. Our analysis does not assume the NTK
approximation. For example, we require a mild overparam-
eterization in our results which does not depend on the
number of samples, in contrast to NTK analyses. Further-
more, our results hold for sufficiently small initialization,
which is not the regime of NTK analysis.

Other works study the inductive bias of gradient descent on
fully connected linear or non-linear networks [Ji and Telgar-
sky, 2019a, Arora et al., 2019a, Wei et al., 2019, Brutzkus
et al., 2018, Dziugaite and Roy, 2017, Allen-Zhu et al., 2019,
Chizat and Bach, 2020]. Fully connected networks were
also analyzed via the NTK approximation [Du et al., 2019,
2018d, Arora et al., 2019b, Fiat et al., 2019]. Kushilevitz
and Roth [1996], Shvaytser [1990] study the learnability of
visual patterns distribution. However, our focus is on learn-
ability using a specific algorithm and architecture: gradient
descent trained on overparameterized CNNs.

3 PRELIMINARIES

Data Generating Distribution: We consider a learning
problem that captures a key property of visual classification.
Many visual classes are characterized by the existence of
certain patterns. For example an 8 will typically contain an
x-like pattern somewhere in the image. Here we consider an
abstraction of this behavior where images consist of a set
of patterns. Furthermore, each class is characterized by a
pattern that appear exclusively in it. We define this formally
below.

Let O be a set of 3 ≤ l ≤ d orthogonal vectors in Rd. For
simplicity, we assume that ∥o∥2 = 1 for all o ∈ O. We denote
O = {o1,o2, ...,ol} and refer to vectors oi as patterns. For
convenience, we will also refer to sets of patterns as sets
of their corresponding indices. For example, for a set of
patterns A we use the notation i ∈ A to denote oi ∈ A.

We consider input vectors x with n patterns. Formally, x =

(x[1], ...,x[n]) ∈ Rnd where x[i] ∈ Rd is the ith pattern
of x.1 We say that x contains p if there exists j such that
x[j] = p. We denote p ∈ x if x contains the pattern p ∈ Rd.
Let P(x) = {p ∈ x ∣ p ∈ Rd} denote the set of all patterns
in x.

Next, we define how labeled points are generated. In our
setting we consider three types of patterns: positive, negative
and spurious. We will refer to the pattern o1 as positive,
the pattern o2 as negative and the patterns o3, . . . ,ol as

1We will generally use the notation v[i] ∈ Rd for any vector
v ∈ Rnd.
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(a) (b)

Figure 1: (a) An example of the pattern detection tasks we consider. Input images consist of 4 rows of 4 patches each. Each
image consists of a discriminative pattern. All other patterns are spurious and may appear in both classes. In the two leftmost
images of each class, the corresponding discriminative pattern is shown. (b) An illustration of the architecture of the 3-layer
overparameterized CNN we analyze in our setting.

spurious. We let S = {3, ..., l}.

We consider distributions D over (x, y) ∈ Rnd × {±1}. In
the distribution D, each positive sample contains the posi-
tive pattern and n − 1 randomly sampled spurious patterns.
Similarly, a negative sample has a single negative pattern
and n − 1 spurious patterns. Formally, we define D with the
following properties:

1. P (y = 1) = P (y = −1) = 1
2

.

2. Given y = 1, a vector x is sampled as follows. Ran-
domly sample an index 1 ≤ j+ ≤ n for placing the
positive pattern, and set x [j+] = o1. Then, for each
1 ≤ j ≤ n such that j ≠ j+, randomly choose ij ∈ S and
set x[j] = oij .

3. Given y = −1, do the same as y = 1, using o2 instead
of o1.

Fig. 1a shows an example of the above distribution D.

CNN Architecture: For learning the above distributions,
we consider a 3-layer CNN that consists of a convolu-
tional layer with non-overlapping filters, followed by ReLU,
max pooling and a fully-connected layer. The network is
parametrized by θ = (W,a) where W ∈ Rk×n and each
row i of W , denoted bywi ∈ Rd, corresponds to a different
channel. The vector a = (a1, ..., ak) ∈ Rk corresponds to
the weights of the fully connected layer.

For an input x = (x[1], ...,x[n]) ∈ Rnd where x[i] ∈ Rd,
the output of the network is:

NCNN (x;θ) =
k

∑
i=1

ai[max
j

{σ (wi ⋅x[j])} ] (1)

where σ(x) = max{0, x} is the ReLU activation. For sim-
plicity, we will usually denote NCNN(x) when θ is clear

from the context. We define HCNN(X ) to be the hypothe-
sis class of all functions sign (NCNN) ∶ X → {±1}, where
X ⊆ Rnd.2

CNN Training Algorithm: For the analysis of learning
CNNs, we will consider a layerwise optimization algorithm
which performs gradient updates layer-by-layer, starting
from the first layer. Layerwise optimization algorithms are
used in practice and have been shown to achieve perfor-
mance that is comparable to end-to-end methods, e.g., on
ImageNet [Belilovsky et al., 2019]. Furthermore, the as-
sumption on layerwise optimization has been used previ-
ously for theoretically analyzing neural networks [Malach
and Shalev-Shwartz, 2020b].

For a set of points A ⊆ Rnd × {±1} we consider minimizing
the loss:

L[A](θ) =
1

∣A∣
∑

(x,y)∈A

` (yNCNN ((;θ)x)) (2)

where `(x) = log (1 + e−x) is the binary cross entropy
loss. Let S = {(x1, y1), ..., (xm, ym)} be a training set
with m IID samples from D. For the analysis, we parti-
tion S = S1 ∪ S2 to two disjoint sets S1 and S2 such
that S1 = {(x1, y1), ..., (x⌈m

2 ⌉, y⌈m
2 ⌉)}. We denote Li =

L[Si], and mi = ∣Si∣ for i ∈ {1,2}. For convenience, we
will say that x ∈ Si if there exists y ∈ {±1} such that
(x, y) ∈ Si. We denote the set of positive samples in Si
by S+i = {x ∣ (x,1) ∈ Si} and the negative samples in Si by
S−i = {x ∣ (x,−1) ∈ Si}.

The layerwise optimization algorithm for learning CNNs is
given in Figure 2. The reason we optimize over two losses
is technical: we need a fresh IID sample (S2) in the sec-

2We assume WLOG that sign(0) = −1. Furthermore, we note
that the network NCNN can have any number of channels k.
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Algorithm 1 LWCNN

Input: Training set S ⊆ Rnd×{±1}, numbers of iterations
T1, T2 ∈ N and learning rates η1, η2 ∈ R.
Initialize W (0) and a(0).
for t = 1, ..., T1 do:
W (t) ←W (t−1) − η1

∂L1

∂W
(W (t−1),a(0)).

for t = 1, ..., T2 do:
a(t) ← a(t−1) − η2

∂L2

∂a
(W (T1),a(t−1)).

return (W (T1),a(T2)).

Figure 2: Layerwise optimization algorithm for CNNs.

ond layer optimization for the generalization analysis (see
Section 5).

We define w(t)
i to be the ith row of W (t). For x ∈ S, t > 0

and 1 ≤ i ≤ k, define j(t)i (x) = arg max1≤j≤nw
(t)
i ⋅x[j],

i.e., j(t)i (x) corresponds to the pattern in x that maximally
activates w(t)

i . If w(t)
i ⋅ x [j

(t)
i (x)] > 0, define p(t)i (x) =

x [j
(t)
i (x)]. Otherwise, define p(t)i (x) = 0. Notice that the

following equality holds:

max
j

{σ (w
(t)
i ⋅x[j])} =w

(t)
i ⋅ p

(t)
i (x) (3)

Remark 3.1. We note that it is necessary to make assump-
tions regarding the data distribution because the general
case is intractable for optimization (because it includes neu-
ral net learning as a special case). We believe that our data
generating distribution does reflect core aspects of pattern
detection problems. Furthermore, the analysis of overparam-
eterized max pooling networks has not been performed for
any task, and analysis of simplified tasks has been shown to
be fruitful for understanding CNNs [Li et al., 2020, Malach
and Shalev-Shwartz, 2020a]. Additionally, non-overlapping
filters are used in practice, and multiple theoretical works
have analyzed CNNs with non-overlapping filters due to
their tractability [Sharir and Shashua, 2018]. Finally, we
note that in Section 7 we show that our analysis is in line
with the performance of CNNs and FCNs in more complex
tasks.

4 VC DIMENSION BOUND

Thus far we described a data generating distribution and
a neural architecture. We now ask how expressive is this
neural architecture. Because of the pooling layer, it may
seem that the network has limited capacity, even for an
unbounded number of channels. However, as we show next
the capacity in terms of VC dimension is in fact exponential
in d in this case. This in turn means that the network can

separate datasets of size up to exponential in d, and can
thus potentially overfit badly. As we show in later sections,
overfitting is avoided when learning using gradient descent.

Fix X ⊆ Rnd to be the support of the distribution D,
i.e., each input vector consist of either a positive or neg-
ative pattern and n − 1 spurious patterns. Denote the
VC dimension of HCNN(X ) by VCdim (HCNN(X )). If
we find VCdim (HCNN(X )), then we can apply gener-
alization bounds which show that any Empirical Min-
imization algorithm (ERM) has sample complexity of
O (VCdim (HCNN(X ))) [Blumer et al., 1989], and there
exists an ERM with a tight lower bound.3 Thus, lower bound-
ing the VC dimension leads to a worst-case lower bound on
sample complexity,

We begin by recalling the definition of the VC dimension.

Definition 4.1. Let H be a hypothesis class of functions
from X to {±1}. For any non-negative integer m, define:

ΠH(m) = max
x1,...,xm∈X

∣{(h(x1), ..., h(xm)) ∣ h ∈H}∣ (4)

If ∣{(h(x1), ..., h(xm)) ∣ h ∈H}∣ = 2m, we say thatH shat-
ters the set {x1, ..., xm}. The VC dimension ofH, denoted
by VCdim (H), is the size of the largest shattered set, or
equivalently, the largest m such that ΠH(m) = 2m.

In the next theorem we show that VCdim (HCNN(X )) is
at least exponential in d. Therefore, the best generalization
bound we can hope for using a VC dimension analysis scales
exponentially with d.4

Theorem 4.2. Assume that d = 2n and n ≥ 2. Then
VCdim (HCNN(X )) ≥ 2

d
2−1.

Proof. We will construct a set B ⊆ X of size 2n−1 = 2
d
2−1

that can be shattered. For a given I ∈ {0,1}n−1 let I[j] be
its jth entry. For any such I , define a point xI such that
for any 1 ≤ j ≤ n − 1, xI[j] = I[j]o2j+1 + (1 − I[j])o2j+2.
Furthermore, arbitrarily choose xI[n] = o1 or xI[n] = o2
and define B = {xI ∣ I ∈ {0,1}n−1}.

Now, assume that each point xI ∈ B has label yI . We
will show that there is a network NCNN ∈ HCNN(X ) such
that NCNN(xI) = yI for all I . For each I ∈ {0,1}n−1,
define w(I) = max{αI ,0}∑1≤j≤n−1 xI[j] and u(I) =

max{−αI ,0}∑1≤j≤n−1 xI[j], where {αI} is the unique
solution of the following linear system with 2n−1 equations.

3Recall that an ERM algorithm is any algorithm which min-
imizes the empirical risk. See Shalev-Shwartz and Ben-David
[2014] for details.

4By fixing X to be the support of D we get a more accurate
VC lower bound than the case where X = Rnd. This is because
in the case where X = Rnd, shattered sets that are impossible to
sample from D may be considered in the lower bound.
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For each I ∈ {0,1}n−1 the system has the following equa-
tion:

∑
I′∈{0,1}n−1∖{I}

αI′ = yIc (5)

where for any I ∈ {0,1}n−1, Ic ∈ {0,1}n−1 is defined such
that Ic[j] = 1 − I[j] for all 1 ≤ j ≤ n − 1. There is a
unique solution because the corresponding matrix of the
linear system is the difference between an all 1’s matrix
and the identity matrix. By the Sherman-Morrison formula
[Sherman and Morrison, 1950], this matrix is invertible,
where in the formula the outer product rank-1 matrix is the
all 1’s matrix and the invertible matrix is minus the identity
matrix.

Set W to be the matrix with rows w(I) followed by rows
u(I). Let a be the a vector of dimension 2n such that a =

(1, ...,1
´¹¹¹¹¹¹¸¹¹¹¹¹¶
2n−1

,−1, ...,−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2n−1

).

Then, for NCNN with parameters θ = (W,a) and any xI :

NCNN (xI ;θ) = ∑
I′∈{0,1}n−1

[max
j

{σ (w(I′)
⋅x[j])}

−max
j

{σ (u(I′)
⋅x[j])} ]

= ∑
I′∈{0,1}n−1

αI′ max
j

{σ ( ∑
1≤i≤n−1

xI′[i] ⋅xI[j])}

= ∑
I′∈{0,1}n−1∖{Ic}

αI′ = yI

by the definition of NCNN, the orthogonality of the patterns
{oi}i, and Eq. 5. We have shown that any labeling yI can
be achieved, and hence the set is shattered, completing the
proof.

The main limitation of the VC analysis is that it does not
take into account the specific implementation of the ERM
algorithm [Shalev-Shwartz and Ben-David, 2014]. In the
next section, we will show a more fine-grained analysis
which is specific to the layerwise optimization algorithm,
and can thus benefit from the specific inductive bias of this
algorithm. As a result, we will obtain a significantly better
generalization guarantee.

5 GENERALIZATION ANALYSIS OF
GRADIENT DESCENT

In this section we analyze the optimization and generaliza-
tion performance of the layer-wise gradient descent algo-
rithm LWCNN for training overparameterized CNNs (Eq. 1).
We will show that it converges to zero training loss and its
sample complexity is O(d). This is in contrast to the result

of the previous section which shows a VC dimension lower
bound which is exponential in d, and therefore there are
other ERM algorithms that can result in arbitrarily bad test
error.

For simplicity of the analysis, we assume that we initialize
each filterw(0)

i from the (d− 1)-sphere of radius r, namely,
{z ∈ Rd ∣ ∥z∥ = r}. We sample each a

(0)
i ∈ R uniformly

at random from {±1}. Additionally, the parameters W (0)

and a(0) are sampled independently. Our main result is
summarized in the following theorem.

Theorem 5.1. Let S be an IID training set of size
m sampled from D. Assume that we run LWCNN with
T1 > 0, η1 ≤ 1

4k(T1+1)
and η2 < 8k. Assume that

r ≤
η1
200

and k > 8d3. Then, with probability at least
(1 − δ)(1 − 4e−d − 4e−

m
36 ), the following holds:5

(1) limT2→∞L2 ((W
(T1),a(T2))) = 0.

(2) limT2→∞ P(x,y)∼D (sign (NCNN (x; (W (T1),a(T2)))) ≠ y)

= O (

√
d
m
).6

The first part of the theorem is an optimization result stating
that the LWCNN will converge to zero L2 loss. We note that
this is despite the non-convexity of the loss L2. The second
part of the theorem states that the learned classifier will have

a test error of order
√

d
m

. Thus, the sample complexity is
linear in d. This is in contrast to the VC dimension bound
which is exponential in d.

Before proving the theorem, we make several remarks on
the result. First, for simplicity we present asymptotic re-
sults for T2. We can provide convergence rates that depend
linearly on d by changing the second layer optimization
hyper-parameters (initialization and step size) and use re-
cent results of Ji and Telgarsky [2019c]. See supplementary
for details. Second, note that k > 8d3 is a mild overparame-
terization condition, compared to other results which require
k to depend on the number of samples [Du et al., 2018d, Ji
and Telgarsky, 2019b].

Proof of Theorem 5.1. We will prove the theorem in three
parts. We defer the proofs of technical lemmas to the sup-
plementary. We first outline the main ideas of the proof. In
the first part we will prove a property of the initialization of
the first layer. We show that at initialization there are suf-
ficiently many “lucky” filters w(0)

i in the following sense.
Either the pattern in O that maximally activates them is o1
and a(0)i = 1, or the maximum activating pattern is o2 and
a
(0)
i = −1. In essence, these filters are “good” detectors be-

5The factor e−d in the confidence guarantee can be improved
to e−Θ(k). Note that the algorithm can be boosted with multiple
restarts. We note also that O(⋅) hides a dependence on δ.

6The O hides an additive term which depends on δ.
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cause they detect the discriminative patterns, with the right
sign of a(0)i .

In the second part we analyze the dynamics of the filters in
the first layer. We will show that the “lucky” filters continue
to detect the discriminative patterns and their projection on
either o1 or o2 becomes larger in each iteration. In contrast,
we upper bound the norm of the filters that are "non-lucky".
Thus, after training the first layer, LWCNN creates a new
representation of the data in the second layer with the fol-
lowing properties: there are sufficiently many discriminative
features with sufficiently large absolute values, and the re-
maining features have a bounded absolute value.

In the third part, we analyze the optimization of the second
layer on the new representation. Using the properties of
the representation, proved in the second part, we show that
this representation induces a distribution on the samples
which is linearly separable. Furthermore, it can be classified
with margin 1 by a linear classifier of low norm. Then, we
apply a result of Soudry et al. [2018], which implies that
training the second layer, which is equivalent to logistic
regression on the new representation, converges to a low
norm solution with zero training loss. Finally, we apply a
norm-based generalization bound [Shalev-Shwartz and Ben-
David, 2014] to obtain the sample complexity guarantee.

Part 1: Properties of the Initialization:

Define the sets A+ = {i ∣ a
(0)
i = 1}, A− = {i ∣ a

(0)
i = −1}

and the following sets:

W
+
t =

⎧⎪⎪
⎨
⎪⎪⎩

i ∣ arg max
l∈O∖{2}

w
(t)
i ⋅ ol = 1, w

(t)
i ⋅ o1 > 0

⎫⎪⎪
⎬
⎪⎪⎭

W
−
t =

⎧⎪⎪
⎨
⎪⎪⎩

i ∣ arg max
l∈O∖{1}

w
(t)
i ⋅ ol = 2, w

(t)
i ⋅ o2 > 0

⎫⎪⎪
⎬
⎪⎪⎭

(6)

The setsW+
0 ∩A

+ andW−
0 ∩A

− correspond to the set of
“lucky” filters.7 We prove a lower and upper bound on the
size of these sets.

Lemma 5.2. With probability at least 1 − 4e−d:

k

4d
≤ ∣W

+
0 ∩A

+
∣ , ∣W−

0 ∩A
−
∣ ≤

k

d
(7)

The proof uses the fact that P (i ∈W+
0 ∩A

+) =
(1−2−d+1)

2(d−1)
.

Then, by concentration of measure for k ≥ d3, roughly k
2d

filters will be in W+
0 ∩A

+. The same argument holds for
W−

0 ∩A
−. The proof is given in the supplementary.

7We exclude the pattern o2 from the argmax inW+
t because

we only need to consider the argmax over patterns that appear
in positive points. Recall that the pattern o2 does not appear in
positive points. The same reasoning applies forW−

t .

Part 2: First Layer Dynamics:

The following lemma shows the dynamics of the “lucky”
neurons that detect the positive patterns.

Lemma 5.3. With probability at least 1 − 4e−d − 4e−
m
36 , for

all 0 ≤ t ≤ T1 and all i ∈W+
0 ∩A

+ the following holds:

1. o1 ⋅w
(t)
i ≥

tη1
9

.

2. For all j ≠ 1, it holds that oj ⋅w
(t)
i ≤ r.

Furthermore, for all x+ ∈ S+1 , p(t)i (x+) = o1.

The lemma shows that the projection of the filter on o1
grows significantly, while the projection on other oi remains
small. Finally, it shows that for any positive point in S1, the
pattern which maximally activates the filter is o1. Thus, the
filter is correctly detecting the positive pattern. The proof
is technical and shows that the properties above hold by
induction on t. It is given in the supplementary.

By the symmetry of our setting we get by Lemma 5.3 a
similar result for the “lucky” neurons that detect negative
patterns.

Corollary 5.4. With probability at least 1 − 4e−d − 4e−
m
36 ,

for all 0 ≤ t ≤ T1 and all i ∈W−
0 ∩A

− the following holds:

1. o2 ⋅w
(t)
i ≥

tη1
9

.

2. For all j ≠ 2, it holds that oj ⋅w
(t)
i ≤ r.

Furthermore, for all x− ∈ S−1 , p(t)i (x−) = o2.

Finally, we provide a simple bound on the output of all
neurons (including the "non-lucky" ones).

Lemma 5.5. For all 1 ≤ t ≤ T1, 1 ≤ i ≤ k, 1 ≤ j ≤ d and x
sampled from D, it holds that x[j] ⋅w(t)

i ≤ 2η1t.

The proof is given in the supplementary.

Part 3: Optimizing the Second Layer:

We conclude the proof of the theorem by analyzing the
optimization of the second layer. Here we sketch the analysis
and defer the details to the supplementary.

For each x sampled from D, we define z(x) ∈ Rk
such that for all 1 ≤ i ≤ k, its ith entry is zi(x) =

maxj {σ (w
(T1)

i ⋅x[j])} (namely, these are the values of
the output of the pooling of each channel, which serve as
features for the second layer). Then, we define a new distri-
bution of points Dz over Rk × {±1}, which samples a point
(z(x), y) where (x, y) ∼ D.

Using the results of the first layer dynamics, we show that
Dz is linearly separable and can be separated with margin 1

by a classifier v with ∥v∥ = O (

√
d
k
). Then, we use recent
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results on logistic regression [Soudry et al., 2018], to show
that by optimizing the second layer, LWCNN will converge
to a low norm solution with zero training loss. Finally, we
apply norm-based generalization bounds [Shalev-Shwartz
and Ben-David, 2014]. Since for all x, ∥z(x)∥ = O(

√
k),

we obtain a sample complexity guarantee for LWCNN of
order O (∥v∥

2
maxx ∥z(x)∥

2
) = O (d).

6 COMPARISON WITH FCNS

In the previous section we showed that overparameterized
CNNs have good sample complexity for learning the pattern
distributions D in Section 3. How do overparameterized
fully connected networks compare with CNNs in our set-
ting? To address this question, we apply recent results of
Brutzkus et al. [2018]. They provide generalization guaran-
tees for one-hidden layer overparameterized fully connected
networks on linearly separable data. We will show that their
bound for FC networks can be O(d2r) for any r ≥ 1. In con-
trast, Theorem 5.1 shows a generalization bound for CNNs
which is linear in d. We note that to fully demonstrate a
gap between the methods we also need a lower bound on
the FCN for the distribution D, and we leave this for future
work. Nonetheless, we show empirically that these general-
ization bounds predict the performance gap between CNNs
and FCNs in our setting.

We begin by noting that the distribution D is linearly separa-
ble in x, because one can setw ∈ Rnd to be a concatenation
of n copies of the pattern difference o1 − o2 and because of
orthogonality this will correctly classify the data. We next
explain how Brutzkus et al. [2018] can be used to obtain a
sample complexity bound for learning this data with a fully
connected leaky ReLU net.

Assume that D is linearly separable with margin 1 by a
classifier w∗, i.e., for all (x, y) ∈ D, yw∗ ⋅x ≥ 1. Brutzkus
et al. [2018] consider the following fully connected network:

NFC (x;θ) =
k

∑
i=1

aiψ (wi ⋅x) (8)

for θ = (W,a) where in our setting wi ∈ Rnd is the ith
row of W ∈ Rk×nd, a ∈ Rk and x ∈ Rnd and ψ(x) =

max{αx,x} is the Leaky ReLU activation.

They show that SGD converges to a zero training error
solution with sample complexity of O(∥w∗∥

2
R2), where

R is the maximum norm of the data, R = maxx ∥x∥. In our
setting it holds that R2 = n (because each point x consists
of n patterns, each of norm 1). Importantly, this bound is
independent of the network size k.

We note that the bound O(∥w∗∥
2
R2) also holds for the

hard-margin linear SVM [Shalev-Shwartz and Ben-David,
2014]. Therefore, our following conclusions hold for this

algorithm as well. In the next section we show experiments
that compare CNNs, FCNs and SVMs in our setting and
corroborate our findings.

The generalization bound of O(∥w∗∥
2
R2) holds for any

w∗ which separates with margin 1. Thus, the best bound can
be achieved withw∗ that has the lowest norm and separates
the data with margin 1. Next we show that the lowest norm
is at least

√
n.

Proposition 6.1. Assume that:

ŵ = arg min
w∈Rnd

∥w∥
2 s.t. ∀(x, y) ∼ D yw ⋅x ≥ 1 (9)

Then ∥ŵ∥
2
≥ n.

Proof. Assume by contradiction that ∥ŵ∥
2

=

∑1≤i≤n ∥ŵ[i]∥
2

< n. Then, there exists 1 ≤ i ≤ n

such that ∥ŵ[i]∥
2
< 1. Define a positive point (x+,1)

such that x+[i] = o1 and x+[j] = o3 for j ≠ i. Similarly,
define a negative point (x−,−1) such that x−[i] = o2 and
x−[j] = o3 for j ≠ i. Then it holds that:

ŵ ⋅x+ = ∑
1≤j≤n

ŵ[j]x+[j] = o1 ⋅ ŵ[i] +∑
j≠i

ŵ[j] ⋅ o3 ≥ 1

(10)

and similarly

ŵ ⋅x− = o2 ⋅ ŵ[i] +∑
j≠i

ŵ[j] ⋅ o3 ≤ −1 (11)

By subtracting Eq. 11 from Eq. 10 we get:

ŵ[i] ⋅ (o1 − o2) ≥ 2 (12)

but since ∣ŵ[i] ⋅ (o1 − o2)∣ ≤ 2 ∥ŵ[i]∥, we have by Eq. 12
∥ŵ[i]∥ ≥ 1, which is a contradiction.

Proposition 6.1 implies that the best possible bound of
Brutzkus et al. [2018] for FC networks, or margin bound for
linear SVM is O(n2) in our setting. Thus for n = Θ(dr),
r ≥ 1 the bounds for FC networks and linear SVM are
O(d2r). In contrast, Theorem 5.1 shows a generalization
guarantee for CNNs of O(d) for any n. This gap suggests
that CNNs should significantly outperform FCNs and lin-
ear SVM in our setting. In the next section, we provide
empirical evidence for this.

Finally, we note that the bounds suggest why CNNs perform
better than FCNs in our setting. While the generalization of
CNNs depend on the pattern dimension, the generalization
bound of FCNs depends on the number of patterns. The
CNN architecture is invariant to the patch position of each
pattern. Furthermore, the distribution structure is also invari-
ant to the position of patterns (e.g., the specific position of
the positive pattern does not change the label). By Theorem
5.1, these two facts imply that the CNN can generalize based
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(a) (b) (c)

Figure 3: Empirical evaluation of the ConvPool architecture to different baselines. (a) Test error as a function of train
sample size, for data sampled according to our pattern detection distribution. Note: this data is linearly separable in x by
construction, and we verified that all models had zero training error. (b) Test error as a function of train sample size, for data
that as in (a), but with added noise vector v with ∥v∥ ≤ 1. The resulting data is not linearly separable. Note: we verified
that for the linear model training error was non-zero in many of the cases. For the other models training error was zero. (c)
Results on an MNIST pattern detection problem.

on the appearance of the discriminative patterns in any patch
in the image. Specifically, the total number of patterns is
not relevant for generalization. On the other hand, the FCN
bound suggests that FCNs need more samples to general-
ize because the generalization depends on the number of
patterns.

7 EXPERIMENTS

In this section we provide empirical evaluation of learning
with our pooling architecture and compare it to several other
models. As baselines we consider:

• ConvPool: Our convolution and max-pooling model
in Eq. 1. We verified that layer-wise training performs
very similarly to standard training, and thus we report
results on standard training with Adam [Kingma and
Ba, 2014] in what follows.

• MLP: A standard fully connected neural network with
one hidden layer. The network receives the complete x
as input (with all patterns). We use a number of hidden
neurons that results in the same number of parameters
as ConvPool.

• SVM: A hard-margin linear SVM with x as input. This
will return zero training errors only when the data is
linearly separable. This is the case for our distribution
D, but no longer the case when we add noise to the
patterns (see below).

All experiments used a test set of size 1000, and were re-
peated 5 times with mean and std reported on figures.

We begin with a toy data setting. We created data for a
detection problem where all o ∈ R20 vectors were uniformly
sampled from the rows of a uniformly sampled orthogonal
matrix and n = 10. ConvPool used 500 channels. Figure

Figure 4: Data examples in the MNIST detection problem
we experiment with in Section 7.

3a shows results for this setting. ConvPool can be seen to
outperform the other methods. In Figure 3b we go beyond
our analyzed setting, and add independent random noise v
to each pattern where ∥v∥ ≤ 1.0. This makes the problem
non linearly-separable. As expected, the linear method now
fails, but ConvPool performs well and outperforms MLP.

Next, we consider the effect of the number of patterns n on
performance. As shown in Proposition 6.1, the norm of the
max-margin linear classifier is lower bounded by n. Thus,
increasing n is expected to result in worse performance
for MLP and SVM by the results in the previous section.
In Figure 5, we vary the number of patterns, and indeed
observe that performances of MLP and SVM deteriorate
while that of ConvPool is only mildly affected (we used the
same parameters as above and noise level ∥v∥ ≤ 1).

Finally, we evaluate on the MNIST data set. We create
a detection problem as in Fig. 4 where the discriminative
patterns are the digits three and five and the spurious patterns
are all other digits. Each input image contains four patterns
(i.e., four digits). We used a relatively small number of
patterns to make the problem not linearly separable for
moderate sample sizes. We trained a 3 layer convolutional
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Figure 5: The effect of changing n, the number of patterns
per image. It can be seen that this deteriorates the perfor-
mance of the other methods while only mildly affecting the
pooling model.

network as in Eq. 1 with 500 channels. Results in Fig. 3c
again show excellent performance of the pooling model
compared to the baselines.

8 DISCUSSION

In this paper we presented the first analysis of a convolu-
tional max-pooling architecture in terms of optimization and
generalization under over-parameterization. Our analysis is
for a natural setting of a detection problem where certain
patterns “identify” the class and the others are irrelevant.
Our analysis predicts a significant performance gap between
CNNs and FCNs, which we observe in experiments.

While our analysis is the first step towards understanding
pattern detection architectures, many open problems remain.
The first is extending the pattern structure from orthogonal
patterns to more general distributions. For example, we can
consider the discriminative pattern to be a combination of
patterns across the image (e.g., the class of the image is pos-
itive only if certain multiple patterns appear in the image).
Second, it would be interesting to extend the convolution
so that there are overlaps between filters (although this is
known to generate local optima even for simpler settings
[Brutzkus and Globerson, 2017]). Finally, a challenging
extension is to a multi-layer architecture with repeated ap-
plication of pooling.
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