
Variational Inference with Continuously-Indexed Normalizing Flows
Supplementary Material

Anthony Caterini1 Rob Cornish1 Dino Sejdinovic1 Arnaud Doucet1

1Department of Statistics, University of Oxford

A SINGLE-LAYER DENSITY AND OBJECTIVE FUNCTION

Here we demonstrate how to obtain the single-layer CIF density and associated objective function.

Single-layer density We can derive the joint density qZ,U by first considering the density over (Z,U,W) and integrating
out W :

qZ,U (z, u) =

∫
qZ,U,W (z, u, w) dw =

∫
qW (w) · qU |W (u | w) · δ(z −G(w;u)) dw.

Now if we perform the change of variable w = G−1(z′;u), we get dw = |det DzG
−1(z′;u)|dz′, which then gives

qZ,U (z, u) =

∫
qW (G−1(z′;u)) · qU |W (u | G−1(z′;u)) · δ(z − z′) · | det DzG

−1(z′;u)|dz′

= qW (G−1(z;u)) · qU |W (u | G−1(z;u)) · | det DzG
−1(z;u)|.

Single-layer objective First, we substitute our model qZ,U into (3) to obtain

L(x) = E(z,u)∼qZ,U

[
pX,Z(x, z) · rU |Z(u | z)

qW (G−1(z;u)) · qU |W (u | G−1(z;u)) · | det DzG−1(z;u)|

]
.

Now, noting that z = G(w;u) for some w ∼ qW as per the sampling procedure (4), we can rewrite the above objective
instead as an expectation over qW,U (using LOTUS) to obtain

L(x) = E(w,u)∼qW,U

[
log

pX,Z(x,G(w;u)) · rU |Z(u | G(w;u))

qW (w) · qU |W (u | w) · | det DwG(w;u)|−1

]
,

since DzG
−1 (G(w;u);u) = DwG(w;u), which recovers (9).

B MULTI-LAYER DENSITY AND OBJECTIVE FUNCTION

This section is much like the previous section, except this time for the multi-layer model. We demonstrate how to recursively
calculate the density and provide the objective function for a multi-layer model in both the un-amortized and amortized
settings.

Recursive multi-layer density We can derive the full joint density qZ,U1:L
by first considering an intermediate density

qW`,U1:`
for ` ∈ {1, . . . , L}, then integrating over the variable W`−1:

qW`,U1:`
(w`, u1:`) =

∫
qW`,U`,W`−1,U1:`−1

(w`, u`, w`−1, u1:`−1) dw`−1

=

∫
qW`−1,U1:`−1

(w`−1, u1:`−1) · qU`|W`−1
(u` | w`−1) · δ(w` −G`(w`−1;u`)) dw`−1,

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Anthony Caterini <anthony.caterini@stats.ox.ac.uk>?Subject=Your UAI 2021 paper

where in the second line we use the fact that U` is conditionally independent of U1:`−1 given W`−1 (note that this fact
is also used to derive the structure of the auxiliary posterior qU1:L|Z), and the base case of the recursion is given by
qW0,U1:0

(w0,−) := qW0
(w0). Now, as in the previous section, we use the change of variable w`−1 = G−1` (w′`;u`) to obtain

dw`−1 = |det Dw`G
−1
` (w′`;u`)|dw′`, and thus

qW`,U1:`
(w`, u1:`) = qW`−1,U1:`−1

(
G−1` (w`;u`), u1:`−1

)
· qU`|W`−1

(
u`|G−1` (w`;u`)

)
· | det Dw`G

−1
` (w`;u`)|.

We obtain our full inference model as the Lth step of the recursion, i.e. qZ,U1:L
≡ qWL,U1:L

.

Multi-layer objective function Given our joint model qZ,U1:L
and the factorized auxiliary inference model rU1:L|Z from

(8), we can write the objective function from (2) as

L(x) = E(z,u1:L)∼qZ,U1:L

[
log

pX,Z(x, z) · rU1:L|Z(u1:L | z)
qZ,U1:L

(z, u1:L)

]
.

However, as in the single-layer case, it is difficult to calculate unbiased gradients of the objective – as written in this form
– with respect to the parameters of the bijections G`, as these bijections are also appearing in the distribution over which
we take the expectation. Thus we write w` = G`(w`−1;u`) recursively for ` ∈ {1, . . . , L}, with z := wL, to rewrite the
objective function instead as an expectation over qW0,U1:L

(u1:L, w0) := qW0(w0) ·
∏L
`=1 qU`|W`−1

(u`|w`−1) as below:

L(x) = E(w0,u1:L)∼qW0,U1:L

[
log

pX,Z(x, z) ·
∏L
`=1 rU`|W`

(u` | w`)
qW0

(w0) ·
∏L
`=1

{
qU`|W`−1

(u` | w`−1) · | det Dw`−1
G`(w`−1;u`)|−1

}]

= E(w0,u1:L)∼qW0,U1:L

[
− log qW0

(w0) +

L∑
`=1

log
rU`|W`

(u` | w`) · | det Dw`−1
G`(w`−1;u`)|

qU`|W`−1
(u` | w`−1)

+ log pX,Z(x, z)

]
.

(1)

The form of objective given in (1) demonstrates how Algorithm 1 works: initialize with − log qW0(w0), collect r`,DG`,
and q` terms at each step `, and then finish by evaluating the joint target at the realized z value.

Amortization When using amortization, we can redefine the generative process (7) given X as follows:

W0 ∼ qW0|X(· | X), U` ∼ qU`|W`−1
(· |W`−1), W` = G`(W`−1;U`),

where Z := WL. Now, additionally conditioning our auxiliary inference model rU1:L|Z,X on X , we can write the objective
(1) for the amortized case as

L(x) = E(w0,u1:L)∼qW0,U1:L|X

[
− log qW0|X(w0 | x) +

L∑
`=1

log
rU`|W`,X(u` | w`, x) · | det Dw`−1

G`(w`−1;u`)|
qU`|W`−1

(u` | w`−1)
+ log pX,Z(x, z)

]
.

(2)

Multi-layer CIF as a single-layer CIF Lastly, we show here how the multi-layer model (7) corresponds to an instance of
(4) for an L-layered extended space and bijection (as per Cornish et al. (2020, Section 3.1)): first define G`(·;u1, . . . , u`) :=
G`(·;u`) ◦ · · · ◦G1(·;u1), and then take W := W0, U := U1, . . . , UL), qU |W (u | w) :=

∏
` qU`|W`−1

(
u` | G`(w;u1:`)

)
,

and G := GL in (4) to arrive at (7).

C CONTINUOUSLY-INDEXED FLOWS VERSUS BASELINE NORMALIZING FLOWS

Here, we provide a proof of Proposition 3.1. Throughout the proof, we consider x such that Lφ2 (x) ≥ Lψ2 (x) as per our
assumption.

Let us first denote the normalizing flow objective (11) as L1. It is not hard to show that Lψ2 reduces to L1:

Lψ2 (x) = E(w,u)∼qφW,U

[
log

pX,Z(x,Gψ(w;u)) · rU |Z(u | Gψ(w;u))

qW (w) · qψU |W (u | w) · | det DwGψ(w;u)|−1

]
,

= Ew∼qW Eu∼ρ
[
log

pX,Z(x, g(w)) · ρ(u)

qW (w) · ρ(u) · | det Dg(w)|−1

]
= L1(x).

From (3), we also know that
Ez∼qφZ

[
log pX,Z(x, z)− log qφZ(z)

]
≥ Lφ2 (x),

as the left-hand-side is the intractable marginal ELBO obtained when using qφZ(z) :=
∫
qφZ,U (z, u) du as the variational

distribution.

We get the final result by exploiting the standard relationship between the ELBO and the KL divergence:

DKL

(
qφZ || pZ|X(·|x)

)
= log pX(x)− Ez∼qφZ

[
log pX,Z(x, z)− log qφZ(z)

]
≤ log pX(x)− Lφ2 (x)

≤ log pX(x)− L1(x)

= DKL
(
g#qW || pZ|X(·|x)

)
.

D RELATIONSHIP BETWEEN CONTINUOUSLY-INDEXED FLOWS FOR DENSITY
ESTIMATION AND VARIATIONAL INFERENCE

When we are using CIFs for density estimation, we can write the single-layer generative process as

Z ∼ rZ , U | Z ∼ rU |Z(· | Z), X = G−1(Z;U),

so that rX(x) =
∫
rX,U (x, u) du is the proposed density model of a dataset D = {xi}Ni=1, with

rX,U (x, u) = rZ(G(x;u)) · rU |Z(u | G(x;u)) · | det DG(x;u)|.

Our goal is to maximize the average likelihood of rX(x) over the dataset, i.e. max 1
N

∑N
i=1 log rX(xi). However, since rX

is intractable, we must introduce a reparametrizable inference distribution qU |X and instead maximize the ELBO, given here
for a datapoint x ∈ D:

L(x) = Eu∼qU|X(·|x)
[
log rX,U (x, u)− log qU |X(u | x)

]
. (3)

Note that instead of maximizing the average of (3) over the dataset, we could instead theoretically maximize the average of
(3) over the unknown “true” data-generating distribution – here denoted q∗X – which admits the objective maxEq∗X L(x).
Maximizing this objective is equivalent to maximizing

Ex∼q∗X [L(x)]− Ex∼q∗X [log q∗X(x)] (4)

since q∗X is independent of the parameters of the model. If we substitute (3) into this expression and expand the definition
for rX,U , we have

Ex∼q∗X [L(x)]− Ex∼q∗X [log q∗X(x)]

= Ex∼q∗X
[
Eu∼qU|X(·|x)

[
log rX,U (x, u)− log qU |X(u | x)

]
− log q∗X(x)

]
= Ex∼q∗X

[
Eu∼qU|X(·|x)

[
log rZ(G(x;u)) + log rU |Z(u | G(x;u)) + log |det DxG(x;u)| − log qU |X(u | x)

]
− log q∗X(x)

]
= E(x,u)∼qX,U

[
log

rZ(G(x;u)) · rU |Z(u | G(x;u))

q∗X(x) · qU |X(u | x) · | det DxG(x;u)|−1

]
,

which derives (12), where we define qX,U (x, u) := q∗X(x) · qU |X(u | x).

Note also that maximizing (4) is equivalent to minimizing an upper bound on DKL(q∗X || rX):

Ex∼q∗X [log q∗X(x)]− Ex∼q∗X [L(x)] = Ex∼q∗X
[
log q∗X(x)− Eu∼qU|X(·|x)

[
log rX,U (x, u)− log qU |X(u | x)

]]
≥ Ex∼q∗X [log q∗X(x)− log rX(x)] (Jensen)

= DKL(q∗X || rX) .

This is not surprising but at least motivates the use of (4) as a theoretical objective.

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 0.1; ELBO = -0.064

0.000

0.024

0.048

0.072

0.096

0.120

0.144

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 0.1; ELBO = -0.064

0.000

0.024

0.048

0.072

0.096

0.120

0.144

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 0.1; ELBO = -0.168

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 0.1; ELBO = -0.560

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 0.1; ELBO = -0.212

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 0.1; ELBO = -1.252

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: All runs of the mixture of Gaussians experiment for σ0 = 0.1. CIF models are in the top row, NSF models in the
bottom row.

E FURTHER EXPERIMENT DETAILS

We have included all details about the experiments from the main text in this section. We first include the approximate
posterior plots from all runs of the K = 9 mixture of Gaussians experiment and not just the best of three random seeds. We
next discuss the setup of both the image and mixture of Gaussians problems, then the specific structures used to build the
baseline flow models, CIF extensions, and VAE models, then discuss the details of the optimization, and finally describe the
log-likelihood estimator used to generate the values in Table 1.

E.1 MORE 2D MIXTURE PLOTS

We have included visualizations of the trained approximate posteriors for all three runs of each setting of σ0 in Figure 1,
Figure 2, and Figure 3. We notice consistently better performance from the trained CIF models, with the CIFs learning to
cover the modes in all cases.

E.2 SETUP OF SPECIFIC PROBLEMS

E.2.1 Mixture of Gaussians Experiment

First of all, we note that the Mixture of Gaussians experiment may seem a bit unusual because we directly define the
posterior and have no actual “data” x in the problem. However, we can easily imagine a Bayesian generative process which
would essentially create such a posterior:

z ∼
∑
k

αk · N (µk,Σk), xi
i.i.d.∼ N (z,Σ).

Then, pZ|X1:n
(· | x1:n) =

∑
k ωk(x1:n) · N (µ̃k(x̄), Σ̃k) is another mixture of Gaussians for some weights ωk and modified

parameters µ̃k, Σ̃k. Instead of defining the model in this way, we just directly specify the posterior as a mixture of Gaussians
and perform inference.

For the K = 9 experiment, we evenly space the means out in a lattice within the [−2, 2]2 square, i.e. {µk}9k=1 :=
{−2, 0, 2} × {−2, 0, 2}, and we select Σk := 1

42 I for all k ∈ {1, . . . ,K} so that the components had enough separation.

For the K = 16 experiment, we again evenly space the means out in a lattice, but this time within the [−3, 3]2 square, i.e.
{µk}16k=1 := {−3,−1, 1, 3} × {−3,−1, 1, 3}, and again set Σk := 1

42 I for all k ∈ {1, . . . ,K}.

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 1; ELBO = -0.035

0.000

0.018

0.036

0.054

0.072

0.090

0.108

0.126

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 1; ELBO = -0.092

0.000

0.024

0.048

0.072

0.096

0.120

0.144

0.168

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 1; ELBO = -0.025

0.000

0.016

0.032

0.048

0.064

0.080

0.096

0.112

0.128

0.144

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 1; ELBO = -0.108

0.000

0.016

0.032

0.048

0.064

0.080

0.096

0.112

0.128

0.144

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 1; ELBO = -0.028

0.000

0.016

0.032

0.048

0.064

0.080

0.096

0.112

0.128

0.144

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 1; ELBO = -0.064

0.000

0.024

0.048

0.072

0.096

0.120

0.144

Figure 2: All runs of the mixture of Gaussians experiment for σ0 = 1. CIF models are in the top row, NSF models in the
bottom row.

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 10; ELBO = -0.048

0.000

0.024

0.048

0.072

0.096

0.120

0.144

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 10; ELBO = -1132.121

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 10; ELBO = -0.042

0.000

0.016

0.032

0.048

0.064

0.080

0.096

0.112

0.128

0.144

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 10; ELBO = -1144.306

0.0000

0.0003

0.0006

0.0009

0.0012

0.0015

0.0018

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 10; ELBO = -0.035

0.000

0.024

0.048

0.072

0.096

0.120

0.144

3 2 1 0 1 2 3
3

2

1

0

1

2

3 0 = 10; ELBO = -1131.108

0.0000

0.0003

0.0006

0.0009

0.0012

0.0015

0.0018

Figure 3: All runs of the mixture of Gaussians experiment for σ0 = 10. CIF models are in the top row, NSF models in the
bottom row.

Table 1: Hyperparameters used in the MAF bijections throughout the paper.

Hyperparameter Value

Flow steps 5
Autoregressive networks 512× 2 for Large MAF, 420× 2 for all others (including CIF-MAF)
Batch normalization True for MAFs, False for CIF-MAFs

Table 2: Hyperparameters used in the NSF bijections throughout the paper. Parameters have the same meaning as those from
Durkan et al. (2019, Table 5), although we have additionally noted the tail bound used for the splines.

Hyperparameter Value

Flow steps 5 for Gaussian mixture, 10 for images
Residual blocks 2
Hidden features 44 for Large NSF, 32 for all others (including CIF-NSF)
Bins 8
Dropout 0.0
Tail bound (B) 3

E.2.2 Image Experiment

We first re-iterate that we set nZ := 20 for the small decoder, and nZ := 32 for the large one, so that Z := RnZ .

The small decoder is a single-hidden-layer transposed convolutional network. It applies a fully-connected layer with tanh
nonlinearity to transform the nZ-dimensional latent variables into 8 feature maps of size 14 × 14, and then applies a
zero-padded transposed convolution with a 4× 4 kernel and stride of 2 to project into size 1× 28× 28 (the same size as the
MNIST or Fashion-MNIST data). We use this output to directly parametrize the logits of a Bernoulli distribution.

The large decoder exactly matches the form from Durkan et al. (2019); indeed, we simply used the ConvDecoder directly
from their codebase (https://github.com/bayesiains/nsf).

We use the standard train/test split for both MNIST and Fashion-MNIST, with 60,000 training points and 10,000 test points
in each dataset. Of the 60,000 training points in each, we set aside 10% as validation points for early stopping.

E.3 MODEL DETAILS

Here we discuss the details of the models used. We note that all of the MAF, NSF, CIF-MAF, and CIF-NSF models use a
distribution specified by the VAE encoder (Subsubsection E.3.4) as the initial distribution qW |X for the image experiments.

E.3.1 Masked Autoregressive Flow Bijection Settings

We note the hyperparameter settings that we used for the masked autoregressive flow bijections throughout the paper in
Table 1. We insert batch normalization layers between flow steps in the MAF models as per the recomnmendation of
Papamakarios et al. (2017), but do not use them in CIFs as the form of G` makes them unnecessary.

E.3.2 Neural Spline Flow Bijection Settings

We note the hyperparameter settings that we used for the neural spline flow bijections throughout the paper in Table 2. We
clip the gradients at a norm of 5 in all models using NSF bijections as recommended by Durkan et al. (2019).

https://github.com/bayesiains/nsf

E.3.3 Continuously-Indexed Flow Settings

In this section, we describe the network configurations and hyperparameter settings that we use for the CIF extensions to
the NSF bijections. Beyond what is required for the baseline flow, a multi-layer CIF additionally requires definitions of
qU`|W`−1

, rU`|W`
(rU`|W`,X when amortized), and s`, t` (from (6)) for ` ∈ {1, . . . , L}, which we describe below.

For all experiments, we define the densities qU`|W`−1
(· | w) := N

(
µu` (w), diag (σu` (w)2)

)
for all ` ∈ {1, . . . , L} and

w ∈ Z , where µu` (w) and σu` (w) are outputs of the same neural network: a 2-hidden-layer MLP with 10 hidden units in
each layer. Similarly, s` and t` are two outputs of a 2-hidden-layer MLP with 10 hidden units in each layer.

The auxiliary inference model for the Gaussian mixture experiment is essentially the same as q above: rU`|W`
(· | w) :=

N
(
µr`(w), diag (σr` (w)2)

)
for all ` ∈ {1, . . . , L} and w ∈ Z , where µr`(w) and σr` (w) are outputs of a 2-hidden-layer

MLP with 10 hidden units in each layer.

For the image experiment, the auxiliary inference model is now amortized, with rU`|W`,X(· | w, x) :=

N
(
µr`(w, x), diag (σr` (w, x)2)

)
for all ` ∈ {1, . . . , L}, w ∈ Z , and x ∈ X , where µr`(w, x) and σr` (w, x) are again

two outputs of the same neural network. However, this network has a more complicated structure as it is taking in both
vector-valued and image-valued inputs; we describe the steps of the network in the list below:

1. Use a linear layer to project w into a shape amenable to upsampling into an image channel (here we selected 1× 7× 7
as this shape).

2. Bilinearly upsample by a factor of 4 to size 1× 28× 28 and append as an additional channel to the input x to get a new
input x̃ ∈ R2×28×28.

3. Feed x̃ into a network of the same form as the VAE encoder in Subsubsection E.3.4.

The encoder will output the parameters of the normal distribution as required. We note that the linear layer step could likely
be made more parameter-efficient (e.g. map to 1× 4× 4 and upsample by a factor of 7), and there are likely other ways to
combine vector-valued w and image-valued x more sensibly. Nevertheless, the design choices made here performed well in
practice.

We also need to specify the u dimension for a CIF: we add u ∈ R at each layer for the Gaussian mixture example, and
u ∈ R2 for the image datasets. This provides a total u dimension of 5 for the Gaussian mixture example, 10 for the CIF-MAF,
and 20 for the CIF-NSF.

E.3.4 VAE Encoder Settings

The structure of the encoder used in the VAE model essentially mirrors the structure of the small decoder network from
Subsubsection E.2.2. In particular, given a 1× 28× 28 image, a zero-padded convolution is performed using a 4× 4 filter
and stride length 2 with the tanh nonlinearity applied afterwards, outputting 8 feature maps each of size 14× 14. Then,
a fully-connected linear layer is applied to map the feature maps to an output which is two times the size of the latent
dimension, giving us the mean and (log) standard deviation of the approximate posterior.

E.4 OPTIMIZATION HYPERPARAMETERS

Table 3 notes the parameters used for optimizing the models across experiments. There are a few things to note:

1. An “epoch” for the mixture of Gaussians example is simple a single stochastic optimization step for a specified number
of samples from the approximate posterior since there is no “data” in this example.

2. None of the image experiments actually reached the maximum number of epochs.

3. The hyperparameter choices below were essentially default choices.

E.5 ESTIMATION OF MARGINAL LOG-LIKELIHOOD

To generate the log-likelihood outputs in Table 1, we use an importance-sampling-based estimate as in e.g. Rezende et al.
(2014, Appendix E) for each run, and then average the results of this estimator across three runs. Specifically, given the test

Table 3: Optimization hyperparameters used for each experiment. Note that an “epoch” for the mixture of Gaussians example
is simply a single optimization step for a specified number of samples, as there is no “data”.

Hyperparameter Mixture of Gaussians Images

Learning rate 10−3 10−3

Weight decay 0 0
Training batch size N/A 100
q samples per step 1,000 1
Early stopping No Yes
Early stopping epochs N/A 50
Maximum epochs 20,000 1,000

Table 4: Average variance in log-likelihood estimators across models and datasets for the small decoder experiment. For
each run of a particular model on a particular dataset, we calculate the estimator (either (5) or (6)) 3 separate times, and
calculate the empirical variance across the outputted estimates. Then we average this variance across the original 3 runs for
each model-dataset combination, arriving at the numbers in the table. For example, we have 3 Small VAE models trained
with different random seeds on the MNIST dataset. For each of these models, we first calculate (5) three separate times
obtaining the empirical variance of these estimates, and then we average the empirical variances across the 3 Small VAE
models trained with different random seeds.

Model MNIST Fashion-MNIST

Small VAE 2.60× 10−3 2.51× 10−3

Small MAF 2.85× 10−3 6.77× 10−3

Large MAF 2.59× 10−3 4.93× 10−3

CIF-MAF 2.38× 10−3 6.45× 10−4

Small NSF 2.78× 10−4 3.84× 10−3

Large NSF 1.84× 10−3 2, 27× 10−3

CIF-NSF 9.78× 10−4 4.47× 10−3

dataset Dtest = {xi}Ntest
i=1 and a number of samples S, the average log-likelihood for a single run is given by

1

Ntest

Ntest∑
i=1

log

(
1

S

S∑
s=1

pX,Z(xi, z
(s)
i)

qZ|X(z
(s)
i | x)

)
, where z(s)i ∼ qZ|X(· | xi), (5)

for explicit models qZ|X (e.g. VAEs and normalizing flows), and

1

Ntest

Ntest∑
i=1

log

(
1

S

S∑
s=1

pX,Z(xi, z
(s)
i) · rU |Z,X(u

(s)
i | z

(s)
i , xi)

qZ,U |X(z
(s)
i , u

(s)
i | x)

)
, where z(s)i , u

(s)
i ∼ qZ,U |X(·, · | xi), (6)

for implicit models qZ,U |X (e.g. CIFs). We take S = 1000 in practice, finding that this provides adequately low-variance
estimators as noted in Table 4.

F FURTHER DETAILS ON THE MARGINAL ELBO ESTIMATOR

Here is the full version of the (positively) biased, but still consistent, estimator of (2) described in Subsection 4.1:

L̂(x) :=
1

N

N∑
i=1

log pX,Z(x, zi)− log

 1

M

M∑
j=1

qZ,U (zi, ui,j)

rU |Z(ui,j | zi)


 , (7)

Table 5: Average plus/minus standard deviation of 20 estimates of the marginal ELBO (7) from a single trained model of
the mixture of Gaussians experiment. We vary the values of N and select M as either a linear (M = N) or square-root
(M =

√
N) function of N . We include Monte Carlo estimates of the auxiliary ELBO from the sample of zi for reference.

N
M = N M =

√
N

Marginal Auxiliary Marginal Auxiliary

1 −0.213± 0.665 −0.237± 0.668 −0.302± 0.361 −0.317± 0.363
5 −0.165± 0.180 −0.166± 0.183 −0.178± 0.221 −0.186± 0.223
10 −0.189± 0.180 −0.190± 0.187 −0.156± 0.136 −0.160± 0.145
50 −0.190± 0.078 −0.198± 0.076 −0.162± 0.094 −0.167± 0.096
100 −0.177± 0.057 −0.182± 0.059 −0.181± 0.056 −0.185± 0.053
500 −0.176± 0.022 −0.180± 0.022 −0.172± 0.018 −0.177± 0.019
1,000 −0.160± 0.018 −0.165± 0.019 −0.169± 0.020 −0.174± 0.020
5,000 −0.169± 0.006 −0.174± 0.006 −0.174± 0.006 −0.179± 0.006
10,000 −0.171± 0.006 −0.175± 0.006 −0.170± 0.005 −0.175± 0.005
50,000 −0.169± 0.002 −0.174± 0.002 −0.170± 0.002 −0.175± 0.002

where (zi, u
′
i)

i.i.d.∼ qZ,U for i ∈ {1, . . . , N}, and for each i, ui,j
i.i.d.∼ rU |Z(· | zi) for j ∈ {1, . . . ,M}. We need to be careful

to make M large enough so that our estimates are not too biased, and at the same time make N large enough so that our
estimates are not dominated by variance. We explore the relationship between values of the estimator (7) for a single trained
model, and the settings of M and N in Table 5. For N = 10,000 and M = 100, we have both acceptably low variance and
low bias as the estimator appears to not be significantly lowered by increasing M .

	Single-Layer Density and Objective Function
	Multi-layer Density and Objective Function
	Continuously-Indexed Flows Versus Baseline Normalizing Flows
	Relationship between Continuously-Indexed Flows for Density Estimation and Variational Inference
	Further Experiment Details
	More 2D Mixture Plots
	Setup of Specific Problems
	Mixture of Gaussians Experiment
	Image Experiment

	Model Details
	Masked Autoregressive Flow Bijection Settings
	Neural Spline Flow Bijection Settings
	Continuously-Indexed Flow Settings
	VAE Encoder Settings

	Optimization Hyperparameters
	Estimation of Marginal Log-Likelihood

	Further Details on the Marginal ELBO Estimator

