
Formal Verification of Neural Networks for Safety-Critical Tasks
in Deep Reinforcement Learning - Supplementary Material

Davide Corsi1 Enrico Marchesini1 Alessandro Farinelli1

1 Department of Computer Science , University of Verona , 37135, Verona, Italy

name.surname@univr.it

PROPERTIES ENCODING

In this section we show the formal encoding of the safety properties used in our evaluation. Considering the network
architecture, the input space, and the natural language description of the properties in the main paper, we provide the formal
encoding of the properties for the trajectory generation problem (θP,i) and the mapless navigation environment (θT,i).

θP,0L : If x0 ∈ [1, 1] ∧ x1, ..., x8 ∈ D ⇒ y0 < [y1, ..., y11], whereD = [0, 1)

θP,0R : If x0 ∈ [0, 0] ∧ x1, ..., x8 ∈ D ⇒ y1 < [y0, y2, ..., y11], whereD = [0, 1).

θP,1L : If x1 ∈ [1, 1] ∧ x0, x2, ..., x8 ∈ D ⇒ y2 < [y0, y1, y3, ..., y11],D = [0, 1).

θP,1R : If x1 ∈ [0, 0] ∧ x0, x2, ..., x8 ∈ D ⇒ y3 < [y0, y1, y2, y4, ..., y11],D = [0, 1).

θP,2L : If x2 ∈ [1, 1] ∧ x0, x1, x3, ..., x8 ∈ D ⇒ y4 < [y0, y1, y2, y3, y5, ..., y11],D = [0, 1).

θP,2R : If x2 ∈ [0, 0] ∧ x0, x1, x3, ..., x8 ∈ D ⇒ y5 < [y0, y1, y2, y3, y4, y6, ..., y11],D = [0, 1).

θP,3L : If x3 ∈ [1, 1] ∧ x0, ..., x2, x4, ..., x8 ∈ D ⇒ y6 < [y0, ..., y5, y7, ..., y11],D = [0, 1).

θP,3R : If x3 ∈ [0, 0] ∧ x0, ..., x2, x4, ..., x8 ∈ D ⇒ y7 < [y0, ..., y6, y8, ..., y11],D = [0, 1).

θP,4L : If x4 ∈ [1, 1] ∧ x0, ..., x3, x5, ..., x8 ∈ D ⇒ y8 < [y0, ..., y7, y9, ..., y11],D = [0, 1).

θP,4R : If x4 ∈ [0, 0] ∧ x0, ..., x3, x5, ..., x8 ∈ D ⇒ y9 < [y0, ..., y8, y10, ..., y11],D = [0, 1).

θP,5L : If x5 ∈ [1, 1] ∧ x0, ..., x4, x6, ..., x8 ∈ D ⇒ y10 < [y0, ..., y9, y11],D = [0, 1).

θP,5R : If x5 ∈ [0, 0] ∧ x0, ..., x4, x6, ..., x8 ∈ D ⇒ y11 < [y0, ..., y10],D = [0, 1).

For the mapless navigation scenario we considered the normalized value of 0.1 for a near obstacle.

θT,0 : If x0, ..., x10 ∈ D1 ∧ x11 ∈ D2 ⇒ y0 < y1 ∧ y2 < y1,D1 = (0.1, 1]andD2 = [0, 1].

θT,1 : If x0, ..., x3 ∈ [0, 0.1] ∧ x4, ..., x10 ∈ D1 ∧ x11 ∈ D2 ⇒ y0 < [y1, y2],D1 = (0.1, 1]andD2 = [0, 1].

θT,1 : If x0, ..., x6 ∈ D1 ∧ x7, ..., x10 ∈ [0, 0.1] ∧ x11 ∈ D2 ⇒ y2 < [y0, y1],D1 = (0.1, 1]andD2 = [0, 1].

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).



ALGORITHM ANALYSIS

In this section, we first provide a convergence proof, followed by the complexity in terms of time and space.

Property 1. Given an input area and a discretization value ε, ProVe always converges in a finite number of steps without
loss of precision.

Proof. To prove the convergence in a finite number of steps we demonstrate the following properties: (i) there are no infinite
loops in the iterative splitting; (ii) splitting an area into two sub-areas covers all the discrete values of the range up to
precision ε. For the latter, we use ε in the computation of the mean value because the mean of an area could have a higher
precision with respect to ε, producing an infinite loop. This is due to the fact that the discrete values at a higher precision
than ε are odd (it is ambiguous to divide it into equally sized groups).

Suppose an ε = 0.1 and a split operation of the range [0.0,0.1]; we first compute the mean 0.05, splitting in [0.0,0.05] and
[0.05,0.1]. We then round these values to the specified precision, obtaining [0.0,0.1] and [0.1,0.1]. The introduction of ε
allows to rounding alternatively up and down in order to avoid the infinite recursion. For the former, it is trivially true that
we cover all the discrete values of the range up to precision ε, because if the mean between the extreme values of the range
is at precision ε, then the union of the sub-areas returns the original one. Moreover, if the mean has higher precision than ε,
we round the mean value once to the next bigger value at precision ε and once to the smaller ones. In particular, there is no
value at precision ε that is between these two.

Time Complexity Given the number of ranges in input n and the discretization value ε, we define the range size as l
(fixed to 1 by normalization) and the time cost of the control operation (propagation and property verification) as op. The
time required for a matrix multiplication is O(mnp) where the input matrices are m× n and n× p. The structures of the
matrices used by ProVe are always in form of m×n and n× 2n, where m is dependent from the iterations of our algorithm;
so the time required for a multiplication is O(n2m). For construction, we know that the number of rows (m) double up at
each iteration, i.e., m = 2i where i is the number of iteration already performed. The time complexity of the algorithm
becomes O(

∑I
k=1 n

22(k−1)) that can be written as O(n2
∑I
k=1 2

k2−1). Applying Gauss formula O(n
2

2 2
I(I+1)

2 ) where I
is the total number of iterations of the algorithm. The total number of iteration required from the algorithm depends from the
range size l and the precision ε; in fact, each iteration divides an area into two equally sized sub-areas. For a single input
range that starts from 0 to 1 we need O(log2d lε + 1e) and the total number of operation is I = O(n log2d lε + 1e). Finally,

the time complexity of the algorithm is O(opn
2

2 2
(n log2d 1

ε
+1e)2

2 ). Summarizing, the time complexity of ProVe is exponential
both when ε decreases and n increases.

Space Complexity Recalling the notation of the previous section and the fact that at each iteration we double up the
number of rows of our matrix, ProVe requires O(2In) rows and always n columns for the matrix. The total space required is
then O(n2In) that is O(nd 1ε e

n).

This analysis further motivates the introduction of the ε discretization value to limit the depth of the recursion and the search
of a heuristic, to limit the complexity of verification approaches.


