
A Heuristic for Statistical Seriation (Supplementary Material)

Komal Dhull1 Jingyan Wang1 Nihar B. Shah1 Yuanzhi Li1 R. Ravi2

1School of Computer Science, Carnegie Mellon University
2Tepper School of Business, Carnegie Mellon University

In this supplementary material, we present the proofs of all theoretical results.

A PRELIMINARY RESULTS

In this section, we present preliminary results that are used in the proofs. For the regularizer R, it can be verified that we
have the symmetry

Rii′jj′ = Rii′j′j = Ri′ijj′ = Ri′ij′j .

We say that an entry (i, j) does not contribute to the regularizer if Rii′jj′ = 0 for all i′ ∈ [n] and j′ ∈ [d]. We say that a
row/column does not contribute to the regularizer if none of the entries in the row/column contributes to the regularizer.
We say that (i, i′, j, j′) is a “conflicting quadruple” if we have (Aij −Aij′)(Ai′j −Ai′j′) < 0. By the definition (7) of the
regularizer, an entry (i, j) does not contribute to the regularizer if and only if the quadruple (i, i′, j, j′) is not a conflicting
quadruple for each i′ ∈ [n] and j′ ∈ [d].

A.1 DERIVATIVE OF THE OBJECTIVE

We compute the derivative of the regularizer term Rii′jj′ as

∂Rii′jj′

∂Aij
=

{
0 if (Aij −Aij′)(Ai′j −Ai′j′) ≥ 0

2(Aij −Aij′)(Ai′j −Ai′j′)
2 otherwise.

(13)

Hence, we have

sign

(
∂Rii′jj′

∂Aij

)
= sign(Aij −Aij′), if (Aij −Aij′)(Ai′j −Ai′j′) < 0. (14)

It can be verified that we have the symmetry

∂Rii′jj′

∂Aij
=
∂Rii′j′j

∂Aij
=
∂Ri′ijj′

∂Aij
=
∂Ri′ij′j

∂Aij
. (15)

Combining (15) with the expression (6) of R, we have

∂R

∂Aij
= 4

∑
i′∈[n],j′∈[d]

∂Rii′jj′

∂Aij
. (16)

The derivative of the objective L is computed as

∇L(A) = 2(A− Y )Ω + λ∇R(A). (17)
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We have the partial derviative

∂L

∂Aij
= 2(Aij − Yij) · 1{(i, j) ∈ Ω}+ λ

∂R

∂Aij
(18)

(i)
= 2(Aij − Yij) · 1{(i, j) ∈ Ω}+ 4λ

∑
i′∈[n],j′∈[d]

∂Rii′jj′

∂Aij
, (19)

where (i) is true by plugging in (16).

A.2 ADDITIONAL PRELIMINARY RESULTS

For notational simplicity, we denote the projection step (10b) as P[0,1]A := min{1,max{0, A}} for any A ∈ Rd×n. The
following lemma states that the objective L does not increase after a projection step.

Lemma 5. Consider any Y ∈ [0, 1]n×d. Then for any A ∈ Rn×d, we have L(P[0,1]A) ≤ L(A).

Proof of Lemma 5 We consider the two terms in the objective (8). For the first term ‖A− Y ‖2Ω, it is straightforward to
verify that

‖Y − P[0,1](A)‖Ω ≤ ‖Y −A‖Ω, ∀Y ∈ [0, 1]n×d. (20)

For the second term, we consider Rii′jj′ for each quadruple (i, i′, j, j′). Note that for any scalar values a, b ∈ R, the term
(P[0,1](a) − P[0,1](b)) either has the same sign as (a − b) or has a value of 0. Now we discuss the following two cases
depending on the sign of each quadruple (i, i′, j, j′).

Case 1: (Aij −Aij′)(Ai′j −Ai′j′) ≥ 0.

In this case, we have (P[0,1]Aij′ −P[0,1]Ai′j)(P[0,1]Ai′j −P[0,1]Ai′j′) ≥ 0. Hence, by the definition of the function Rii′jj′ ,
we have

0 = Rii′jj′(A) = Rii′jj′(P[0,1]A) (21)

Case 2: (Aij −Aij′)(Ai′j −Ai′j′) < 0.

In this case, we have (P[0,1]Aij′ − P[0,1]Ai′j)(P[0,1]Ai′j − P[0,1]Ai′j′) ≤ 0. Moreover, due to the projection we have∣∣P[0,1]Aij − P[0,1]Aij′
∣∣ ≤ |Aij −Aij′ |∣∣P[0,1]Ai′j − P[0,1]Ai′j′
∣∣ ≤ |Ai′j −Ai′j′ |.

By the definition of the function Rii′jj′ , it can be verified that

Rii′jj′(A) ≥ Rii′jj′(P[0,1]A). (22)

Combining (21) and (22) from the two cases, we have

R(A) ≥ R(P[0,1]A), ∀(i, i′, j, j′),∀A ∈ [0, 1]n×d. (23)

Finally, combining the two terms (20) and (23) of the objective L, we have

L(A) ≥ L(P[0,1]A),

completing the proof.

Now we analyze the local optima of the objective. Standard results suggest that any local optimum in the interior of the
domain satisfies the first-order optimality condition, namely having a gradient of 0. The following lemma suggests that any
local optimum on the boundary of the domain also satisfies the first-order optimality condition. We define∇L(A) as the
gradient on R, without restricting to the domain [0, 1]n×d.



Lemma 6. For any local optimum A of the objective (8) defined on the domain [0, 1]d×n, we have ∇L(A) = 0.

Proof of Lemma 6 If any local optimum A is in the interior, then standard first-order optimality condition [Beck, 2014,
Theorem 2.6] yields∇L(A) = 0. It remains to consider the case where A is on the boundary of the domain.

Assume for contradiction that there exists a local optimum A on the boundary with∇L(A) 6= 0. Without loss of generality
we assume ∂L(A)

∂A11
6= 0. By definition of the local optimum, there exists some δ > 0, such that L(A′) ≥ L(A) for all

A′ ∈ [0, 1]n×d with ‖A′ −A‖F < δ. On the other hand, let E11 denote the matrix whose (1, 1)-entry is 1 and all other
entries are 0. By definition of the partial derivative, there exists some δ′ ∈ (0, δ) such that L(A + δ′E11) < L(A). Now
consider the point P[0,1](A+ δ′E11). By Lemma 5, we have

L(P[0,1](A+ δ′E11)) ≤ L(A+ δ′E11) < L(A). (24)

Since [0, 1]n×d is a convex set and A ∈ [0, 1]n×d, by Lemma 5 we have∥∥P[0,1](A+ δ′E11)−A
∥∥
F
≤ ‖A+ δ′E11 −A‖F = δ′ < δ. (25)

Combining (24) and (25), the point P[0,1](A+ δ′E11) yields a contradiction to the local optimality of A.

B PROOF OF THEOREM 1

The proof consists of two steps. First, we show that our objective L has a Lipschitz gradient. Second, we incorporate the
projected step straightforwardly into standard analysis of gradient descent for functions with Lipschitz gradient.

Step 1: Bound the magnitude of the gradient ‖∇L‖F and the Lipschitz constant

As a general definition, consider any d ≥ 1. A function f : Rd → R is said to have a Lipschitz gradient with constant K on
domain D ⊆ Rd if

‖∇f(x)−∇f(y)‖2 ≤ K‖x− y‖2, for all x, y ∈ D.

For projected gradient descent, the gradient step (10a) may give solutions outside the domain [0, 1]n×d, so we bound the
gradient on an enlarged domain, namely [−1, 2]n×d. For any A ∈ [−1, 2]n×d, its partial derivative is given by (19) as:

∂L

∂Aij
= 2(Aij − Yij) · 1{(i, j) ∈ Ω}+ 4λ

∑
i′∈[n],j′∈[d]

∂Rii′jj′

∂Aij
. (26)

Consider the term ∂Rii′jj′

∂Aij
in (26). For each i′ ∈ [n] and j′ ∈ [d], we have∣∣∣∣∂Rii′jj′

∂Aij

∣∣∣∣ ≤ 2|Aij −Aij′ | · (Ai′j −Ai′j′)
2 ≤ 54. (27)

Combining (27) and (26), we have ∣∣∣∣ ∂L∂Aij

∣∣∣∣ ≤ 6 + 216λnd, (28)

and hence

‖∇L(A)‖F ≤
√
nd(6 + 216λnd). (29)

Now we bound the Lipschitz constant of the objective L. Let A,B ∈ [−1, 2]n×d be any two matrices. Using (29), we have:

‖∇L(A)−∇L(B)‖2F ≤ 4(nd)(6 + 216λnd)2

(i)
≤ 4(2 + 72λnd)2‖A−B‖2F ,

where (i) holds because A,B ∈ [−1, 2]n×d Hence, L has a Lipschitz gradient with K = K(n, d, λ) := 4 + 144λnd on
[−1, 2]n×d.

Step 2: Incorporate the projection step into standard analysis of gradient descent

The following standard result states that a gradient descent step with a sufficiently small stepsize decreases the objective.



Lemma 7 (Sufficient Decrease Lemma; Lemma 4.23 and Lemma 4.24 of Beck [2014]). Suppose f : Rd → R has Lipschitz
gradient with constant K. Then for any x ∈ Rd and γ > 0, we have

f(x)− f(x− γ∇f(x)) ≥
(

1− Kγ

2

)
‖∇f(x)‖22. (30)

Now denote {Agrad
t }t≥0 as the sequence after the gradient step (10a) in each iteration, and denote {At}t≥0 as the sequence

after the projection step (10b) in each iteration. We set the stepsize γ such that γ ∈ (0, 1
4K ). Due to the projection we have

At ∈ [0, 1]n×d for all t ≥ 0. Then for the gradient step, using (28) it can be verified that

Agrad
t = At−1 − γ∇L(At−1) ∈ [−1, 2]n×d.

By Lemma 7 we have

L(At−1)− L(Agrad
t ) ≥

(
1− Kγ

2

)
‖∇L(At−1)‖22 ≥ 0. (31)

For the projection step, by Lemma 5 we have

L(Agrad
t )− L(At) ≥ 0. (32)

Combining (31) and (32), we have

L(At−1)− L(At) ≥
(

1− Kγ

2

)
‖∇L(At−1)‖2F ≥ 0. (33)

Hence, the sequence {L(At)}t≥0 is non-increasing. Furthermore, it is straightforward to verify that L is bounded below by
0. Since the sequence {L(At)}t≥0 is non-increasing and bounded below by 0, we have

lim
t→∞

L(At−1)− L(At) = 0. (34)

Plugging (34) into (33), we have limt→∞‖∇At‖F = 0, completing the proof.

C PROOF OF THEOREM 2

Since Y ∈M, we have A∗ is a global minimum if and only if

A∗Ω = YΩ

and A∗ ∈M.

By Lemma 6 any local optima (on the boundary) is a stationary point, so we only consider stationary points for the proof. To
show that any stationary point is the global optimum, we separately discuss the three cases: d = 2, d = 3 and n = 2. In
each case, we show that any stationary point A satisfies A ∈ M. Since we have ∇L(A) = 0 for any A ∈ M, setting the
derivative (17) to 0 gives AΩ = YΩ.

C.1 d = 2

Consider any stationary point A. With d = 2, the matrix A has two columns. Assume for contradiction that A 6∈ M. Denote
the sets

I+ := {i ∈ [n] : Ai1 −Ai2 > 0} (35a)
I− := {i ∈ [n] : Ai1 −Ai2 < 0}. (35b)

By the assumption that A 6∈ M, we have I+ 6= ∅ and I− 6= ∅.



For each i ∈ I+, we have

sign

(
∂R

∂Ai1

)
= sign

∑
i′∈I−

∂Ri,i′,1,2

∂Ai1

 (i)
= sign (Ai1 −Ai2)

(ii)
= 1 (36a)

sign

(
∂R

∂Ai2

)
= sign

λ ∑
i′∈I−

∂Rii′,2,1

∂Ai2

 (i)
= sign (Ai2 −Ai1)

(ii)
= −1, (36b)

where the steps (i) are true due to (14), and the steps (ii) are true due to the definition (35a) of I+. Likewise for each i ∈ I−,
we have

sign

(
∂R

∂Ai1

)
= sign(Ai1 −Ai2) = −1 (36c)

sign

(
∂R

∂Ai2

)
= sign(Ai2 −Ai1) = 1. (36d)

Case 1: If any entry (i, j) in the rows I+ ∪ I− is not observed (i.e., not in Ω), then by the gradient expression (18) we have

∂L

∂Aij
=

∂R

∂Aij
6= 0,

where the inequality holds due to (36). Contradiction to the assumption that A is a stationary point with∇L(A) = 0.

Case 2: All the entries in the rows I+ ∪ I− are observed.

Now consider any i ∈ I+. Setting the gradient expression (18) to 0, we have

Ai1 − Yi1 +
∂R

∂Ai1
= 0

Yi1 = Ai1 +
∂R

∂Ai1
. (37a)

Likewise, we have

Yi2 = Ai2 +
∂R

∂Ai2
. (37b)

Subtracting (37b) from (37a), we have

Yi1 − Yi2 = Ai1 −Ai2 +

(
∂R

∂Ai1
− ∂R

∂Ai2

)
> 0, (38a)

where the last inequality holds because (Ai1 −Ai2) > 0 by the definition (35a) of I+, and because ∂R
∂Ai1

− ∂R
∂Ai2

> 0 due
to (36a) and (36b). Likewise, for each i ∈ I−,

Yi1 − Yi2 = Ai1 −Ai2 +

(
∂R

∂Ai1
− ∂R

∂Ai2

)
< 0. (38b)

Combining (38) contradicts the assumption that Y ∈M.

C.2 n = 2

With n = 2, the matrix A has two rows. We prove by induction on the number of columns d. For d = 1, we trivially have
A ∈M. For d = 2, the proof in Section C.1 yields the claimed result. Now suppose the claim holds for all 2× d matrices.
We now consider any 2× (d+ 1) matrix.

Let A ∈ R2×(d+1) be a stationary point given the observations Y ∈ R2×(d+1). Without loss of generality, we re-index the
columns such that A11 ≤ A12 ≤ . . . ≤ A1,d+1. Now consider the maximum entry in the second row of A.



Case 1: The entry A2,d+1 is the maximum in the second row of A.

In this case, column (d+ 1) contains the maximum for both rows. That is, we have Ai,d+1 ≥ Aij for each i ∈ {1, 2} and

each j ∈ [d]. It can be verified that this column (d+ 1) of the matrix, namely the column
[
A1,d+1

A2,d+1

]
does not contribute to

the regularizer R. Hence, the gradient of the submatrix {Aij}i∈{1,2},j∈[d] remains the same if the last column is removed.
That is, for each i ∈ {1, 2} and j ∈ [d], we have

∂L({Aij}i∈{1,2},j∈[d])

∂Aij
=
∂L(A)

∂Aij
.

Applying the induction hypothesis on the submatrix {Aij}i∈{1,2},j∈[d], we have {Aij}i∈{1,2},j∈[d] ∈ M. Since the last

column
[
A1,d+1

A2,d+1

]
has the maximum entries in both rows, we have A ∈M.

Case 2: The entry A2,d+1 is not a maximum in the second row.

Assume that a maximum in the second row is A2j∗ for some 1 ≤ j∗ < d. Then we have A2j∗ > A2,d+1.

Now consider the entry A1j∗ . By assumption we have A1j∗ ≤ A1,d+1. If A1j∗ = A1,d+1, then the two entries in column
j∗ are both the maximum in their respective rows. Applying a similar inductive argument as in Case 1 to the submatrix
{Aij}i∈{1,2},j∈[d+1]\{j∗} yields A ∈M. It remains to consider the case of A1j∗ < A1,d+1.

We first analyze row 2. Using (14) combined with the fact that A2j∗ is the maximum entry in row 2, we have ∂R
∂A2j∗

≥ 0.
Moreover, since A1j∗ < A1,d+1 and A2j∗ > A2,d+1, the quadruple (1, 2, j, d+ 1) is a conflicting quadruple, and hence we
have the strict inequality

∂R

∂A2j∗
> 0. (39)

On the other hand, we have ∂R
∂A2,d+1

≤ 0, because for any conflicting quadruple (2, d + 1, 1, j) for some j ∈ [d] that

contributes to the derivative ∂R
∂A2j

, we have

sign

(
∂R2,1,d+1,j

∂A2j

)
(i)
= sign(A2,d+1 −A2,j)

(ii)
= − sign(A1,d+1 −A1,j)

(iii)
= −1,

where step (i) is true due to (14); step (ii) is true because (2, 1, d+ 1, j) is assumed to be a conflicting quadruple and hence
(A2,d+1 −A2,j)(A1,d+1 −A1,j) < 0; step (ii) is true because by assumption A1,d+1 is the maximum entry in the first row.
Furthermore, the quadruple (1, 2, j∗, d+ 1) is a conflicting quadruple, so we have strict inequality

∂R

∂A2,d+1
< 0. (40)

Now consider whether the entries A2,j∗ and A2,d+1 are observed. If either A2,j∗ or A2,d+1 is not observed, then combining
the gradient expression (18) with the strict inequalities (39) and (40), we have ∂L

∂A2,d+1
6= 0 or ∂L

∂A2,j∗
6= 0, contradicting the

assumption that A is a stationary point. Hence, both A2,j∗ and A2,d+1 are observed. Setting the gradient expression (18) to
0 respectively for the two entries (2, j∗) and (2, d+ 1), we have

Y2j∗ − Y2,d+1 = (A2j∗ −A2,d+1) +
∂R

∂A2j∗
− ∂R

∂A2,d+1
> 0, (41a)

where the inequality holds because (A2j∗ − A2,d+1) > 0 as A2j∗ is the maximum entry in the second row, and because
of (39) and (40).

Now we analyze row 1. Using a similar argument as in row 2, we have ∂R
∂A1,d+1

> 0 because A1,d+1 is the maximum entry
in row 1, and strict inequality holds due to the existence of the conflicting quadruple (1, 2, j∗, d+ 1). Moreover, we have
∂R

∂A1j∗
< 0, because A2j∗ is the maximum entry in row 2 and the same conflicting quadruple (1, 2, j∗, d+ 1). Similar to the

analysis of row 2, we derive that both entries (1, j∗) and (1, d+ 1) are observed. Therefore,

Y1j∗ − Y1,d+1 = (A1j∗ −A1,d+1) +
∂R

∂A1j∗
− ∂R

∂A1,d+1
< 0. (41b)

Combining (41) contradicts the assumption that Y ∈M. Therefore, the entry A2,d+1 is the maximum in row 2. From Case
1 we have A ∈M for any 2× (d+ 1) matrices, completing the inductive step.



C.3 d = 3

With d = 3, the matrix has 3 columns. We consider the maximum entry in each row of the matrix. If a row has multiple
maxima, one is chosen arbitrarily unless otherwise specified.

Case 1: The maxima in all the n rows of the matrix lie in the same column.

Without loss of generality, assume that the column containing all the maxima is column 3. It can be verified that all entries
in column 3 do not contribute to the regularizer R. Applying the proof of the d = 2 case in Appendix C.1 to the submatrix
{Aij}i∈[n],j∈{1,2} yields {Aij}i∈[n],j∈{1,2} ∈M. Since column 3 contains the maximum of each row, we have A ∈M.

Case 2: The maxima of the n rows lie in two different columns.

If the 3 entries within each row are identical, then we have A ∈M, so it remains to consider the case where there exists a
row whose values are not all identical. Without loss of generality, we assume that the entries are not all identical in row 1.
We re-index the columns such that the first row is non-decreasing. Hence, we have A11 < A13. We also re-index the rows,
so that rows whose maxima are in the same column are grouped together. Then the matrix A is in one of the two following
forms: 

min ∗ max
...

...
...

∗ ∗ max
∗ max ∗
...

...
...

∗ max ∗


(42a)

or 

min ∗ max
...

...
...

∗ ∗ max
max ∗ ∗

...
...

...
max ∗ ∗


, (42b)

where we use “min” and “max” to indicate that the matrix entry is respectively a minimum or a maximum of its row (allowing
ties). We use ∗ to indicate a general matrix entry, and use the horizontal line to indicate that the matrix structure decomposes
into two blocks of rows. We denote the upper block and the lower block of the matrix as AU and AL, respectively, so that

the matrix is also written as
[
AU

AL

]
. We denote the row indices of the upper block and the lower block as IU, IL ⊆ [n],

respectively. By the assumption of the case, we have IU, IL 6= ∅.

Case 2.1: We consider the matrix form (42a).

We assume that in the lower block AL, the entries in column 2 are strictly greater than the entries in column 3 within each
row. That is, we assume Ai2 > Ai3 for each i ∈ IL. This assumption is without loss of generality, because otherwise we
have Ai2 = Ai3, so that one can move row i to the upper block of the matrix.

Case 2.1.1: There exists a strict min-entry in column 2 in some row of the upper block. That is, there exists i∗ ∈ IU such
that Ai∗1 > Ai∗2. Since column 3 contains the maximum for all rows in the upper block, we have the strict inequality
Ai∗2 < Ai∗3.

Using (14), it can be verified that

∂R

∂Ai∗2
< 0 (43a)

∂R

∂Ai∗3
> 0, (43b)

where strict inequalities hold because the quadruple (i∗, i′, 2, 3) is a conflicting quadruple for each i′ ∈ IL. Setting the
gradient (18) for the stationary point A and combining with (43), we have the entries (i∗, 1) and (i∗, 2) must both be



observed. Subtracting the gradient expression (18) on the entries (i∗, 1) and (i∗, 2), we have

Yi∗,2 − Yi∗,3 = (Ai∗,2 −Ai∗,3) +

(
∂R

∂Ai∗,2
− ∂R

∂Ai∗,3

)
< 0,

where the last inequality holds by combining the fact of Ai∗2 < Ai∗3 with inequalities (43). Hence, we have

Yi∗2 < Yi∗3. (44)

Now consider the case where there exists a min-entry in column 3 in the lower block, and denote this row as iL ∈ IL.
Since we assume Ai2 > Ai3 for each i ∈ IL for Case 2.1, we have (iL, 3) is a strict min-entry. Note that (i∗, iL, 2, 3) is a
conflicting quadruple. Using an argument similar to the derivation of (44), we have

YiL,2 > YiL,3. (45)

Combining (44) and (45) contradicts the assumption that Y ∈M. Hence, there does not exist any min-entry in column 3 in
the lower block. Hence, the min-entry must lie in column 1 in the lower block, and all such min-entries are strict. Now the
matrix A can be written in the form 

min ∗ max
...

...
...

∗ ∗ max
min max ∗

...
...

...
min max ∗


.

Now consider any row iL ∈ IL. We have ∂R
∂AiL,2

> 0 because column 2 contains a max-entry, and strict inequality holds

due to the conflicting quadruple (i∗, iL, 2, 3). On the other hand, we have ∂R
∂AiL,3

≤ 0, because no quadruple within the
lower block contributes to the regularizer, and in the upper block column 3 contains the max-entry. Moreover, we have the
strict inequality ∂R

∂AiL,3
< 0 due to the conflicting quadruple (i∗, iL, 2, 3) again. Setting the gradient expression (18) for the

stationary point A, we have that both entries (iL, 2) and (iL, 3) are observed. Subtracting the two gradient expression, we
have

YiL,2 > YiL,3. (45’)

Combining (44) and (45’) yields a contradiction to the assumption of Y ∈M, completing the proof of Case 2.1.1.

Case 2.1.2: There does not exist a min-entry in column 2 in the upper block.

In this case, the matrix is in the form 

min ∗ max
...

...
...

min ∗ max
∗ max ∗
...

...
...

∗ max ∗


.

We consider column 2 in the upper block. If Ai2 = Ai3 for all i ∈ IU, then column 2 of the entire matrix only contains
max-entries, and we apply the proof of Case 1 to column 2. It remains to consider the case where there exists some i ∈ IU
such that AiU,2 < AiU,3. We have ∂R

∂AiU,3
> 0, where strict inequality holds due to the conflicting quadruple (IU, IL, 2, 3) for

any iL ∈ IL. Moreover, we have ∂R
∂AiU,2

≤ 0, because no quadruple within the upper block contributes to the regularizer,

and in the lower block column 2 contains the max-entries. We have the strict inequality ∂R
∂AiU,2

< 0 due to the conflicting
quadruple (IU, IL, 2, 3) for any iL ∈ IL. Using the gradient expression (18), both entries (iU, 2) and (iU, 3) are observed,
and we have

YiU,2 < YiU,3. (46a)



Now consider column 3 in the lower block. If for any row iL ∈ IL, column 3 contains the min-entry. Then due to the
quadruple (iU, iL, 2, 3) we have

YiL,2 < YiL,3. (46b)

Combining (46) yields a contradiction to the assumption that Y ∈M. Hence, column 3 does not contain any min-entry in
the lower block. That is, the matrix can be written in the form

min ∗ max
...

...
...

min ∗ max
min max ∗

...
...

...
min max ∗


.

Note that column 1 of the entire matrix only contains min-entries. Applying Case 1 to the minima (instead of the maxima)
completes the proof of Case 2.1.2.

Case 2.2: We consider the form (42b).

Without loss of generality, we assume strict inequality AiL,1 > AiL,3 for all iL ∈ IL. Otherwise, we have AiL,1 = AiL,3

and one can move row iL to the upper block. Assume that column 3 in the lower block contains a min-entry for some row
iL ∈ IL. Combining row iL with row 1 gives a conflicting quadruple (1, iL, 1, 3). Using an argument similar to Case 2.1, we
have

Y11 < Y13

YiL,1 > YiL,3,

contradicting to the assumption Y ∈M. Hence, column 3 in the lower block does not contain any min-entry. Therefore, the
matrix can be written as 

min ∗ max
...

...
...

∗ ∗ max
max min ∗

...
...

...
max min ∗


.

For any iL, the quadruple (1, iL, 1, 3) is again a conflicting quadruple. We have

Y11 < Y13

YiL,1 > YiL,3,

contradicting to the assumption Y ∈M, completing the proof of Case 2.2.

Case 3: The maxima of the n rows span all the 3 columns. That is, the matrix can be written in the form:

min ∗ max
...

...
...

∗ ∗ max
∗ max ∗
...

...
...

∗ max ∗
max ∗ ∗

...
...

...
max ∗ ∗


.



Denote the three blocks in the matrix as AU, AM and AL respectively, so that the matrix is also written as

AU

AM

AL

. Denote

the corresponding sets of row indices as IU, IM and IL, respectively. Without loss of generality, we assume

Ai2 > Ai3 ∀i ∈ IM

Ai1 > {Ai2, Ai3} ∀i ∈ IL.

Otherwise, we may move the rows in the middle block to the upper block, and move the rows in the lower block to the upper
or middle blocks.

Now consider the lower block. Assume that there exists some min-entry in column 3 of the lower block. That is, assume that
there exists some iL ∈ IL, such that AiL,3 is a min-entry. Then the quadruple (1, iL, 1, 3) is a conflicting quadruple. Hence,
we have

Y11 < Y13

YiL,1 > YiL,3,

contradicting with the assumption that Y ∈M. Hence, there does not exist any min-entry in column 3 of the lower block.
Then the matrix can be written in the form: 

min ∗ max
...

...
...

∗ ∗ max
∗ max ∗
...

...
...

∗ max ∗
max min ∗

...
...

...
max min ∗


.

Now consider row 1. The quadruple (1, iL, 1, 3) is a conflicting quadruple for each row iL ∈ IL in the lower block. Hence,
we have

Y11 < Y13. (47)

Assume without loss of generality that there exists some iM ∈ IM, such that AiM,1 < AiM,2. Otherwise, the first column in
the middle block contains all max-entries, and the matrix reduces to Case 2.2. Now consider any row iL ∈ IL. The quadruple
(iM, iL, 1, 2) is a conflicting quadruple. Hence, we have

YiL,1 > YiL,2. (48)

Combining (47) and (48) along with the assumption that Y ∈M, we have

Yi2 ≤ Yi1 ≤ Yi3, ∀i ∈ [n]. (49)

Now consider row iM again in the middle block. Assume AiM,1 is the min-entry in row iM. The quadruple (iM, iL, 1, 2) is a
conflicting quadruple for any iL ∈ IL. Hence, we have

YiM,2 > YiM,1,

contradicting (49). Hence, it must be the case that AiM,3 is the min-entry. Then we have AIM,2 > AIM,1 ≥ AiM,3. Now again
consider any row iL ∈ IL. Recall that we have established that AiL,3 cannot be a min-entry, so we have AiL,3 > AiL,2. Then
the quadruple (iM, iL, 2, 3) is a conflicting quadruple. Hence, we have

YiM,2 > YiM,3,

again contradicting (49), completing the proof of Case 3.

Finally, combining the three cases yields the claimed result.



D PROOF OF PROPOSITION 3

Without loss of generality, we consider any j, j′ ∈ [d] such that

A1,j < A1,j′ (50a)
A2,j > A2,j′ , (50b)

and prove that

Y1,j < Y1,j′ , if (1, j), (1, j′) ∈ Ω.

First, consider the quadruple (1, 2, j, j′). By (50), it is a conflicting quadruple. By (14), we have

∂R1,2,j,j′

∂A1,j
< 0 (51a)

∂R1,2,j,j′

∂A1,j′
> 0. (51b)

Now consider quadruples involving any other column k ∈ [d] \ {j, j′}. We consider all possible orderings of the entries in
column k relative to the columns j and j′ as follows (we bold the entries in column k for better readability).

Case 1:

A1,k ≤ A1,j < A1,j′

A2,k ≤ A2,j′ < A2,j
, or

A1,j < A1,j′ ≤ A1,k

A2,j′ < A2,j ≤ A2,k

It can be verified that column k does not form conflicting quadruples with columns j or j′. Hence, column k does not
contribute to the gradient of the regularizer with respect to A1j or A1j′ :

∂R1,2,j,k

∂A1j
=
∂R1,2,j′,k

∂A1j′
= 0.

Case 2:

A1,j < A1,k ≤ A1,j′

A2,k ≤ A2,j′ < A2,j
, or

A1,j < A1,j′ ≤ A1,k

A2,j′ ≤ A2,k < A2,j

It can be verified that column k contributes a negative gradient to the regularizer with respect to A1j , and no gradient to the
regularizer with respect to A1j′ :

∂R12jk

∂A1j
< 0 =

∂R12j′k

∂A1j′
.

Case 3:

A1,j ≤ A1,k < A1,j′

A2,j′ < A2,j ≤ A2,k
, or

A1,k ≤ A1,j < A1,j′

A2,j′ < A2,k ≤ A2,j

It can be verified that column k contributes no gradient to the regularizer with respect to A1,j , and a positive gradient to the
regularizer with respect to A1j′ :

∂R1j2k

∂A1j
= 0 <

∂R1j′2k

∂A1j′
.

Case 4:

A1,j < A1,k < A1,j′

A2,j′ < A2,k < A2,j ,



It can be verified that column k contributes a negative gradient to the regularizer with respect to A1j , and a positive gradient
to the regularizer with respect to A1j′ :

∂R1j2k

∂A1j
< 0 <

∂R1j′2k

∂A1j′
.

Case 5:

A1,k < A1,j < A1,j′

A2,j′ < A2,j < A2,k,

It can be verified that column k contributes positive gradients to the regularizer with respect to both A1j and A1j′ . By (13),
we have

∂R1j2k

∂A1j
= 2(A1j −A1k)(A2j −A2k)2

∂R1j′2k

∂A1j′
= 2(A1j′ −A1k)(A2j′ −A2k)2,

and hence

0 <
∂R1j2k

∂A1j
<
∂R1j′2k

∂A1j′
.

Finally, combining all the 5 cases, it can be verified that they cover all possible orderings of the entries in column k relative
to columns j and j′. Moreover, we have

∂R1j2k

∂A1j
<
∂R1j′2k

∂A1j′
∀k ∈ [d] \ {j, j′}. (52)

Plugging (51) and (52) to (16), we have

∂R

∂A1j
= 4λ

∂R1,2,j,j′

∂A1j
+

∑
k∈[d]\{j,j′}

∂R1j2k

∂A1j


< 4λ

∂R1,2,j′,j′

∂A1j′
+

∑
k∈[d]\{j,j′}

∂R1j′2k

∂A1j′

 =
∂R

∂A1j′
(53)

Since we assume (1, j), (1, j′) ∈ Ω, using the gradient expression (18), we have

Y1j′ − Y1j = (A1j −A1j′) +

(
∂R

∂A1j
− ∂R

∂A1j′

)
< 0,

where the inequality holds due to (50a) and (53), completing the proof.

E PROOF OF THEOREM 4

To present the main ideas of the proof, we first prove the following lemma under a simplified setting of Theorem 4, where
the partition includes two subsets, [d] = S ∪ S under full observations Ω = [n]× [d]. Then we present how to generalize
Lemma 8 to any partition and partial observations.

Lemma 8. Consider any matrix Y ∈ Rn×d, and full observations Ω = [n]× [d]. Consider n = 2. Assume there exists a
partition of columns [d] = S ∪ S, such that any column in S dominates any column in S. That is, for any j ∈ S and j′ ∈ S,
we have

Yi,j < Yi,j′ ∀i ∈ {1, 2}. (54)

Then we have the same relation for any stationary point A. That is,

Ai,j < Ai,j′ ∀i ∈ {1, 2},∀j ∈ S and j′ ∈ S. (55)



E.1 PROOF OF LEMMA 8

We decompose the proof into the following steps.

Step 1: Show that conflicting quadruples cannot lie across (S, S)

Assume for contradiction that there exists a conflicting quadruple across (S, S). That is, assume that there exists j ∈ S
and j′ ∈ S such that (A1,j − A1,j′)(A2j − A2j′) < 0. Applying Proposition 3, we have (Y1,j − Y1,j′)(Y2j − Y2j′) < 0,
contradicting the dominance assumption (54). Hence, all conflicting quadruples must lie within S, or within S. Formally, for
any j, j′ ∈ [d] such that (1, 2, j, j′) is a conflicting quadruple, we have either j, j′ ∈ S or j, j′ ∈ S.

Step 2: Partition columns into blocks We partition the columns into blocks [d] = B1 ∪B2 ∪ . . . ∪BK for some K ≥ 2,
such that the following conditions are satisfied:

(a) For k ∈ [K], the block Bk includes columns only from S, or only from S. That is, for each k ∈ [K] we have Bk ⊆ S
or Bk ⊆ S .

(b) For each k ∈ [K−1], the blocks Bk and Bk+1 are in different sets of the partition (S, S). That is, for each k ∈ [K−1],
we have either Bk ⊆ S and Bk+1 ⊆ S, or Bk ⊆ S and Bk+1 ⊆ S.

(c) For each k ∈ [K − 1], the columns in Bk+1 dominates the columns in Bk. That is,

Aij ≤ Aij′ ∀i ∈ {1, 2},∀k ∈ [K],∀j ∈ Bk, and ∀j′ ∈ Bk+1.

Due to Step 1, all conflicting quadruples lie within S or S, so it can be verified that a partition of blocks with K ≥ 2
satisfying (a)-(c) exists.

Step 3: Show that A satisfies the claimed dominance relation (55).

We define

kH := max{k ∈ [K] : Bk ⊆ S} (56a)

kL := min{k ∈ [K] : Bk ⊆ S}, (56b)

where ties are broken arbitrary. That is, BkL is the block that is ordered the lowest among all blocks consisting of columns in
S, and BkH is the block that is ordered the highest among all blocks consisting of columns in S. Furthermore, we define

jH := argmax
j∈BkH

A1j (57a)

jL := argmin
j∈BkL

A1,j , (57b)

where ties are broken arbitrarily. That is, (1, jH) is the the maximum entry of A in row 1 among columns BkH , and (1, jL) is
the minimum entry of A in row 1 among columns BkL .

Case 1: A1,jH < A1,jL

By condition (c) of the construction, we have kL > kH. Hence, for all j ∈ S and j′ ∈ S, we have

A1j

(i)
≤ A1jH < A1jL

(ii)
≤ A1j′ ,

where steps (i) and (ii) are true due to the definitions (56) and (57) along with the fact that kL > kH. This completes Case 1.

Case 2: A1,jH ≥ A1,jL

If any conflicting quadruple includes the entry A1,jH , then from Step 1 we have that all such conflicting quadruples are
within S. By the definition (56a) of kH and the definition (57a) of jH, the entry A1,jH is the maximum entry among all entries
in row 1 among column S. Hence, we have

∂R

∂A1,jH

≥ 0 (58a)

and likewise
∂R

∂A1,jL

≤ 0. (58b)



Using the gradient expression (18), we have

Y1,jL − Y1,jH = (A1,jL −A1,jH) + λ

(
∂R

∂A1,jL

− ∂R

∂A1,jH

)
≤ 0,

where the last inequality is true due to (58) along with the assumption of the case. This contradicts the assumption (54) that
the columns S dominates the columns S, completing Case 2.

Combining the two cases completes the proof.

E.2 PROOF OF THEOREM 4

Now we extend Lemma 8 to partial observations, stated as follows.

Lemma 9. Consider any matrix Y ∈ [0, 1]n×d, and partial observations Ω ⊆ [n] × [d]. Consider n = 2. Assume there
exists a partition of columns [d] = S ∪ S, such that any column in S dominates any column in S. That is, we have

Yi,j < Yi,j′ ∀i ∈ {1, 2},∀j ∈ S and ∀j′ ∈ S. (59)

Moreover, we assume that for each j ∈ S, j′ ∈ S, we have

∃i ∈ {1, 2} such that (i, j), (i, j′) ∈ Ω. (60)

Then for any stationary point A, we have

Ai,j < Ai,j′ ∀i ∈ {1, 2},∀j ∈ S and j′ ∈ S. (61)

We first use Lemma 9 to prove Theorem 4, and then prove Lemma 9. To prove Theorem 4, applying Lemma 9 with

S = ∪kr=1Sr

S = ∪mr=k+1Sr

with every k ∈ [m− 1] gives

Aij < Aij′ ∀i ∈ {1, 2},∀j ∈ Sk, and ∀j′ ∈ Sk+1,

completes the proof of Theorem 4. It now remains to prove Lemma 9.

Proof of Lemma 9 We extend the three steps in the proof of Lemma 8 to partial observations as follows.

Step 1: Show that conflicting quadruples cannot lie across (S, S)

Assume for contradiction that (1, 2, j, j′) is a conflicting quadruple with j ∈ S and j′ ∈ S. Assume without loss of generality
that

A1j < A1j′ (62a)
A2j > A2j′ . (62b)

If all the 4 entries in this quadruple are observed, then applying Proposition 3 yields a contradiction. By assumption (60),
one pair in the quadruple is observed. If the pair A2j > A2j′ is observed, then applying Proposition 3 gives Y2j > Y2j′ ,
yielding a contradiction to (59). Hence, it remains to consider the case that the pair A1j < A1j′ is observed.

We first show that one entry in the pair A2j > A2j′ must be observed. Using the same argument as in the proof of
Proposition 3, we have

∂R

∂A2j
>

∂R

∂A2j′
. (63)

If both entries in this pair are unobserved, then combining (63) with the gradient expression (18), we have

∂L

∂A2j
= λ

∂R

∂A2j
> λ

∂R

∂A2j′
=

∂L

∂A2j′
,



contradicting the assumption that A is a stationary point with a gradient of 0, and hence ∂L
∂A2j

= ∂L
∂A2j′

= 0. Hence, one
entry in the pair A2j > A2j′ is observed. We now separately discuss the two cases depending on which entry in this pair is
observed.

Case 1: A2j is observed and A2j′ is unobserved.

Since A2j′ is unobserved, we have

∂L

∂A2j′
=

∂R

∂A2j′
= 0. (64)

Since (1, 2, j, j′) is a conflicting quadruple, we have

∂R1,2,jj′

∂A2j′
< 0. (65)

Combining (64) and (65), there must exist some k ∈ [d] such that ∂R1,2,j′k
∂A2j′

> 0. That is, we have

A1j′ < A1k (66a)
A2j′ > A2k. (66b)

If k ∈ S, then (1, 2, j′, k) is a quadruple across the partition (S, S). Recall by the assumption of the case that A2j′

is unobserved, by condition (60), the pair A1j′ < A1k must be observed. Applying Proposition 3 yields Y1j′ < Y1k,
contradicting the dominance assumption (59).

It now remains to consider k ∈ S. Recall by the assumption of the case that A2j′ is unobserved. If A2k is also unobserved,
then the applying the arguments in Proposition 3 to the conflicting quadruple (1, 2, j, k), we have

∂R

∂A2j′
<

∂R

∂A2k
,

and hence

∂L

∂A2j′
=

∂R

∂A2j′
<

∂R

∂A2k
=

∂L

∂A2k
,

contradicting the assumption that A is a stationary point with a gradient of 0. Hence, A2k is observed. Combining (62)
and (66), we have

A1j < A1k

A2j > A2k.

That is, (1, 2, j, k) is a conflicting quadruple. Note that all the 4 entries in this conflicting quadruple are observed. Note that
by the assumption that j ∈ S and k ∈ S, this conflicting quadruple is across the partition (S, S). Applying Proposition 3
yields a contradiction with the dominance relation (59) of the partition (S, S).

Case 2: A2j is unobserved and A2j′ is observed. A similar argument as in Case 1 applies.

Combining the two cases completes Step 1.

Step 2: Parition columns into blocks

We use the same construction of the blocks described in Step 2 of the proof of Lemma 8, and obtain the blocks
[d] = B1 ∪ . . . ∪BK .

Step 3: Show that A satisfies the claimed dominance relation (61)

We follow Step 3 of the proof of Lemma 8, and use the same definition of kH, kL from (56), and the definition of (jH, jL)
from (57). Again assume for contradiction that the dominance relation (61) does not hold on A. We separately discuss the
following cases depending on whether the entries (1, jH) and (1, jL) are observed.



Case 1: Both (1, jH) and (1, jL) are observed. Then Step 3 of Lemma 8 can be applied directly.

Case 2: Both (1, jH) and (1, jL) are unobserved. Due to the definitions (56a) and (57a), the entry (1, jH) is the maximum
entry of A in row 1 among columns S. If the entry (1, jH) is involved in any conflicting quadruple, then due to Step 1, all
such conflicting quadruples must lie within S. Hence, all conflicting quadruples contribute a positive gradient to ∂R

∂A1,jH
.

Since (1, jH) is unobserved, setting the gradient expression (18) to 0 for the stationary point A, we have

∂L

∂A1,jH

=
∂R

∂A1,jH

= 0.

Hence, the entry (1, jH) cannot be in any conflicting quadruples. Therefore, (2, jH) is the maximum entry in row 2 among
columns S. Likewise (1, jL) cannot be in any conflicting quadruples, and (2, jL) is the minimum entry in row 2 among
columns S. By the assumption (60), both (2, jL) and (2, jL) are observed. Applying the arguments in Case 1 to the pair of
(2, jH) and (2, jL) completes Case 2.

Case 3: (1, jL) is observed and (1, jH) is unobserved.

Denote (2, j′L) as the minimum entry in row 2 among columns S. If (2, j′L) is unobserved, then as in Case 2, the entry (2, j′L)
cannot be in any conflicting quadruples, and hence j′L = jL. We have (1, jH) and (2, jL) both unobserved, contradicting (60).
Hence, (2, j′L) must be observed, and likewise (2, j′H) must be observed, where (2, j′H) is the maximum entry in row 2 among
columns S. Applying Case 1 to the pair of (2, j′L) and (2, j′H) completes the proof.

Case 4: (1, jL) is unobserved and (1, jH) is observed. By symmetry, a similar argument as in Case 3 applies.

Finally, combining the 4 cases completes the proof.
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