
Combinatorial Semi-Bandit in the Non-Stationary Environment Supplementary
Material

Wei Chen1,* Liwei Wang2 Haoyu Zhao3 Kai Zheng4

1Microsoft Research, Beijing, China. weic@microsoft.com
2Key Laboratory of Machine Perception, MOE, School of EECS,

Center for Data Science, Peking University, Beijing, China. wanglw@cis.pku.edu.cn
3 Princeton University, NJ, USA. haoyu@princeton.edu

4Kuaishou Inc., Beijing, China. zhengk92@gmail.com
*Alphabetic orderAPPENDIX

1 OMITTED PROOFS IN SECTION 3

In this section, we give the performance guarantees of our algorithm CUCB-SW and CUCB-BoB in the general case. We
first give some definitions and prove some basic lemmas in the first part. Then, as a warm up, we prove the corresponding
result of Theorem 1 in main content without the probabilistically triggered arms (Theorem 1 in appendix). Next, we prove
Theorem 1 in main content with probabilistically triggered arms (Theorem 2 in appendix). Finally, we prove Theorem 2 in
main content (Theorem 3 in appendix), which applies the Bandit-over-Bandit technique to achieve parameter-free.

1.1 FUNDAMENTAL DEFINITIONS AND TOOLS

First, we define the event-filtered regret. Generally speaking, it is the regret when some event happens.

Definition 1 (Event-Filtered Regret). For any series of events {Et}t≥1 indexed by round number t, we define
RegAα (T, {Et}t≥1) as the regret filtered by events {Et}t≥1, that is, regret is only counted in round t if Et happens in
round t. Formally,

RegAα (T, {Et}t≥1) = E

[
T∑
t=1

I{Et}(α · optµt − rµt(S
A
t )

]
.

For convenience, A, α, or T can be omitted when the context is clear, and we simply use RegAα (T, Et) instead of
RegAα (T, {Et}t≥1).

Then, we define two important events that will use in the event-filtered regret. The two events are Sampling is Nice
(Definition 2 and Triggering is Nice (Definition 5. We will also show that these two events happen with high probability.
The following propositions, definitions, and lemmas are all related with these two definitions.

Proposition 1 (Hoeffding Inequality). Suppose Xi ∈ [0, 1] for all i ∈ [n] and Xi are independent, then we have

Pr

{∣∣∣∣ 1n
n∑
i=1

Xi − E

[
1

n

n∑
i=1

Xi

] ∣∣∣∣ ≥ ε
}
≤ 2 exp

(
−2nε2

)
.

Definition 2 (Sampling is Nice). We say that the sampling is nice at the beginning of round t if for any arm i ∈ [m], we

have |µ̂i,t − νi,t| < ρi,t, where ρi,t =
√

3 lnT
2Ti,t

(∞ if Ti,t = 0) and µ̂i,t are defined in the algorithm, and

νi,t =
1

Ti,t

t−1∑
s=t−w+1

I {i is triggered at time s}µi,t.

If i is not triggered during time (t− w, t− 1], we define νi,t = µi,t. We use N s
t to denote this event.
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We have the following lemma saying that N s
t is a high probability event.

Lemma 1. For each round t ≥ 1, Pr{¬N s
t } ≤ 2mT−2.

Proof. The proof is a direct application of Hoeffding inequality and a union bound. First when Ti,t = 0, we have ρi,t =∞
and the event N s

t happens. We first have

Pr{¬N s
t } = Pr{∃i ∈ [m], |µ̂i,t − νi,t| ≥ ρi,t}

≤
m∑
i=1

Pr{|µ̂i,t − νi,t| ≥ ρi,t}

=

m∑
i=1

Pr

{
|µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

}

=

m∑
i=1

Γt∑
k=1

Pr

{
Ti,t = k, |µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

}
.

Then, by the conditional probability and the Hoeffding inequality, we have

Pr

{
Ti,t = k, |µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

}

= Pr{Ti,t = k}Pr

{
|µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

∣∣∣∣Ti,t = k

}

≤Pr{Ti,t = k}2 exp

(
−2k

3 lnT

2k

)
≤2 exp

(
−2k

3 lnT

2k

)
=

2

T 3
.

Then we know that

Pr{¬N s
t } ≤

m∑
i=1

Γt∑
k=1

Pr

{
Ti,t = k, |µ̂i,t − νi,t| ≥

√
3 lnT

2Ti,t

}

≤
m∑
i=1

Γt∑
k=1

2

T 3

≤
m∑
i=1

t∑
k=1

2

T 3

=2mT−2.

Proposition 2 (Multiplicative Chernoff Bound). Suppose Xi are Bernoulli variables for all i ∈ [n] and
E[Xi|X1, . . . , Xi−1] ≥ µ for every i ≤ n. Let Y = X1 + · · ·+Xn, then we have

Pr {Y ≤ (1− δ)nµ} ≤ exp

(
−δ

2nµ

2

)
.

Definition 3 (Triggering Probability (TP) Group). Let i be an arm and j be a positive natural number, define the triggering
probability group (of actions)

Gi,j = {SD ∈ S× D|2−j < pD,Si ≤ 2−j+1}.



Definition 4 (Main content definition 3 restated). Given the sliding window size w of the algorithm, in a run of the algorithm,
we define the counter Ni,j,t as the following number

Ni,j,t :=

t∑
s=max{t−w+1,0}

I
{

2−j < pDs,Ssi ≤ 2−j+1
}
.

Definition 5 (Triggering is Nice). Given integers {jimax}i∈[m], we call that the triggering is nice at the beginning of round t
if for any arm i and any 1 ≤ j ≤ jimax, as long as 6 ln t ≤ 1

3Ni,j,t−1 · 2−j , we have

Ti,t−1 ≥
1

3
Ni,j,t−1 · 2−j .

We use N t
t to denote this event.

Lemma 2. Given a series of integers {jimax}i∈[m], we have for every round t ≥ 1,

Pr{¬N t
t } ≤

∑
i∈[m]

jimaxt
−2.

This lemma is exactly the same as Lemma 4 in Wang and Chen [2017]. The proof is a direct application of the Multiplicative
Chernoff Bound. We omit the proof here.

Finally, we extend the definition of gap for the ease of the analysis. First recall that we have the following definition of gap.

Definition 6 (Main content definition 2 restated). For any distribution D with mean vector µ. For each action S, we define
the gap ∆D

S := max{0, α · optµ − rS(µ)}. For each arm i, we define

∆i,t
min = inf

S∈S:p
Dt,S
i >0,∆

Dt
S >0

∆Dt
S ,

∆i,t
max = sup

S∈S:p
Dt,S
i >0,∆

Dt
S >0

∆Dt
S .

We define ∆i
min = +∞ and ∆i

max = 0 if they are not properly defined by the above definitions. Furthermore, we define
∆i

min := mint≤T ∆i,t
min, ∆i

max := maxt≤T ∆i,t
max as the minimum and maximum gap for each arm.

The previous definition of gap focus on a single distribution and a single arms. Furthermore, we define ∆t
min :=

infi∈[m] ∆i,t
min, ∆t

max := supi∈[m] ∆i,t
max as the minimum and maximum gap in each round, and ∆min :=

inft≤T ∆t
min,∆max := supt≤T ∆t

max as the minimum and maximum gap.

1.2 NON-STATIONARY CMAB WITHOUT PROBABILISTICALLY TRIGGERED ARMS

As a warm up, we first consider the case without the probabilistically triggered arms, i.e. pD,Si ∈ {0, 1}. Then S̃D = S and
we denote K = maxS |S|. Then, the TPM bounded smoothness becomes the following,

Assumption 1 (1-Norm Bounded Smoothness). For any two distributions D,D′ with expectation vectors µ and µ′ and any
action S, we have

|rS(µ)− rS(µ′)| ≤ B
∑
i∈S
|µi − µ′i|.

We define the following number:

κT (M, s) =


2B
√

6 lnT , if s = 0,

2B

√
6 lnT

s
, if 1 ≤ s ≤ `T (M),

0, if s ≥ `T (M) + 1,



where

`T (M) =

⌊
24B2K2 lnT

M2

⌋
.

Generally speaking, we bridge the regret and the upper bound by this number, and we use the technique similar to that in
Wang and Chen [2017].

Lemma 3. Suppose that the sliding window size is w. For any arm i ∈ [m], any T , and any numbers {Mi}i≤m,

T∑
t=1

I(i ∈ St) · κT (Mi, Ti,t) ≤
(
T

w
+ 1

)(
2B
√

6 lnT +
48B2K lnT

Mi

)
.

Proof. We devide the time {1, 2, . . . , T} into the following Γ segments [1 = t0 + 1, w = t1], [w + 1 = t1 + 1, 2w =
t2], . . . , [tΓ−1 + 1, tΓ = T ], where tj−1 = tj − w. Each segment has length w, except for the last segment. It is easy to
show that Γ ≤

⌈
T
w

⌉
.

Then we bound
∑T
t=1 I(i ∈ St)·κT (Mi, Ti,t). We first define another variable T ′i,t for every i, t. Suppose that tj−1 < t ≤ tj ,

which means that t lies in the jth time segment, let T ′i,t denote the number of times arm i has been triggered in time
[tj−1 + 1, t− 1].

Then we know that Ti,t ≥ T ′i,t, since the counter T ′i,t counts the triggered times in a time interval which is a subset of the
time interval for Ti,t. Because κT (M, s) is decreasing when s is increasing, we know that

T∑
t=1

I(i ∈ St) · κT (Mi, Ti,t) ≤
T∑
t=1

I(i ∈ St) · κT (Mi, T
′
i,t)

Then we bound the right hand side, and we have

T∑
t=1

I(i ∈ St) · κT (Mi, T
′
i,t) =

Γ∑
j=1

tj∑
t=tj−1+1

I(i ∈ St) · κT (Mi, T
′
i,t)

≤
Γ∑
j=1

w−1∑
s=0

κT (Mi, s)

≤
Γ∑
j=1

2B
√

6 lnT +

`T (Mi)∑
s=1

κT (Mi, s)


=

Γ∑
j=1

2B
√

6 lnT +

`T (Mi)∑
s=1

2B

√
6 lnT

s


≤

Γ∑
j=1

(
2B
√

6 lnT +

∫ `T (Mi)

0

2B

√
6 lnT

s
ds

)

≤
Γ∑
j=1

(
2B
√

6 lnT + 4B
√

6 lnT`T (Mi)
)

≤
Γ∑
j=1

(
2B
√

6 lnT + 4B

√
6 lnT

24B2K2 lnT

M2
i

)

≤
(
T

w
+ 1

)(
2B
√

6 lnT +
48B2K lnT

Mi

)
.

Then, we have the following simple lemma to bound the difference between the true mean of each round and the actual mean
for the round that we trigger. The lemma is simple to proof, and a detailed proof can be found in Zhao and Chen [2019].



Lemma 4. Suppose that the size of the sliding window is w. For every t and every possible triggering, we have

||νt − µt||∞ ≤
t∑

s=t−w+2

||µs − µs−1||∞.

Denote ∆t
S as ∆DtS for simplicity. At round t with action St, we use ∆St for short.

Lemma 5. Suppose that the size of the sliding window is w and fix the parameters Mi for each i ∈ [m] and defining
MSt = maxi∈StMi. Then we have

Reg({∆t
St ≥MSt}∧N s

t ∧¬Ft) ≤
∑
i∈[m]

(
T

w
+ 1

)(
2B
√

6 lnT +
48B2K lnT

Mi

)
+2(1+α)KB

t∑
s=2

||µs−µs−1||∞ ·w.

where Ft is denoted as the event that {rSt(µ̄t) < α · optµ̄t}

Proof. From the assumption of our oracle, we know that Pr{Ft} ≤ 1 − β. We also define MS = maxi∈S̄Mi for each
possible action S, and use define MS = 0 if S̄ = φ. We first show that when {∆t

St
≥MSt},N s

t ,¬Ft all happens, we have

∆t
St ≤

∑
i∈S̄t

κT (Mi, Ti,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

First when ∆t
St

= 0, the inequality holds, and we just have to prove the case when ∆t
St
> 0. Let R1 denote the optimal

strategy when the mean vector is µ′t in which the i-th entry is µ′i,t = min{νi,t +
∑t
s=t−w+2 ||µs − µs−1||∞, 1}. Then we

know that µ′i,t ≥ µi,t. From N s
t and ¬Ft, we have

rSt(µ̄t) ≥α · optµ̄t ≥ α · rR1
(µ̄t) ≥ α · rR1

(νt)

≥α · rR1
(µ′t)− αKB

t∑
s=t−w+2

||µs − µs−1||∞

≥α · optµt − αKB
t∑

s=t−w+2

||µs − µs−1||∞

=rSt(µt) + ∆t
St − αKB

t∑
s=t−w+2

||µs − µs−1||∞

≥rSt(νt) + ∆t
St − (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞,

so we get

∆St ≤rSt(µ̄t)− rSt(νt) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤B
∑
i∈St

(µ̄i,t − νi,t) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.



Then when {∆t
St
≥MSt},N s

t ,¬Ft all happens, we have

∆t
St ≤B

∑
i∈St

(µ̄i,t − νi,t) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤−MSt + 2B
∑
i∈St

(µ̄i,t − νi,t) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈St

(
µ̄i,t − νi,t −

MSt

2B|S̄t|

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈St

(
µ̄i,t − νi,t −

MSt

2BK

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈St

(
µ̄i,t − νi,t −

Mi

2BK

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

By the same proof in Wang and Chen [2017], it can be shown that

2B
∑
i∈St

(
µ̄i,t − νi,t −

Mi

2BK

)
≤
∑
i∈St

κT (Mi, Ti,t−1),

and thus we have

∆t
St ≤

∑
i∈St

κT (Mi, Ti,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

From the previous 2 lemmas, we know that

Reg({∆t
St ≥MSt}∧N s

t ∧¬Ft) ≤
∑
i∈[m]

(
T

w
+ 1

)(
2B
√

6 lnT +
48B2K lnT

Mi

)
+2(1+α)KB

t∑
s=2

||µs−µs−1||∞ ·w.

Theorem 1. Choosing the length of the sliding window to be w = min
{√

T
V , T

}
, we have the following distribution

dependent bound,

Regα,β = Õ

∑
i∈[m]

K
√
V T

∆i
min

+
∑
i∈[m]

K

∆i
min

+mK

 .

If we choose the length of the sliding window to be w = min
{
m1/3T 2/3K−1/3V −2/3, T

}
, we have the following

distribution independent bound,

Regα,β = Õ
(

(mV )1/3(KT )2/3 +
√
mKT +mK

)
.

The proof is the same as the proof of Theorem 2, and we omit the proof here. The only difference is that, without the
probabilistically triggered arms, the constants in Lemma 5 is better than the corresponding lemma with the probabilistically
triggered arms.

1.3 NON-STATIONARY CMAB WITH PROBABILISTICALLY TRIGGERED ARMS

In this part, we consider the case with probabilistically triggered arms. Recall that the we have the main TPM bounded
smoothness assumption,

Assumption 2 (Main content assumption 2 restated). For any two distributions D,D′ with expectation vectors µ and µ′

and any action S, we have
|rS(µ)− rS(µ′)| ≤ B

∑
i∈[m]

pD,Si |µi − µ′i|.



Recall that S̃D = {i ∈ [m] : pD,Si > 0} is the set that can be triggered by action S with distribution D, and we denote
K = maxSD |S̃|. We define the following number:

κj,T (M, s) =


2B
√

72 · 2−j · lnT , if s = 0,

2B

√
72 · 2−j · lnT

s
, if 1 ≤ s ≤ `j,T (M),

0, if s ≥ `j,T (M) + 1,

where

`j,T (M) =

⌊
288 · 2−j ·B2K2 lnT

M2

⌋
.

This number is similar to the number defined in the previous part, but this time, we need to consider the probabilistically
triggered arms. Besides the M, s that are taken as inputs, we also have j and T as parameters.

Lemma 6. If {∆St ≥MSt},¬Ft,N s
t and N t

t hold, we have

∆St ≤
∑
i∈S̃Dtt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞,

where ji is the index of the TP group with SDtt ∈ Gi,ji .

Proof. First, similar to the proof with no probabilistic triggering arms, we use the back amortization trick.

First when ∆St = 0, the inequality holds, and we just have to prove the case when ∆St > 0. Let R1 denote the optimal
strategy when the mean vector is µ′t, where µ′t is the vector constituted by µ′i,t = min{νi,t+

∑t
s=t−w+2 ||µs−µs−1||∞, 1}.

Then we know that µ′i,t ≥ µi,t. From N s
t and ¬Ft, we have

rSt(µ̄t) ≥α · optµ̄t ≥ α · rR1(µ̄t) ≥ α · rR1(νt)

≥α · rR1
(µ′t)− αKB

t∑
s=t−w+2

||µs − µs−1||∞

≥α · optµt − αKB
t∑

s=t−w+2

||µs − µs−1||∞

=rSt(µt) + ∆St − αKB
t∑

s=t−w+2

||µs − µs−1||∞

≥rSt(νt) + ∆St − (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞,

so we get

∆St ≤rSt(µ̄t)− rSt(νt) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤B
∑
i∈S̃t

pDt,Sti (µ̄i,t − νi,t) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.



Then when {∆t
St
≥MSt},N s

t ,¬Ft all happens, we have

∆St ≤B
∑
i∈S̃t

pDt,Sti (µ̄i,t − νi,t) + (1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤−MSt + 2B
∑
i∈S̃t

pDt,Sti (µ̄i,t − νi,t) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈S̃t

pDt,Sti

(
µ̄i,t − νi,t −

MSt

2B|S̃t|

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈S̃t

pDt,Sti

(
µ̄i,t − νi,t −

MSt

2BK

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞

≤2B
∑
i∈S̃t

pDt,Sti

(
µ̄i,t − νi,t −

Mi

2BK

)
+ 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

Because of N t
t , same as the proof of Lemma 5 of Wang and Chen [2017], we can show that

2B
∑
i∈S̃t

pDt,Sti

(
µ̄i,t − νi,t −

Mi

2BK

)
≤

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1).

In this way, we prove the following inequality

∆St ≤
∑

i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞,

when {∆St ≥MSt},¬Ft,N s
t and N t

t hold.

Then we have the following main lemma to bound the regret with probabilistically triggered arms.

Lemma 7. Suppose that the size of the sliding window is w and fix choose the parameters Mi for each i ∈ [m] and defining
MSt = mini∈ŜMi. Then we have

Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft)

≤
∑
i∈[m]

(
T

w
+ 1

)(
12(2 +

√
2)B
√

lnT +
576B2K lnT

Mi

)
+ 2(1 + α)KB

t∑
s=2

||µs − µs−1||∞ · w.

Proof. From Lemma 6, we know that when {∆Dt
St
≥MSt},¬Ft,N s

t and N t
t hold, we have

∆Dt
St
≤

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

t∑
s=t−w+2

||µs − µs−1||∞.

Then, sum over t = 1, . . . , T , we have

Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) ≤

T∑
t=1

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

T∑
t=1

t∑
s=t−w+2

||µs − µs−1||∞

≤
T∑
t=1

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1) + 2(1 + α)KB

t∑
s=2

||µs − µs−1||∞ · w.

Then we bound the first term. Like the proof without probabilistically triggered arms, we construct another counter N ′i,j,t−1,
which lower bound Ni,j,t−1. We divide the time {1, 2, . . . , T} into the following Γ segments [1 = t0 + 1, w = t1], [w+ 1 =



t1 + 1, 2w = t2], . . . , [tΓ−1 + 1, tΓ = T ], where tj−1 = tj − w. Each segment has length w, except for the last segment. It
is easy to show that Γ ≤

⌈
T
w

⌉
. Suppose that tk−1 < t ≤ tk, then define

N ′i,j,t :=

t∑
s=tk+1

I
{

2−j < pDs,Ssi ≤ 2−j+1
}
.

Because κj,T (M, s) is monotonically decreasing in terms of s, we have

T∑
t=1

∑
i∈(S̃t)Dt

κji,T (Mi, Ni,ji,t−1)

≤
T∑
t=1

∑
i∈(S̃t)Dt

κji,T (Mi, N
′
i,ji,t−1)

≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

tk∑
s=tk−1+1

κj,T (Mi, s− tk−1 − 1)

≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

`j,T (Mi)∑
s=0

κj,T (Mi, s− tk−1 − 1)

≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

2B
√

72 · 2−j · lnT +

`j,T (Mi)∑
s=1

2B

√
72 · 2−j · lnT

s


≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

(
2B
√

72 · 2−j · lnT + 2 · 2B
√

72 · 2−j · lnT ·
√
`j,T (Mi)

)

≤
∑
i∈[m]

Γ∑
k=1

+∞∑
j=1

(
2B
√

72 · 2−j · lnT + 2 · 2B
√

72 · 2−j · lnT ·

√
288 · 2−j ·B2K2 lnT

M2
i

)

≤
∑
i∈[m]

Γ∑
k=1

(
12(2 +

√
2)B ·

√
lnT +

576 ·B2K · lnT
Mi

)

≤
∑
i∈[m]

(
T

w
+ 1

)(
12(2 +

√
2)B ·

√
lnT +

576 ·B2K · lnT
Mi

)
.

Then combining with Lemma 6, we have

Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft)

≤
∑
i∈[m]

(
T

w
+ 1

)(
12(2 +

√
2)B
√

lnT +
576B2K lnT

Mi

)
+ 2(1 + α)KB

t∑
s=2

||µs − µs−1||∞ · w.

Theorem 2 (Main content theorem 1 restated). Choosing the length of the sliding window to be w = min
{√

T
V , T

}
, we

have the following distribution dependent bound,

Regα,β = Õ

∑
i∈[m]

K
√
V T

∆i
min

+
∑
i∈[m]

K

∆i
min

+mK

 .

If we choose the length of the sliding window to be w = min
{
m1/3T 2/3K−1/3V −2/3, T

}
, we have the following

distribution independent bound,

Regα,β = Õ
(

(mV )1/3(KT )2/3 +
√
mKT +mK

)
.



Proof. First, from the definition of the filtered regret, we know that

Reg({}) ≤Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) + Reg({∆Dt

St
< MSt}) + Reg(¬N s

t ) + Reg(¬N t
t ) + Reg(Ft).

The last 3 terms are rather easy to bound, we have

Reg(¬N s
t ) =

T∑
t=1

∆Dt
St

I{¬N s
t } ≤

T∑
t=1

Pr{¬N s
t }∆max ≤

π2

3
m ·∆max

Reg(¬N t
t ) =

T∑
t=1

∆Dt
St

I{¬N t
t } ≤

T∑
t=1

Pr{¬N t
t }∆max ≤

π2

6

∑
i∈[m]

jimax ·∆max

Reg(Ft) =

T∑
t=1

∆Dt
St

I{Ft} ≤
T∑
t=1

Pr{Ft}∆t
max ≤ (1− β) ·

T∑
t=1

∆t
max

We also know that

RegAα,β − Reg({∆Dt
St

< MSt})

=α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSAt (µt)

]
− Reg({∆Dt

St
< MSt})

=Reg({})− (1− β)α ·
T∑
t=1

optµt − Reg({∆Dt
St

< MSt})

≤Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) + Reg(¬N s

t ) + Reg(¬N t
t ) + Reg(Ft)− (1− β)α ·

T∑
t=1

optµt

≤Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) +

π2

3
m ·∆max +

π2

6

∑
i∈[m]

jimax ·∆max

+ (1− β) ·
T∑
t=1

∆t
max − (1− β)α ·

T∑
t=1

optµt

≤Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) +

π2

3
m ·∆max +

π2

6

∑
i∈[m]

jimax ·∆max.

Then we have

RegAα,β ≤ Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft) + Reg({∆Dt

St
< MSt}) +

π2

3
m ·∆max +

π2

6

∑
i∈[m]

jimax ·∆max.

Recall that from Lemma 7,

Reg({∆Dt
St
≥MSt} ∧ N s

t ∧N t
t ∧ ¬Ft)

≤
∑
i∈[m]

(
T

w
+ 1

)(
12(2 +

√
2)B
√

lnT +
576B2K lnT

Mi

)
+ 2(1 + α)KB

t∑
s=2

||µs − µs−1||∞ · w.

For the distribution dependent bound, we choose Mi = ∆i
min. Then, we have ∆Dt

St
≥MSt and Reg({∆Dt

St
< MSt}) = 0.

If we set w = min
{√

T
V , T

}
, we can get

RegAα,β = Õ

∑
i∈[m]

K
√
V T

∆i
min

+
∑
i∈[m]

K

∆i
min

+mK

 .

As for the distribution independent bound, if we set w = min
{
m1/3T 2/3K−1/3V −2/3, T

}
,Mi =

√
mK/w =

Θ(max{(mKV )1/3T−1/3),
√
mK/T}, we can get

RegAα,β = Õ
(

(mV )1/3(KT )2/3 +
√
mKT +mK

)
= Õ

(
(mN)1/3(KT )2/3 +

√
mKT +mK

)
.



1.4 THEORETICAL GUARANTEES OF CUCB-BoB

In this section, we show the performance guarantee of our algorithm CUCB-BoB. Before moving into the formal proof, we
will first introduce more on the EXP3 algorithm and its variant: EXP3.P algorithm.

Background on the EXP3 algorithm and its variant First we introduce the EXP3 algorithm and its variant EXP3.P
algorithm. EXP3 algorithm is a famous algorithm for the adversarial bandit problem. In the original paper that introduce the
Bandit-over-Bandit technique Cheung et al. [2019], the authors apply the EXP3 algorithm. However in our case, the regret
is complicated and to make the proof easier, we apply the EXP3.P algorithm. The difference is that, the EXP3 algorithm
has bounded “pseudo-regret”, but the EXP3.P algorithm has bounded “regret” with high probability, and thus has bounded
“expected regret”. It is know that the “pseudo-regret” is a weaker measurement than the “expected regret”, so for the ease of
analysis, we apply EXP3.P algorithm.

Algorithm 1 EXP3.P

1: Input: Number of arms K ′, Total time horizon T ′, Parameters η ∈ R+, γ, β ∈ [0, 1].
2: Let p1 denote the uniform distribution over [K ′].
3: for t = 1, 2, . . . , T ′ do
4: Draw an arm It according to the probability distribution pt.
5: Compute the estimated gain for each arm

g̃i,t =
gi,tI{It = i}+ β

pi,t

6: Update the estimated gain G̃i,t =
∑t
s=1 g̃i,s.

7: Compute the new probability distribution over the arms pt+1 = (p1,t+1, . . . , pK′,t+1), where

pi,t+1 = (1− γ)
exp(ηG̃i,t)∑K′

k=1 exp(ηG̃k,t)
+

γ

K ′
.

8: end for

Algorithm 1 is the pseudo-code for the EXP3.P algorithm. In the algorithm, pi,t is the gain (reward) in round t of arm i,
and it satisfies 0 ≤ pi,t ≤ 1. It is easy to generalize the algorithm into the case where 0 ≤ pi,t ≤ R′, and we only have to
normalize to [0, 1] each time.

By choosing the parameters

β =

√
lnK ′

K ′T ′
, η = 0.95

√
lnK ′

T ′K ′
, γ = 1.05

√
K ′ lnK ′

T ′
,

we have the following performance guarantee for the EXP3.P algorithm.

Proposition 3 (Main content proposition 1 restated). Suppose that the reward of each arm in each round is bounded by
0 ≤ ri,t ≤ R′, the number of arms is K ′, and the total time horizon is T ′. The expected regret of EXP3.P algorithm is
bounded by O(R′

√
K ′T ′ logK ′).

Proof of Theorem 2 in main content Now we prove Theorem 2 in main content (Theorem 3 in appendix). The main part
of the proof is to decompose the regret into 2 parts, and optimize the length of each block to balance 2 parts. Recall that we
have the following theorem.

Theorem 3 (Main content theorem 2 restated). Suppose that there exist R1, R2 such that R1 ≤ rS(0) ≤ rS(1) ≤ R2 for
any S ∈ S and R = R2 −R1. Choosing L =

√
mKT/R, we have the following distribution-independent regret bound for

Regα,β ,

Õ
(

(mV )
1
3 (KT )

2
3 +
√
R(mK)

1
4T

3
4 +R

√
mKT

)
.

Choosing L = K2/3T 1/3, we have the following distribution-dependent regret bound

Õ

K√√√√∑
i∈[m]

TV

∆i
min

+
∑
i∈[m]

K
1
3T

2
3

∆i
min

+RK
1
3T

2
3

 .



Proof. We suppose that each block has length L, and there are dTL e blocks in total. Then, the reward in each block is
bounded by R′ = RL, since the reward in each round is bounded by R. We also know that the total number of possible
length of sliding window is K ′ = dlog2 Le, and the time horizon for the EXP3.P algorithm is T ′ = dTL e.

From the definition of the (α, β)-approximation regret, we have

RegAµ,α,β =α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSAt (µt)

]

=α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSBt (µt)

]
︸ ︷︷ ︸

Term A

+E

[
T∑
t=1

rSBt (µt)

]
− E

[
T∑
t=1

rSAt (µt)

]
︸ ︷︷ ︸

Term B

,

where B is another algorithm with the same block size but with fixed window size w = 2k for some number k. From
Proposition 3, it is easy to know that for any fixed window size w and the induced algorithm B, the second term (Term B) is
bounded by

Term B ≤ Õ(R′
√
K ′T ′) = Õ

(
RL

√
T

L

)
= Õ

(
R
√
TL
)
.

Then, the remaining part is to select a window size w and bound Term A. We decompose Term A into sum of regret of each
block,

Term A = α · β ·
T∑
t=1

optµt − E

[
T∑
t=1

rSBt (µt)

]
=

dTL e∑
`=1

α · β · min{`L,T}∑
s=L(`−1)+1

optµt − E

 min{`L,T}∑
s=L(`−1)+1

rSBt (µt)

 .

Suppose that in each block ` ≤ dTL e, the variation in block ` is denoted by V`. Formally, we define

V` =

min{`L,T}∑
s=L(`−1)+2

||µs − µs−1||∞.

Now we bound the regret in each block. The bound is similar to the proof in Theorem 2. Choosing w = 2k where
2k ≤ min{m1/3T 2/3K−1/3V −2/3, L} < 2k+1 and Mi =

√
mK/w. If we have m1/3T 2/3K−1/3V −2/3 ≤ L, then the

regret in block ` < T
L is bounded by

Õ
(

(mV )1/3K2/3T−1/3 · L+m1/3(KT )2/3V −2/3 · V` +mK
)
.

The regret in last block is bounded by L, and Term A can be bounded by

Õ

(
(mV )1/3(KT )2/3 + L+mK

T

L

)
.

Then we consider the case when (mK)1/3T 2/3V −2/3 > L. This time, the regret in each block is bounded by

Õ
(√

mKL+mK
)
.

Then sum the regret in each block, we bound Term A by the following

Õ

(√
mKL

T

L
+ L+mK

T

L

)
= Õ

(√
mK/L · T + L+mK

T

L

)
,

where the last term is the regret for the last block. Sum them up, we know that Term A is bounded by

Term A ≤ Õ
(

(mV )1/3(KT )2/3 +
√
mK/L · T + L+mK

T

L

)
.



Then combining Term B, we have

RegAα,β = Õ

(
(mV )1/3(KT )2/3 +

√
mK/L · T + L+R

√
TL+mK

T

L

)
.

Choosing L =
√
mKT/R, the regret is bounded by

RegAα,β = Õ
(

(mV )1/3(KT )2/3 +
√
R(mK)1/4T 3/4 +R

√
mKT

)
.

Next, we consider the distribution dependent bound. Now, we choose w = 2k where 2k ≤ min
{√

T
V ·
∑
i∈[m]

1
∆i

min
, L
}
<

2k+1. First we consider the case when
√

T
V ·
∑
i∈[m]

1
∆i

min
≤ L. In this case, the regret in block ` (except for the last one) is

bounded by

Õ

L

w
·
∑
i∈[m]

K

∆i
min

+ w · V` +mK

 .

Summing up the regret in each block, we can know that Term A in this case is bounded by

Õ

K√√√√TV ·
∑
i∈[m]

1

∆i
min

+mKL

 .

Then consider the case when
√

T
V ·
∑
i∈[m]

1
∆i

min
> L. In this case, the regret for block ` is bounded by

Õ

∑
i∈[m]

K

∆i
min

+mK

 .

Summing up the regret in each block, we know that Term A is bounded by

Õ

T
L
·
∑
i∈[m]

K

∆i
min

+mK
T

L

 .

Combining the regret bound in each case, we know that

Term A = Õ

K√√√√TV ·
∑
i∈[m]

1

∆i
min

+
T

L
·
∑
i∈[m]

K

∆i
min

+mK
T

L

 .

Take Term B into account, we have

RegAα,β = Õ

K√√√√TV ·
∑
i∈[m]

1

∆i
min

+
T

L
·
∑
i∈[m]

K

∆i
min

+mK
T

L
+R
√
TL

 .

Choosing L = K2/3T 1/3, we can get

RegAα,β = Õ

K√√√√TV ·
∑
i∈[m]

1

∆i
min

+
∑
i∈[m]

K
1
3T

2
3

∆i
min

+RK
1
3T

2
3

 .



Algorithm 2 ADA-LCMAB

1: Input: confidence δ, time horizon T , action space S
2: Definition: νj =

√
C0

m2jL , where C0 = ln
(

8T 3|S|2
δ

)
, L = d4mC0e,B(i,j) := [ιi, ιi + 2jL− 1].

3: Initialize: t = 1, i = 1
4: ιi ← t
5: for j = 0, 1, 2, . . . do
6: If j = 0, set Q(i,j) as an arbitrary distribution over S; otherwise, let (q

νj
(i,j), Q

νj
(i,j)) be the associated solution and

distribution of equation (5) with inputs I = B(i,j−1) and ν = νj
7: E ← ∅
8: while t 6 ιi + 2jL− 1 do
9: Draw REP ∼ Bernoulli

(
1
L × 2−j/2 ×

∑j−1
k=0 2−k/2

)
10: if REP = 1 then
11: Sample n from {0, . . . , j − 1} s.t. Pr[n = b] ∝ 2−b/2

12: E ← E ∪ {(n, [t, t+ 2nL− 1])}
13: end if
14: Let Nt := {n|∃I such that t ∈ I and (n, I) ∈ E}
15: If Nt is empty, play St ∼ Q

νj
(i,j); otherwise, sample n ∼ Uniform(Nt), and play St ∼ Qνn(i,n)

16: Receive {Xt
i |i ∈ St} and calculate µ̂t according to equation (9)

17: for (n, [s, s′]) ∈ E do
18: if s′ = t and ENDOFREPLAYTEST(i, j, n, [s, t]) = Fail then
19: t← t+ 1, i← i+ 1 and return to Line 4
20: end if
21: end for
22: if t = ιi + 2jL− 1 and ENFOFBLOCKTEST(i, j) = Fail then
23: t← t+ 1, i← i+ 1 and return to Line 4
24: end if
25: end while
26: end for

Procedure: ENDOFREPLAYTEST(i, j, n,A):
Return Fail if there exists S ∈ S such that any of the following inequalities holds:

R̂egA(S)− 4R̂egB(i,j−1)(S) > 34mKνn log T (1)

R̂egB(i,j−1)(S)− 4R̂egA(S) > 34mKνn log T (2)

Procedure: ENDOFBLOCKTEST(i, j):
Return Fail if there exists k ∈ {0, 1, . . . , j − 1} and S ∈ S such that any of the following inequalities holds:

R̂egB(i,j)(S)− 4R̂egB(i,k)(S) > 20mKνk log T (3)

R̂egB(i,k)(S)− 4R̂egB(i,j)(S) > 20mKνk log T (4)



2 MORE DETAILS IN SECTION 4

2.1 DETAILED ALGORITHM

In this part, we give our full algorithm pseudo-code. Please see Algorihtm 2 for more details.

2.2 OMITTED PROOFS IN SECTION 4

Lemma 8 (Main content lemma 1 restated). For any time interval I , its empirical reward estimation µ̂I , and exploration
parameter ν > 0, let qνI be the solution to following optimization problem (5) with constant C = 100:

qνI = argmax
q∈Conv(S)ν

〈q, µ̂I〉+ Cν

m∑
i=1

log qi (5)

Let QνI be the distribution over N such that ES∼QνI [1S ] = qνI , then there is

∑
S∈S

QνI (S)R̂egI(S) 6 Cmν (6)

∀S ∈ S, Var(QνI , S) 6 m+
R̂egI(S)

Cν
(7)

Proof. Define loss function FI(Q) :=
∑
S∈SQ(S)R̂egI(S) + Cν

∑m
i=1 ln(1/qi) with decision domain ∆(S)ν := {Q ∈

R|S|+ |
∑
S∈SQ(S) = 1,∀i ∈ [m], qi > ν} (recall q is the expectation vector of Q). Because the decision domain ∆(S)ν is

compact and loss function FI(Q) is strictly convex in ∆(S)ν , there exists a unique minimizer. What’s more, it is not difficult
to see QνI induced by the solution to equation (5) is exactly the minimizer of loss function FI(Q). Now we prove the lemma.

Define ∆(S)′ν := {Q ∈ R|S|+ |
∑
S∈SQ(S) 6 1,∀i ∈ [m], qi > ν}. We claim there is minQ∈∆(S) FI(Q) =

minQ∈∆(S)′ FI(Q), otherwise we can increase the weight of ŜI in ∆(S)′ν until it reaches the boundary, which always
decreases the loss value.

Since∇FI(Q)|Q(S) = R̂egI(S)− Cv
∑
i∈S 1/qi, according to KKT conditions, we have

R̂egI(S)− Cν
∑
i∈S

1

qνI,i
− λS −

∑
i∈S

λi + λ = 0 (8)

for some Lagrangian multipliers λS > 0, λi > 0, λ > 0. Multiplying both sides by QνI(S) and summing over S ∈ S give∑
S∈S

QνI(S)R̂egI(S) = Cν
∑
S∈S

QνI(S)
∑
i∈S

1

qνI,i
+
∑
S∈S

QνI(S)λS +
∑
S∈S

∑
i∈S

QνI(S)λi − λ

= Cν
∑
S∈S

QνI(S)
∑
i∈S

1

qνI,i
− λ

= Cmν − λ
6 Cmν

where the second equality is because of complementary slackness. Now we have proved the inequality (6) stated in the
theorem. What’s more, as R̂egI(S) > 0 for ∀S ∈ S, there is λ 6 Cmν.

Rearranging from equation (8), we know∑
i∈S

1

qνI,i
=

1

Cν

(
R̂egI(S)− λS −

∑
i∈S

λi + λ

)

6 m+
R̂egI(S)

Cν

which finishes the proof of inequality (7).



For any interval I that lies in a block j of epoch i (i.e. [ιi + 2j−1L, ιi + 2jL − 1]), define εI := maxS∈S RegI(S) −
8R̂egB(i,j−1)

(S), αI =
√

2mC0

|I| log2 T , where RegI(S) :=
∑
t∈I optµt − rSt(µt). In Lemma 9 and Lemma 10, since we

consider the regret in epoch i, we use Bj to represent B(i,j) for simplicity.

Lemma 9. With probability 1− δ, ADA-LCMAB guarantees for any block j and any interval I lies in block j,∑
t∈I

optµt − rSt(µt) = Õ (|I|mKνn + |I|(KαI +K∆I + εIIεI>D3KαI ))

where D3 = 170.

Proof. First, according to Azuma’s inequality and a union bound over all T 2 intervals, with probability 1 − δ, for any
interval I, there is ∑

t∈I
optµt − rSt(µt) 6

∑
t∈I

Et[optµt − rSt(µt)] +O
(
K
√
|I| log(T 2/δ)

)
(9)

Now we bound the conditional expectation in above inequality.

Note

Et[optµt − rSt(µt)] =

{∑
S∈SQ

νj
j (S)(optµt − rS(µt)) if Nt = ∅∑

S∈S
∑
n∈Nt

Qνnn (S)
|Nt| (optµt − rS(µt)) if Nt 6= ∅

(10)

=

{∑
S∈SQ

νj
j (S)Regt(S) if Nt = ∅∑

S∈S
∑
n∈Nt

Qνnn (S)
|Nt| Regt(S) if Nt 6= ∅

(11)

Now, for any t ∈ I and n ∈ [j], there is∑
S∈S

Qνnn (S)Regt(S) 6
∑
S∈S

Qνnn (S)RegI(S) +O(K∆I) (nearly the same as Lemma 8 in Chen et al. [2019])

= 8
∑
S∈S

Qνnn (S)R̂egBj−1
(S) +O(K∆I) + εI

6 8
∑
S∈S

Qνnn (S)
(

4R̂egBn−1
(S) + 20mKνn−1 log T

)
+O(K∆I) + εI

(condition (3) doesn’t hold)

6 Õ(mKνn +K∆I) + εI

6 Õ(mKνn +K∆I +KαI) + εIIεI>D3KαI

Combining all above inequalities and using the fact
√
|I| log(T 2/δ) 6 O(|I|αI) finish the proof.

Next, we bound the dynamic regret in block j within epoch i, that is J := [ιi, ιi+1 − 1] ∩ [ιi + 2j−1L, ιi + 2jL− 1].

Lemma 10. With probability 1− δ, Algorithm 2 has the following regret for any block J :∑
t∈J

(optµt − rSt(µt)) = Õ
(

min
{√

mC0SJ |J |,
√
mC0|J |+ C

1
3
0 m

4
3 ∆

1
3

J |J |
2
3

})

To prove this lemma, we first partition the block into several intervals with some desired properties. As the greedy algorithm
in Chen et al. [2019] used to partition the block J is only based on the total variation of underlying distribution, we can
directly use the same greedy algorithm in non-stationary CMAB and have the same result:

Lemma 11 (Lemma 5 in Chen et al. [2019]). There exists a partition I1 ∪ I2 ∪ · · · ∪ IΓ of block J such tht ∆Ik 6

αIk ,∀k ∈ [Γ], and Γ = O(min{SJ , (mC0)−
1
3 ∆

2
3

J |J |
1
3 + 1})

Next, we give some basic concentration results for Linear CMAB. Define Ut(S) := Et[(rS(µ̂t)− rS(µt))
2].



Lemma 12. For any S ∈ S and any time t in epoch i and block j, there is

Ut(S) 6

{
KVar(Qνn(i,n), S) log T (∀n ∈ [Nt]) if Nt 6= ∅
KVar(Q

νj
(i,j), S) if Nt = ∅

Proof. If Nt 6= ∅, then Ut(S) 6 Et[r2
S(µ̂t)] = Et[(µ̂>t 1S)2] 6 K

∑
k∈S Et[µ̂2

t,k] 6 K
∑
k∈S

1
qt,k

, where qt is the
expectation of distribution Qt played at round t. According to our Algorithm 2, we know Qt = 1

|Nt|
∑
n∈Nt Q

νn
(i,n) when

Nt 6= ∅. Thus, qt = 1
|Nt|

∑
n∈Nt q

νn
(i,n) where qνn(i,n) is the expectation of distribution Qνn(i,n), and qt,k > qνn(i,n),k/|Nt|.

What’s more, as |Nt| 6 logT , we then finish the proof when Nt 6= ∅. If Nt is empty, the proof is exactly the same.

Lemma 13. With probability at least 1− δ/4, for any S ∈ S, we have

|rS(µ̂B(i,j)
)− rS(µB(i,j)

)| 6 λ

|B(i,j)|
∑

t∈B(i,j)

Ut(S) +
C0

λ|B(i,j)|
(∀λ ∈ (0,

νj
K

])

and for any interval A covered by some replay phase of index n,

|rS(µ̂A)− rS(µA)| 6 λ

|A|
∑
t∈A

Ut(S) +
C0

λ|A|
(∀λ ∈ (0,

νn
K

])

Proof. Using Freedman’s inequality with respect to each term in the summation just like Lemma 14 in Chen et al. [2019].

Define EVENT1 as the event that bounds in Lemma 13 holds, then EVENT1 holds with probability at least 1− δ/4.

Lemma 14. Assume EVENT1 holds, and there is no restart triggered in Bj , then the following hold for any S ∈ S:

RegBj (S) 6 2R̂egBj (S) + 10mKνj

R̂egBj (S) 6 2RegBj (S) + 10mKνj

Proof. We prove this lemma by induction. When j = 0, it’s not hard to see RegB0
(S) 6 K 6 10mKν0,

R̂egB0
(S)− RegB0

(S) = rŜB0
(µ̂B0)− rS(µ̂B0)− rSB0

(µB0) + rS(µB0)

6 rŜB0
(µ̂B0)− rS(µ̂B0)− rŜB0

(µB0) + rS(µB0) (by the optimality of SB0)

6 2

(
ν0

KL

∑
t∈B0

Ut(S) +
KC0

ν0L

)
(by the definition of EVENT1 with λ = ν0/K )

6 2(K +K/2)

6 4K

which implies R̂egB0
(S) 6 5K 6 10mKν0.

Now, assume the inequalities hold for {0, . . . , j − 1}, then for any t ∈ Bj and any n ∈ [1, j], there is

Var(Qνnn , S) 6 m+
R̂egBn−1

(S)

Cνn

6 m+
2RegBn−1

(S) + 10mKνn−1

Cνn

6
RegBn−1

(S)

3νn
+mK

6
RegBn−1

(S)

3νj
+mK

Combining Lemma 12 above and Lemma 19 in Chen et al. [2019] gives the result in this theorem.



Lemma 15. Assume EVENT1 holds. Let A be a complete replay phase of index n, if for any S ∈ S, equation (2) in
EndofReplayTest doesn’t hold, then the following hold for all S ∈ S:

RegA(S) 6 2R̂egA(S) + C3mKνn

R̂egA(S) 6 2RegA(S) + C3mKνn

where C3 = 15

Proof. According to Lemma 9 and Lemma 12, we have

Var(Qνnn , S) 6 m+
R̂egBn−1

(S)

Cνn

6 m+
4R̂egBj−1

(S) + 20mKνn log T

Cνn

6
30 log T

C
mK +

16R̂egA(S) + 136mKνn log T

Cνn
( because of EndOfReplayTest)

6
R̂egA(S)

3νn
+

166 log T

C
mK

Combining Lemma 12 and Lemma 19 in Chen et al. [2019] proves the result.

Lemma 16. Assume EVENT1 holds. Let A = [s, e] be a complete replay phase of index n, then the following hold for all
S ∈ S:

RegA(S) 6 2R̂egA(S) + 4mKνn + V̄[ιi,e]

R̂egA(S) 6 2RegA(S) + 4mKνn + V̄[ιi,e]

Proof. For any t ∈ A, there is

Var(Qνnn , S) 6 m+
R̂egBn−1

(S)

Cνn

6 m+
2RegBn−1

(S) + 10mKνn

Cνn
( because of Lemma 14)

6
1

2
mK +

2RegA(S) + 2mV̄[ιi,e]

Cνn
( because of Lemma 8 in Chen et al. [2019])

6
RegA(S)

3νn
+

1

2
mK +

2mV̄[ιi,e]

Cνn

Combining Lemma 12 above and Lemma 19 in Chen et al. [2019] proves the result.

Lemma 17. Assume EVENT1 holds. Let I = [s, e] be an interval in the fictitious block J ′ with index j, and such that
V̄I 6 αI , εI > D3KαI , then

(1) there exist an index nI ∈ {0, 1, . . . , j − 1} such that D3mKνn+1 log T 6 εI 6 D3mKνn log T ;

(2) |I| > 2nIL;

(3) if the algorithm starts a replay phase A with index nI within the range of [s, e− 2nIL], then the algorithm restarts
when the replay phase finishes.

Proof. For (1), on one hand εI 6 K 6 D3mKν0; on the other hand, εI > D3KαI > D3mKνj log T because of the
definition of αI , νj and |I| 6 |J ′ | 6 2j−1L. Therefore, there must exist an index nI such that the condition holds.

For (2), since D3KαI 6 D3mKνnI log T , we have |I| > 2nIL.



For (3), we show that the ENDOFREPLAYTEST fails when the replay phase finishes. Suppose for ∀S ∈ S, Eq.(2) doesn’t
hold, then according to Lemma 15, we know RegA(S) 6 2R̂egA(S) + C3mKνnI . Besides, we know there exists S′ such
that

RegA(S′) > RegI(S′)− 2KV̄I (because of Lemma 8 in Chen et al. [2019])

> 8R̂egBj−1
(S′) + εI − 2KV̄I (because of the definition of εI)

> 8R̂egBj−1
(S′) + (D3/2− 2)mKνnI log T

Combining above two inequalities, we have

R̂egA(S′) > 4R̂egBj−1
(S′) +

0.5D3 − 2− C3

2
mKνnI log T

= 4R̂egBj−1
(S′) + 34mKνnI log T

which is the Eq.(1) in ENDOFREPLAYTEST, thus the algorithm will restart.

Now, we begin to prove Lemma 10.

Proof. Consider the fictitious partition constructed in Lemma 11, for the first Γ− 1 intervals, using Lemma 9 with respect
to each interval as there is no restart. For the last interval Γ, we also use Lemma 9 but with the fictitious planned interval in
the same way as in paper Chen et al. [2019].

Thus, for block j (i.e. [ιi, ιi+1 − 1] ∪ [ιi + 2j−1L− 1, ιi + 2jL− 1]), there is∑
t∈J

optµt − rSt(µt)

6
Γ∑
k=1

∑
t∈Ik

∑
n∈Nt∪{j}

mKνn︸ ︷︷ ︸
Term1

+

Γ−1∑
k=1

K|Ik|αIk +K|IΓ|αI′Γ︸ ︷︷ ︸
Term2

+

Γ−1∑
k=1

|Ik|εIkIεIk>D3KαIk
+ |IΓ|εI′ΓIεI′Γ>D3KαI′

Γ︸ ︷︷ ︸
Term3

Using exactly the same technique as Chen et al. [2019] and Lemma 17 above, one can prove

Term1 6 O(log(1/δ)
√
C0mK2jL)

Term2 6 O(log T
√
C0mKΓ|J |)

Term3 6 O(log(1/δ) log T
√
C0mKΓ2jL)

Combining all above inequalities and Lemma 11 finishes the proof.

Theorem 4 (Theorem 3 restated). Algorithm 2 guarantees RegA1,1 is upper bounded by

Õ
(

min
{√

mK2NT,
√
mK2T +K(mV̄ )

1
3T

2
3

})
.

Proof. First, we bound the regret in an epoch i (i.e. Hi = [ιi, ιi+1 − 1]). For block j in epoch i, we denote it as
Jij = [ιi + 2j−1L, ιi + 2jL− 1] ∩Hi. As the last index of j is at most j∗ = dlog(|Hi/L|)e, we have

E

[∑
t∈Hi

optµt − rSt(µt)

]
6 Õ

L+

j∗∑
j=1

√
C0mK2SJij2jL


= Õ

(√
C0mK2SHi |Hi|

)



Similarily, using Hölder inequality, we have

E

[∑
t∈Hi

optµt − rSt(µt)

]
6 Õ

(√
C0mK2|Hi|+KC

1
3
0 m

1
3 V̄

1
3

Hi |Hi|
2
3

)
According to Lemma 18 below, we know there is at most E := min{S, (C0m)−

1
3 V̄

2
3T

1
3 + 1} number of epochs with high

probability, thus summing up the regret bound over all epochs, we have
T∑
t=1

E
[
optµt − rSt(µt)

]
6 Õ

(
E∑
t=1

√
C0mK2SHi |Hi|

)
6 Õ

(√
C0mK2ST

)
and

T∑
t=1

E
[
optµt − rSt(µt)

]
6 Õ

(
E∑
t=1

(√
C0mK2|Hi|+KC

1
3
0 m

1
3 V̄

1
3

Hi |Hi|
2
3

))
6
(√

C0mK2T +KC
1
3
0 m

1
3 V̄

1
3T

2
3

)

Lemma 18. Denote the number of restart by E. With probability 1− δ, we have E 6 min{S, (C0m)−
1
3 V̄

2
3T

1
3 + 1}.

Proof. First, we prove that if for all t in epoch i with V̄[ιi,t] 6
√

mC0

t−ιi+1 , restart will not be triggered at time t.

For ENDOFBLOCKTEST, suppose t = ιi + 2jL− 1 for some j, then for any S ∈ S, k ∈ [0, j − 1], we have

R̂egBj 6 2RegBj (S) + 10mKνj (because of Lemma 14)

6 2RegBk(S) + 10mKνj + 4mV̄[ιi,t] (because of Lemma 8 in Chen et al. [2019] )

6 4R̂egBk(S) + 34mKνj (because of above condition and definition of νj)

Similarly, there is R̂egBk 6 4R̂egBj + 34mKνj . Thus, ENDOFBLOCKTEST will not return Fail.

For ENDOFREPLAYTEST, suppose A ⊂ [ιi, t] be a complete replay phase of index n, and V̄[ιi,t] 6
√

mC0

|A| , we have

R̂egA 6 2RegA(S) + 4mKνn +mV̄[ιi,t] (because of Lemma 16)

6 2RegBj−1
(S) + 4mKνn + 5mV̄[ιi,t] (because of Lemma 8 in Chen et al. [2019] )

6 4R̂egBk(S) + 20mKνn (because of above condition and definition of νj)

Similarly, there is R̂egBj−1
6 4R̂egBj + 20mKνn. Thus, ENDOFBLOCKTEST will not return Fail.

With above result, now we prove the theorem. If there is no distribution change which implies V̄[ιi,t] = 0 then the algorithm
will not restart. Therefore we have E 6 S.

Denote the length of each epoch as T1, . . . , TE , according to above result, we know there must be V̄Hi >
√

mC0

Ti
. By

Hölder’s inequality, we have

E − 1 6
E−1∑
i=1

T
1
3
i T
− 1

3
i

6

(
E−1∑
i=1

Ti

) 1
3
(
E−1∑
i=1

T
− 1

2
i

) 2
3

6 T
1
3

(
V̄√
mC0

) 2
3

6 (mC0)−
1
3 V̄

2
3T

1
3



2.3 NON-STATIONARY LINEAR CMAB IN GENERAL CASE

In section 4, we need to solve an FTRL optimization probelm in Algorithm 2 and find a distribution Q over the decision
space S such that its expectation is the solution to FTRL, which can only be implemented efficiently when Conv(S)ν is
described by a polynomial number of constraints Zimmert et al. [2019], Combes et al. [2015], Sherali [1987]. In general, the
problems with polynomial number of constraints for Conv(S)ν is a subset of all the problem with linear reward function
and exact offline oracle, but there are also many of them whose convex hull can be represented by polynomial number
of constraints. For example, for the TOP K arm problem, the convex hull of the feasible actions can be represented by
polynomial number of constraints. Another non-trivial example is the bipartite matching problem. The convex hull of all
the matchings in a bipartite graph can also be represented by polynomial number of constraints. This is due to the fact
that, by applying the convex relaxation of the bipartite matching problem, the constraint matrix of the corresponding linear
programming is a Totally Unimodular Matrix (TUM), and the resulting polytope of the linear programming is integral, i.e.
all the vertices have integer coordinates. In this way, each vertex is a feasible matching, and the polytope is the convex hull.

To make it more general and get rid of the constraint about polynomial description of Conv(S)ν , instead of solving FTRL
and then calculating corresponding distribution Q, what we need to do is to find a distribution Q such that it satisfies
inequalities (6) and (7) given in Lemma 8. In fact, we can achieve this goal using similar methods as in Agarwal et al. [2014],
Chen et al. [2019] to find a sparse distribution over S efficiently through our offline exact oracle or equivalently an ERM
oracle 1.
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