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A PROOF OF THEOREM 3.6

Definition A.1. For a spatial kernel KS : µl(KS) =
∫
θlKS(θ)dθ

Definition A.2. For a temporal kernel KT : al(−ρ) =
∫ 1

−ρ t
lKT (t)dt

Lemma A.1 (Estimator consistency on the right boundary). Let t ∈ Br = {τ : 1− λ ≤ τ ≤ 1} then under assumptions of
Theorem 3.6:

E[p̂(θ, t)|M] = p(θ, t) +O(λ) +O(tr(H)),

whereM represents all the discrete random variables Mi for i = 1 . . . n.

Proof.

E[p̂(θ, t)|M] =

=
1

N̄λ|H| 12 a0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

) Mi∑
j=1

∫ +∞

−∞
KS

(
H−

1
2 (θ − x)

)
p(x, τ)dxdτ (1)

=
1

N̄λ�
��|H| 12 a0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

) Mi∑
j=1

∫ −∞
+∞

−KS(y)p(θ −H 1
2 y, τ)��

�|H| 12 dydτ (2)

=
1

N̄λa0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

) Mi∑
j=1

∫ +∞

−∞
KS(y)

(
p(θ, τ)− (H

1
2 y)T∇Sp(θ, τ)+

1

2
(H

1
2 y)THSp(θ, τ)(H

1
2 y) + o(tr(H))

)
dydτ (3)

=
1

N̄λa0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

)
Mi

(∫ +∞

−∞
KS(y)p(θ, τ)dy

((((
((((

(((
((((

(

−
∫ +∞

−∞
KS(y)(H

1
2 y)T∇Sp(θ, τ)dy+∫ +∞

−∞

1

2
KS(y)(H

1
2 y)THSp(θ, τ)(H

1
2 y)dy + o(tr(H))

)
dτ (4)

=
1

N̄λa0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

)
Mi

(
p(θ, τ)+

*equal contribution

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Giuseppe~Canonaco <giuseppe.canonaco@polimi.it>?Subject=T2VT


1

2
µ2(KS)tr(HHsp(θ, τ)) + o(tr(H))

)
dτ (5)

=
1

λa0(−ρ)

∫ t
λ

t−1
λ

KT

(
t− τ
λ

)(
p(θ, τ) +O(tr(H))

)
dτ (6)

=
1

λa0(−ρ)

(∫ 1

−ρ
KT

(
t− τ
λ

)
p(θ, τ)dτ +O(tr(H))

∫ 1

−ρ
KT

(
t− τ
λ

)
dτ

)
(7)

=
�λ

�λa0(−ρ)

(
−
∫ −ρ

1

KT (v)p(θ, t− λv)dv −O(tr(H))

∫ −ρ
1

KT (v)dv

)
(8)

=
1

a0(−ρ)

(∫ 1

−ρ
KT (v)

(
p(θ, t)− λvp′(θ, t)+

1

2
λ2v2p′′(θ, t) + o(λ2)

)
dv +O(tr(H))

)
(9)

= p(θ, t)− λp′(θ, t)a1(−ρ)

a0(−ρ)
+O(λ2) +O(tr(H)) (10)

= p(θ, t) +O(λ) +O(tr(H)), (11)

where in (2) we performed a change of variable, y = H−
1
2 (θ − x), in (3) we used the following Taylor expansion:

p(θ −H 1
2 y, τ) = p(θ, τ)− (H

1
2 y)T∇Sp(θ, τ) +
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2
(H
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2 y)THSp(θ, τ)(H

1
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in (4) we used Assumption 3.4,in (5) we used Definition A.1, in (6) we used t−τ
λ ∈ [ t−1

λ , tλ ), in (7) we set t = 1 − ρλ,
which implies t−τ

λ ∈ [−ρ, 1
λ − ρ), then we used the support of KT (assumed to be [−1, 1] without loss of generality) since

λ→ 0. Finally, in (8) we used a change of variable, t−τλ = v, and in (9) we used the following Taylor expansion:

p(θ, t− λv) = p(θ, t)− λvp′(θ, t) +
1

2
λ2v2p′′(θ, v) + o(λ2).

Notice that we reported the consistency proof only on the right boundary because is the one we use in the context of our
algorithm. The above procedure can be easily adjusted to prove consistency of the estimator on the left boundary getting the
same convergence rate. Moreover, analogously, we can obtain consistency away from the two boundaries with a convergence
rate squared w.r.t. λ.

Definition A.3. For a spatial kernel KS : R(KS) =
∫
K2
S(θ)dθ

Definition A.4. For a temporal kernel KT : bKT (−ρ) =
∫ 1

−ρK
2
T (t)dt

Lemma A.2 (Variance of the estimator on the right boundary). Let t ∈ Br = {τ : 1− λ ≤ τ ≤ 1} then under assumptions
of Theorem 3.6:

Var[p̂(θ, t)|M] ≤ C1

N̄ |H| 12λ
,

whereM represents all the discrete random variables Mi for i = 1 . . . n.
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, (22)

where in (14) we performed a change of variable, y = H−
1
2 (θ − x), in (15) we used the following Taylor expansion:

p(θ −H 1
2 y, τ) = p(θ, τ) + o(1),

in (16) we used Definition A.3, in (17) we considered the fact that t ∈ Br as we have done in (6) and (7) of the proof of A.1,
in (18) we performed a change of variable, t−τλ = v, in (19) we used the following Taylor expansion:

p(θ, t− λv) = p(θ, t) + o(1),

whereas in (20) we have used Definition A.4. Finally, in (22) we have used the fact that p(θ, t) has bounded derivatives and
is a pdf, therefore it has finite supremum.

Lemma A.3 (Bound on the absolute values). Let t ∈ Br = {τ : 1− λ ≤ τ ≤ 1} then under assumptions of Theorem 3.6:
p̂(θ, t)− E[p̂(θ, t)|M] is the sum of N̄ independent random variables, denoted as vi, with zero mean and absolute values
bounded by C2
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1
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.M represents all the discrete random variables Mi for i = 1 . . . n.
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where in (23) we used lemma A.1 and in (24) we used the fact that KT has a compact support on R and KS has a
supremum.

Now the proof of Theorem 3.6 can follow.
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Therefore, if C4 > 0 is given, and we choose C2 > 3C4
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From the Hölder-continuity of the estimator (since the two kernels have bounded first derivative):
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is negligible w.r.t. ξ as n tends to infinity, where Kmax e Kmin are

the endpoints for each dimension of K (we assume them to be the same in each dimension for the sake of simplicity).
Analogously for Imax and Imin (notice that I is monodimensional).

Therefore:
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From (30) and (33), we can write:
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Finally, we get:
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B UPPER BOUND ON THE KL-DIVERGENCE BETWEEN THE PRIOR AND THE
POSTERIOR

In this section, we report the steps needed to get an upper bound on the KL-Divergence between the posterior q our prior p̂.
Let us define S = 1

a0(−ρ)N̄λ
∑n
i=1

∑Mi

j=1KT ( t−tiλ ), hence:
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S
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Now the first term in Equation (38) is the KL-Divergence between two Mixture of Gaussians, which can be upper bounded
using the same procedure as in Hershey and Olsen [2007], and the second term is a constant in the ELBO optimization.
Therefore:

DKL(q||p̂(·, t)) ≤ DKL(χ(2)||χ(1)) + log
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S
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q
i and p̂ =

∑
j c
p̂
jf

p̂
j with cyx being a generic weight and fyx = N (µyx,Σ
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generic component, (x, y) ∈ {(i, q), (j, p̂)}. Furthermore, we have:
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Finally, notice that cqi = 1
C for each i, where C is the number of components for the posterior, whereas cp̂j =

1
Sa0(−ρ)N̄λKT ( t−tiλ ), with a little abuse of notation over the index i and j.

C PROOF OF THEOREM 4.1

The prof of Theorem 4.1 is straightforward, we just need to follow the same procedure of Tirinzoni et al. [2018a] plugging
in the bound on the KL-Divergence of Equation (39). In the following we report the proof for completeness.

Proof. We start from Lemma 2 of Tirinzoni et al. [2018a] with variational parameter ξ̂ = (µ̂1, . . . , µ̂C , Σ̂1, . . . , Σ̂C),
whereas, for the right-hand side, we set µi = θ∗ and Σi = cI for each i = 1, . . . , C, for some c > 0:
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From Appendix B we have:
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obtained noticing that we can remove the index i because we have reduced the posterior to one component. χ(2)
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if we plug in the closed form expression of the KL-Divergence (45) into its definition.
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Now we proceed upper bounding the first and then the third term of (42):

DKL(χ(2)||χ(1)) =
∑
j

χ
(2)
j log

χ
(2)
j

χ
(1)
j

(46)

=
∑
j

χ
(2)
j logχ

(2)
j −

∑
j

χ
(2)
j logχ

(1)
j (47)

≤
∑
j

χ
(2)
j log

1

cp̂j
(48)

where we got (48) just noticing in (47) that the first term is negative. Considering the third term, we have:
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Therefore:
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Now leveraging the above equation, the following upper bound obtained in the proof of Theorem 3 in Tirinzoni et al.
[2018a]:
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D EXPERIMENTAL DETAILS

In this section, we provide some additional experimental details together with further results.



D.1 PARAMETRIZATION

ADAM [Kingma and Ba, 2014] is used in every experiment as optimizer. The source tasks are solved by a direct minimization
of the TD error as described in section 3.4 of Tirinzoni et al. [2018a], using a batch size of 50 for the rooms environments and
of 32 for Mountain Car and the lake Como water system, a buffer size of 50000, the projection parameter of the mellow-max
TD error gradient set to 0.5, the learning rate α = 10−3. The exploration is ε-greedy with ε linearly decaying from 1 to 0.01
for Mountain Car and to 0.02 for the rooms environments. Both decays happen within 50% of the maximum number of
learning iterations. In the lake Como environment we used a soft-max (Gibbs) policy with parameter β linearly increasing
from 0.5 to 9.275 through the learning iterations.

In the rooms environments, for what concern the two transfer algorithms, c-T2VT, and c-MGVT, we have the following
parametrization: batch size of 50, buffer size of 50000, projection parameter of the mellow-max TD error gradient set to 0.5
(see section 3.4 of Tirinzoni et al. [2018a]), the parameter of Equation (2) ψ = 10−6, 10 weights to estimate the expected
TD error, the learning rates are set to αµ = 10−3 and αL = 0.1 for the mean and the Cholesky factor L of the posterior
(moreover, the minimum eigenvalue reachable by L is set to σ2

min = 10−4). Finally, for the prior, we use a diagonal isotropic
matrix H = 10−5I and λ = 0.3333 in the context of c-T2VT, furthermore, we have Σ = 10−5I for the prior in the context
of c-MGVT.

In the Mountain Car environment, c-T2VT and c-MGVT are parametrized in the following way: batch size of 500, buffer
size of 10000, projection parameter of the mellow-max TD error gradient set to 0.5, the parameter of Equation (2) ψ = 10−4,
10 weights to estimate the expected TD error, the learning rates are set to αµ = 10−3 and αL = 10−4 for the mean and the
Cholesky factor L of the posterior (moreover, the minimum eigenvalue reachable by L is set to σ2

min = 10−4). Finally, for
the prior, we use a diagonal isotropic matrix H = 10−5I and λ = 0.3333 in the context of c-T2VT, furthermore, we have
Σ = 10−5I for the prior in the context of c-MGVT.

In the lake Como water system, 3-T2VT and 3-MGVT are parametrized in the following way: batch size of 32, buffer size
of 10000, projection parameter of the mellow-max TD error gradient set to 0.5, the parameter of Equation (2) ψ = 10−4, 4
weights to estimate the expected TD error, the learning rates are set to αµ = 10−3 and αL = 10−4 for the mean and the
Cholesky factor L of the posterior (moreover, the minimum eigenvalue reachable by L is set to σ2

min = 10−4). Finally, for
the prior, we use a diagonal isotropic matrix H = 10−5I and λ was chosen through the maximum-likelihood approach of
Section 6.5 in the context of 3-T2VT, furthermore, we have Σ = 10−5I for the prior in the context of 3-MGVT.

D.2 TEMPORAL DYNAMICS

In this section, we provide the analytical form of the different dynamics employed in our experiments. Notice that these
dynamics need to be plugged into the mean of our Gaussian distribution from where we sample the parametrization defining
the task (for the rooms environment we will sample the positions of the doors, whereas, for the Mountain Car environment,
we will sample the base speed).

Linear Polynomial Sin
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Figure 1: Temporal dynamics.



• Linear: 2t− 1, t ∈ [0, 1];

• Polynomial: at4 + bt3 + ct2 + dt+ e, t ∈ [0, 1] and a = −15.625, b = 39.5833, c = −31.875, d = 9.91667 and
e = −1;

• Sinusoidal: sin(2πt), t ∈ [0, 1].

In Figure 1, we report the graphical representation of the above analytical functions.

Now, given the range for a parameter [kmin, kmax], a given dynamic will span over this interval in the following
way: d(t) (kmax−kmin)

2 + (kmax+kmin)
2 . Finally, notice that, [kmin, kmax] = [0.001, 0.0015] for Mountain Car, whereas

[kmin, kmax] = [0.7 + padding, 9.3 − padding] for the parameters of the rooms environments. The padding variable
is 0 for the 2-rooms, whereas is 2 for the 3-rooms environments. This padding variable was necessary in the 3-rooms
environments in order for the TD gradient algorithm to be able to solve the source tasks in every configuration of the two
doors.

D.3 λ-SENSITIVITY RESULTS

In Figures 2 and 3, we report a sensitivity analysis of our algorithm w.r.t. λ in the 2-rooms environment. This analysis is
carried out computing the performance of the learning algorithm w.r.t. different values of the previously mentioned parameter
(whereas H = 10−5I for every λ). These results are also compared with the performance of the algorithm when λ is chosen
according to the likelihood optimization described in Section 6.5. In Figures 4 and 5, we report the above-described analysis
in the context of the 3-rooms environment, whereas, in Figures 6 and 7, we have the Mountain Car environment.

In the context of both rooms environments, the performance of the likelihood approach is satisfying, for both 1-T2VT and
3-T2VT, even though in some cases it is not optimal. For what concern, the polynomial dynamic this may be due to its
plateau (see Figure 1) which bias the choice for λ toward bigger values since the likelihood is evaluated in a cross-validation
manner. For the same reason, in the sin dynamic case, the likelihood-based approach tends to select an average λ. Finally,
the linear case in the 2-rooms is almost optimal, whereas, in the 3-rooms, the performance decreases. This is due to the
fact that, in the 3-rooms environment, we have 2 parameters governing the dynamics (the two doors positions) making the
choice of λ harder to make in this setting.

In the context of the Mountain Car environment the likelihood approach always choose the best λ as shown in Figures 6 and
7.

Implementation Details: since the λ ∈ [0, 1], we performed a grid search in order to optimize Equation (5) .

D.4 FURTHER ENVIRONMENTAL SETTINGS: MOUNTAIN CAR AND LAKE COMO WATER SYSTEM

D.4.1 Mountain Car

The state space consists in the position and velocity of the car. The reward function is always −1 so the agent must reach the
goal as soon as possible. The available actions are backward full throttle, zero throttle and forward full throttle encoded
as [−1, 0, 1]. The discount factor is γ = 0.99. The goal position is 0.5. Finally, the transition function is positiont+1 =
positiont + velocityt+1, velocityt+1 = velocityt + at ∗ 0.001 − 0.0025 ∗ cos(3 ∗ positiont). The velocity is clipped
whenever exits the range [−0.07, 0.07] the position is bound to lie in [−1.2, 0.6].

D.4.2 Lake Como

The reward function in the lake Como water system is composed of three main costs. The demand cost is a squared function
of the discrepancy between actual release and water demand: −4(%t+1 − demandt)2 if t is between may and august,
otherwise −(%t+1 − demandt)2. The flooding cost is a constant penalty inflicted to the agent whenever a water level
flooding threshold is broken: −1 if water level > 1.24 else 0. Finally, the unfeasibility penalty is just a discrepancy
between the action requested by the agent and the actual release the system was able to accomplish: −|at − %t+1|. Each
component is rescaled in [−1, 0] and contribute uniformly for 1

3 to the reward function. The actions available to the agent are
8 different amount of water to be released: [0, 79.39, 88.10, 110.39, 148.39, 200.13, 225.25, 491.61]. The discount factor is
γ = 0.9999.
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(a) 2-rooms polynomial dynamic.
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(b) 2-rooms linear dynamic.
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(c) 2-rooms sin dynamic.

Figure 2: Average return achieved by 1-T2VT w.r.t. different choices of λ with 95% confidence intervals computed using 50
independent runs.
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(a) 2-rooms polynomial dynamic.
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(b) 2-rooms linear dynamic.
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(c) 2-rooms sin dynamic.

Figure 3: Average return achieved by 3-T2VT w.r.t. different choices of λ with 95% confidence intervals computed using 50
independent runs.
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(a) 3-rooms polynomial dynamic.
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(b) 3-rooms linear dynamic.
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(c) 3-rooms sin dynamic.

Figure 4: Average return achieved by 1-T2VT w.r.t. different choices of λ with 95% confidence intervals computed using 50
independent runs.
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(a) 3-rooms polynomial dynamic.
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(b) 3-rooms linear dynamic.
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(c) 3-rooms sin dynamic.

Figure 5: Average return achieved by 3-T2VT w.r.t. different choices of λ with 95% confidence intervals computed using 50
independent runs.
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(a) Mountain Car polynomial dynamic.
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(b) Mountain Car linear dynamic.
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(c) Mountain Car sin dynamic.

Figure 6: Average return achieved by 1-T2VT w.r.t. different choices of λ with 95% confidence intervals computed using 50
independent runs.
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(a) Mountain Car polynomial dynamic.
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(b) Mountain Car linear dynamic.
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(c) Mountain Car sin dynamic.

Figure 7: Average return achieved by 3-T2VT w.r.t. different choices of λ with 95% confidence intervals computed using 50
independent runs.
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