
Random Probabilistic Circuits

Nicola Di Mauro1,4 Gennaro Gala1,4 Marco Iannotta1 Teresa M.A. Basile2,3

1Department of Computer Science, University of Bari, Bari, Italy
2Department of Physics, University of Bari, Bari, Italy

3 National Institute for Nuclear Physics (INFN), Bari Division, Bari, Italy
4 Eindhoven University of Technology, The Netherlands

Abstract

Density estimation could be viewed as a core com-
ponent in machine learning, since a good estimator
could be used to solve many tasks such as clas-
sification, regression, and imputing missing val-
ues. The main challenge of density estimation is
balancing the model expressiveness and its learn-
ing and inference complexity. Probabilistic circuits
(PCs) model a probability distribution as a com-
putational graph. By imposing specific structural
properties on such models many inference tasks
become tractable. However, learning PCs usually
relies on greedy and time consuming algorithms.
In this paper we propose a new unified approach
to efficiently learn PCs having several structural
properties. We introduce extremely randomized
PCs (XPCs), PCs with a random structure. We
show their advantage on standard density estima-
tion benchmarks when compared to other density
estimators.

1 INTRODUCTION

Density estimation is the unsupervised task of reconstruct-
ing the joint probability density function (pdf)—learning
an estimator—underlying a set of observed samples over
specific random variables (RVs). Once such an estimator
is learned, it can be used to make inference—computing
the probability of queries about certain RVs states, such as
complete evidence queries, marginal queries or conditional
queries. A perfect estimator would allow to solve many clas-
sical machine learning tasks (e.g., regression, classification,
clustering and unsupervised prediction) by casting them in
specific types of inference. Indeed, density estimation is
recognized as one of the most general and powerful task in
Machine Learning (ML).

The main challenge of density estimation is balancing the

𝑋4 𝑋4

𝑋5

𝑋1

𝑋3 𝑋3

𝑋5

𝑋2 𝑋2

𝑋1

𝑝(𝑋1 = 0) 𝑝(𝑋1 = 1)

𝑝(𝑋4 = 0|𝑋5 = 1)

𝑝(𝑋4 = 0|𝑋5 = 0)

𝑝(𝑋4 = 1|𝑋5 = 1)

𝑝(𝑋4 = 1|𝑋5 = 0)

𝑝(𝑋3 = 1|𝑋5 = 1)

𝑝(𝑋3 = 1|𝑋5 = 0)

𝑝(𝑋2 = 0|𝑋1 = 1)

𝑝(𝑋2 = 0|𝑋1 = 0)

𝑝(𝑋2 = 1|𝑋1 = 1)

𝑝(𝑋2 = 1|𝑋1 = 0)

𝑝(𝑋5 = 0|𝑋1 = 1)

𝑝(𝑋5 = 0|𝑋1 = 0)

𝑝(𝑋5 = 1|𝑋1 = 1)

𝑝(𝑋5 = 1|𝑋1 = 0)

𝑝(𝑋3 = 0|𝑋5 = 1)

𝑝(𝑋3 = 0|𝑋5 = 0)

𝑋1

𝑋2𝑋5

𝑋4 𝑋3

𝑋1 𝑋2

𝑋5 𝑋4 𝑋3

(a) (b) (c)

Figure 1: A PC, its vtree and corresponding CLT. A smooth,
structured-decomposable, and deterministic PC over five
RVs X = {X1,X2,X3,X4,X5} in (a), where dotted edges de-
note the flowing for the input sample {X1 = 1,X2 = 0,X3 =

0,X4 = 1,X5 = 0}. Its equivalent CLT in (b), and its vtree in
(c). Conditional probabilities in (a) represent the weights of
the left and right incoming edges.

model representation expressiveness (i.e., the ability to
model complex distributions) against its learning and in-
ference complexity. For instance, Probabilistic Graphical
Models (PGMs), like Bayesian Networks (BNs), can model
highly complex probability distributions but exact inference
with them is generally intractable—non-polynomial in the
size of the network. This is the reason why, a relatively
recent probabilistic ML research area focuses on design-
ing and exploiting models that can theoretically guarantee
reliable and efficient probabilistic inference. These mod-
els belong to the family of Tractable Probabilistic Models
(TPMs), compact representations for rich probability dis-
tributions which allow complex inference routines to be
computed exactly and in polynomial time, i.e., tractably.

However, it should be noticed that tractability is associated
to different classes of queries: computing exact marginals
on a TPM may be tractable, while Maximum A Posteriori

Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021), PMLR 161:1682–1691.

mailto:Nicola Di Mauro <nicola.dimauro@uniba.it>?Subject=Your UAI 2021 paper


(MAP) may not be. TPMs like bounded tree-width graphical
models [Meila and Jordan, 2000], Arithmetic Circuits [Dar-
wiche, 2009], Sum-Product Networks (SPNs) [Poon and
Domingos, 2011], Cut-Set Networks (CNets) [Rahman
et al., 2014] and Probabilistic Sentential Decision Dia-
grams (PSDDs) [Kisa et al., 2014], promise a good com-
promise between expressive power and tractable inference.
The recently proposed Probabilistic Circuits (PCs) frame-
work [Vergari et al., 2020, Choi et al., 2020] allow us to
describe, learn, and reason about these TPMs and to catego-
rize them under this single and unified framework.

PCs (see Figure 1) are computational graphs that define
a joint probability distribution as recursive mixtures (sum
units) and factorizations (product units) of simpler distri-
butions (e.g., parametric distributions such as Gaussians
or Bernoullis). Learning PCs can be naturally organized
into structure learning and parameter learning, following
the same dichotomy as in PGMs. Differently from other
neural density estimators such as NADE [Uria et al., 2016]
and autoregressive flows [Papamakarios et al., 2017], PCs
enable large classes of tractable inference with little or no
compromise in terms of model expressiveness.

However, even if learning TPMs may be done in polyno-
mial time, thanks to several recent algorithmic schemes,
making these algorithms scale to high dimensional data is
still an issue. In particular, various maximum likelihood
based approaches have been proposed using either gradient-
based optimization or expectation-maximization (and re-
lated schemes), but unfortunately, most structure learners
proposed so far are tedious to tune. For instance, tractable
SPN learners as LEARNSPN [Gens and Domingos, 2013]
and ID-SPN [Rooshenas and Lowd, 2014] spend a sub-
stantial amount of their execution time on partitioning RVs
into conditionally independent components. On the contrary,
Peharz et al. [2019] proposed RAT-SPN, a simple random
approach to employ SPNs for deep learning, and demon-
strated that tractable models like SPNs can get surprisingly
far even without sophisticated structure learning. Also, Di
Mauro et al. [2017] showed how mixtures of CNets whose
OR tree is learned by performing random conditioning out-
perform state-of-the-art density estimators on a series of
standard benchmark datasets.

Following these trends, we introduce eXtremely randomized
Probabilistic Circuits (XPCs), smooth and decomposable
PCs which can be easily forced to be deterministic and/or
structured decomposable without increasing learning com-
plexity. We are proposing a new learning scheme for PCs
that can be forced to build networks with specific structural
constraints.

XPCs leverage on random conditionings and employ naïve
factorizations (aka PoB, Product of Bernoullis) and Chow-
Liu Trees (CLTs) [Chow and Liu, 1968] as multivariate leaf
distributions. To satisfy structured decomposability, we pro-

pose a simple yet effective approach to normalize several
CLTs for the same vtree. While the log-likelihood of an XPC
is slightly worse than other state-of-the-art (SOTA) competi-
tors, ensembles of XPC (EXPCs) perform as SOTA density
estimators on a series of standard benchmark datasets, yet
employing only a fraction of the time needed to learn the
competitors.

2 RELATED WORKS

Randomly learning the structure of PCs is a problem already
tackled in some recent works. The first kind of random
PCs have been proposed in [Di Mauro et al., 2017] where
the authors introduced random CNets, a deterministic PC,
whose OR tree is learned by performing random condition-
ing. Here we do not limit to single variable conditioning,
and furthermore our proposed learning scheme is not limited
to deterministic circuits as CNets.

In [Peharz et al., 2019] the authors proposed a simple and
scalable method to build random and tensorized SPNs (RAT-
SPNs), avoiding the necessity of a structure learner. In par-
ticular, they first construct a random region graph [Dennis
and Ventura, 2012] subsequently populated with arrays of
SPN nodes, hence leading to a random hierarchical tenso-
rial decomposition. For the generative case, the parameters
of the network are learned using the classical expectation-
maximization (EM) algorithm [Dempster et al., 1977] de-
rived for SPNs as in [Peharz et al., 2017]. In this paper the
construction of random region graph is data-driven and we
avoid the time consuming EM algorithm for parameter op-
timization. Furthermore, our learning scheme can impose
other structural constraints to the obtained PCs than that
imposed on SPNs.

Finally, in [Ventola et al., 2019] the authors proposed ran-
dom sum-product forests (RSPFs), an ensemble approach
for mixing multiple randomly generated SPNs, with an ap-
proach similar to that proposed in [Di Mauro et al., 2017].
Even in this case the parameters of the networks are learned
using the time consuming EM algorithm and the approach
is restricted to learn SPNs.

3 PROBABILISTIC CIRCUITS

Notation. Upper-case letters are used to denote random
variables (RVs), while lower-case ones for their assignments.
Upper-case and lower-case bold letters are used, resp., to
denote set of RVs and their joint values. In this paper we
consider Boolean RVs, i.e., variables having values in {0,1}.

3.1 STRUCTURAL PROPERTIES

A probabilistic circuit C, defined over a set of RVs X, is a
computational graph, represented with a directed acyclic

1683



graph (DAG), encoding a probability distribution PC(X).

PCs have three kinds of nodes only: input distributions
(leaves), product nodes (⊗-node) and sum nodes (⊕-node).
Given a node n of the DAG, let Cn denote the sub-circuit
rooted at n, ch(n) its child nodes, and PCn its encoding
distribution.

An input distribution n encodes a tractable probability dis-
tribution Pn over some RVs φ(n) ⊆ X. A product node
defines a factorized distribution Pn(X) =∏c∈ch(n) Pc(X).
A sum node n represents a mixture distribution Pn(X) =
∑c∈ch(n) θncPc(X). The RVs over which an input distribu-
tion n is defined is named its scope and it is denoted as
φ(n). The scope of a product or a sum node n is defined as
φ(n) = ∪c∈ch(n)φ(c). In this paper we consider univariate
input distributions.

A PC C over RVs X supports computing the likelihood
pC(x) given a complete configuration x (a complete evi-
dence query) by evaluating the circuit bottom up: starting
from the input distributions and computing the output of
children before parents. Additional properties of the PC
extend the set of probabilistic queries that are guaranteed
to be answered exactly and in time linear in the size of the
PC—its number of edges.

Definition 3.1. A probabilistic circuit is smooth if for every
⊕-node, the children have the same scope.

In a smooth PC ⊕-nodes encode mixtures of distributions
defined over the same sets of RVs.

Definition 3.2. A probabilistic circuit is decomposable if
for every ⊗-node its children have disjoint scope.

In a decomposable PC ⊗-nodes model a factorized proba-
bility distributions.

Smooth and decomposable PCs enable the tractable compu-
tation of any marginal query [Darwiche, 2000]. In this way,
each node in a PC recursively defines a distribution over its
scope: a) leaves are distribution by definition, b) ⊕-nodes
are mixtures of their child distributions, and c) ⊗-nodes are
factorized distributions.

Definition 3.3. A probabilistic circuit is deterministic if
for every ⊕-node n and assignment x, at most one of the
children of n have a non-zero output.

In a deterministic circuit ⊕-nodes define a mixture model
whose components have disjoint support, thus enabling
tractable MAP inference [Chan and Darwiche, 2006] and
closed-form parameter learning [Kisa et al., 2014].

In order to introduce the definition of structured version of
PCs it is necessary to give the notion of vtree. Even if a
vtree has been defined to be a binary tree [Pipatsrisawat and
Darwiche, 2008, Kisa et al., 2014], its definition could be
extended to general n-ary trees as in the following.

Definition 3.4. A vtree over a set of X RVs is a n-ary tree
encoding a hierarchical decomposition of the RVs. Each
leaf in a vtree denotes a RV, while an internal node indicates
how to decompose a set of RVs into many subsets.

A PC is said to be normalized for a vtree if the scope of every
⊗-nodes decomposes over its children as its corresponding
node in the vtree (see Figure 1 for an example of a vtree and
a corresponding normalized structured decomposable PC.
Figure 3, in Appendix A, is another example of structured
decomposable PC).

A PC is structured decomposable (SD) if its ⊗-nodes can-
not decompose in arbitrary ways, but must agree on a
vtree. In particular, a structured-decomposable PC encodes
a probability distribution in a computational graph by recur-
sively decomposing it into smaller distributions according
to a hierarchical partitioning of the random variables, also
called vtree. A structured decomposable PC provides sev-
eral classes of advanced probabilistic queries computable
exactly and efficiently [Kisa et al., 2014].

3.2 TRACTABLE INFERENCE

A probabilistic model is tractable when it provides exact
inference–answers to queries are not approximated–and the
query computation can be obtained efficiently–in time poly-
nomial in the size of the probabilistic model [Choi et al.,
2020].

Definition 3.5. A class of queries Q is tractable on a family
of probabilistic models M iff any query q ∈Q on a model
m ∈M can be computed in time O(poly(∣m∣)).

The concept of efficiency translates to polytime complexity
w.r.t. the size of models in a class, ∣m∣. For models repre-
sented as computational graphs, such as our PCs, model size
will directly translate to the number of edges in the graph.
The complexity of answering queries in the above definition
depends only on the model size and not on its structural
properties.

3.3 STRUCTURE LEARNING

Structure learning for PCs corresponds to learning both its
structure and parameters approximating the data distribu-
tion. For advanced inference task is necessary to require
structured decomposability and determinism. Two struc-
ture learner for those PCs have been recently proposed:
LEARNPSDD [Liang et al., 2017] and STRUDEL [Dang
et al., 2020].

LEARNPSDD performs a local search over the space of
possible structured-decomposable PCs, given a vtree as in-
put. A first hierarchical clustering is performed over the
RVs in order to learn a vtree. Next the local search start

1684



from a fully factored PC conforming to a vtree–all RVs
are considered to be independent. Each local step changes
the circuit while preserving its semantics and structural
properties of smoothness, determinism and structured de-
composability. Candidates are proposed using two structural
transformations–split and clone–to all nodes in the circuits.
LEARNPSDD does not use the dependencies discovered
during the learning of the vtree, and is very slow making
difficult the learning of a mixture model.

In order to overcome these shortcomings, in [Dang et al.,
2020] the authors proposed to extract a vtree from the best
graphical model that can be learned in tractable time, and
then compile it into a structured-decomposable PC as a more
informative starting point. The complexity of the learning
algorithm has been reduced adopting a greedier local search
employing a single transformation, and using circuit flows
to speed up parameter learning and likelihood computation.
The resulting STRUDEL algorithm is a simpler, faster struc-
ture learning scheme, enabling learning of large mixtures.

4 EXTREMELY RANDOMIZED
CIRCUITS

Here we present our proposed PC structure learning method
exploiting a random conditioning approach without optimiz-
ing the internal parameters of the circuit, thus leading to a
fast learning algorithm.

4.1 CHOW-LIU TREES

A Chow-Liu Tree (CLT), see Figure 1 for an example, is
a direct tree-structured Bayesian network minimizing the
Kullback-Leibler divergence with the data distribution and
supporting linear time marginals and MAP inference. More
formally, a CLT is a first-order dependency tree T over
X = {Xi}d

i=1 RVs equipped with parameters θXi∣Xτ(i) which
encodes a factorized probability distribution of the form:

q(X) =
d

∏
i=1

p(Xi∣Xτ(i)), (1)

where Xτ(i) is the parent of Xi in T and p is the data proba-
bility distribution 1.

A CLT is learned according to the classic Chow-Liu algo-
rithm [Chow and Liu, 1968]: the CLT structure is based
on the maximum spanning tree derived by the empirical
pairwise mutual information (MI) matrix of X, and the re-
lated parameters θθθ are estimated from the data. CLTs can be
quickly compiled into smooth, deterministic and structured-
decomposable PCs [Dang et al., 2020].

1Note that, if Xi is the root then τ(i)= 0 and p(Xi∣X0)= p(Xi).

4.2 REGION GRAPH

In this paper we restrict to the class of PCs following a
tree-shaped region graph. Region graphs can viewed as a
vectorised representation of PCs, and have been already used
in many SPN learners [Dennis and Ventura, 2012, Peharz
et al., 2013, 2019, Trapp et al., 2019].

Definition 4.1. Given a set of RVs X, a region graph is a
couple (R,φ) where R is a connected DAG containing both
regions nodes (⊟) and partitions nodes (◫). Let R be the set
of all ⊟-nodes and P be the set of all ◫-nodes. The scope
function is defined as a function φ ∶ R∪P→ 2X, assigning
each node in R a subset of X (2X denotes the power set of
X). A region graph has the following properties: i) the root R
is a ⊟-node and φ(R) = X; ii) all leaves are ⊟-nodes; iii) R
is bipartite, i.e., all children of ⊟-node are ◫-nodes and vice
versa; iv) if Q is either a ⊟-node with children or a ◫-node,
then φ(Q) =⋃Q′∈ch(Q) φ(Q′); v) for a ◫-node P we have

∀R,R′ ∈ ch(P) ∶ φ(R)∩φ(R′) =∅; vi) for a ⊟-node R we
have ∀P ∈ ch(R) ∶ φ(R) = φ(P).

Given a region graph (R,φ), we can obtain its correspond-
ing PC structure C as follows. The root ⊟-node in R is
replace with a ⊕-node as a root in C. Each leaf ⊟-node in
R introduces a leaf node in C, while each other ⊟-node
corresponds to a ⊕-node in C. For each ◫-node in R, we
introduce a ⊗-node in C. All the nodes introduced in C have
the same scope as the nodes in R. It is immediate to observe
that such a PC satisfies the smoothness (Definition 3.1) and
decomposability (Definition 3.2) structural properties.

4.3 RANDOM REGION GRAPH

Here, we propose a random conditioning approach to build a
region graph based on the satisfaction of logical constraints.
The construction of a random region graph as been already
proposed in [Peharz et al., 2019]. Our approach differs from
that since the construction is data driven, thus leading to a
fast method for learning both the structure and the param-
eters of a random PC without relying on parameter opti-
mization. Indeed, while in [Peharz et al., 2019] the graph is
randomly defined, here its structure is guided exploiting a
random partitioning of the data.

The notation x ⊧ Γ denotes that the assignment x satisfies
the logical constraint Γ, and ∣Γ∣ the length of the constraint.
For instance, given the assignment x = {X1 = 0,X2 = 1,X3 =

1,X4 = 0} and two constraints Γ1 = {X1 = 0∧X3 = 1} and
Γ2 = {X2 = 0∧ X3 = 1}, then it follows that x ⊧ Γ1 and
x /⊧ Γ2.

Smooth and decomposable PC. Each region or partition
node Q in R refers to a data slice S of the entire dataset D
used to learn R, in the following denoted as QS . The process
to build the random region graph is reported in Algorithm 1.

1685



The root region R in R should be a ⊟-node, and it refers to
the entire dataset D (lines 1-2). The algorithm iteratively
extend the graph replacing a leaf region with a sub-graph
in the following manner. In order to extend a randomly
selected leaf region RS (line 4), we horizontally split its
corresponding data slice S into non overlapping sub-slices
as described in Algorithm 2. In particular, given the RS
region, l RVs C from its scope φ(RS) are randomly chosen.
Then, k logical constraints Γi, among the 2l possible ones,
over the selected C RVs are chosen at random.

Algorithm 1 RandomRegionGraph(D, δ , l, k)

Input: a set of samples D over a set of RVs X, a minimum
number of examples per partition δ , a split arity k, a
conjunction length l

Output: a random region graph G
1: G ← INSROOT(⊟D)
2: P ← {ROOT(G)}
3: while P ≠∅ do
4: P← a random region ⊟S from P
5: C← a subset of l random RVs of X
6: S ← RandRegions(P,δ ,C,k)
7: if S ≠∅ then
8: for each Q ∈ S do
9: AddSub(P,◫Q)

10: for each Q ∈ sub(P) do
11: AddSub(Q,⊟Q[C])
12: AddSub(Q,⊟Q[XP−C])
13: P ← P ∪{⊟Q[XP−C]}
14: return G

Algorithm 2 RandRegions(⊟S , δ , C, k)

Input: a region ⊟S over a data slice S, a min. number of
instances per partition δ , a set of RVs C, a split arity k

Output: a set of sub-slices H∪{R} of S
1: R← S
2: H←∅
3: while ∣H∣ ≠ k do
4: Γ← a random logical constraints over the RVs C
5: Q← {x ∈R ∶ x ⊧ Γ}
6: if ∣Q∣ ≥ δ and ∣R−Q∣ ≥ δ then
7: H←H∪{Q}
8: R←R−Q
9: if H ≠∅ then

10: return H∪{R}
11: else
12: return ∅

The k chosen logical constraints Γi are used to split the ⊟-
node RS into k+1 ◫-nodes. Each constraint Γi, i = 1, . . . ,k,
leads to a◫-node R′S ′i

if at least δ samples S ′i of the data slice
S satisfy Γi. A remaining ◫-node contains all the samples in
S not satisfying any constraint. The corresponding ⊕-node
in the circuit to the ⊟-node RS in R has k+ 1 branches

whose weights are estimated as ∣S ′i∣/∣S∣.
Now, each obtained ◫-node R′S ′i

becomes a child of the
⊟-node RS , and a parent of two new ⊟-nodes (a vertical
split of the sub-slice): the first region R′′S ′i[C] on the sub-slice

S ′i[C] and the second one R′′S ′i[φ(RS)−C] on the remaining
variables, where with S[C] we denote the selection of the
columns C from the slice S. The first k obtained R′′S ′i[C]
regions are called Q-regions, while the last one is called
R-region. All the R′′S ′i[φ(RS)−C] regions are called S-regions.
During the iterative process, only S-regions are considered
for the graph extension.

At the end of the iterative process all the leaf ⊟-nodes cor-
responding to Q-regions or R-regions are represented in
the corresponding circuit as a PoB with Laplace correc-
tion, while those corresponding to S-regions are modeled as
CLTs with Laplace correction. This process provides a ran-
dom region graph that leads to a smooth and decomposable
PC (see Figure 2, in Appendix A).

The parameters of every sub-circuit are estimated from the
data slice corresponding to the related region. Differently
from [Peharz et al., 2019], where the graph is randomly
constructed, here, however, its construction is guided by
the random chosen variables and by the corresponding data
partitioning, conditioned on the random logical constraints.

Deterministic PC. In order to impose determinism, given
an assignment, the flow for every sum node in the circuit
must be unique (where with flows we indicate the ‘activated’
edges in the circuit for an input assignment). Hence, first of
all, we remove the Laplace corrections from the sub-circuits
corresponding to Q-regions and S-regions. Furthermore,
R-regions are modeled as a deterministic PC which evalu-
ates to 0 only for samples having an assignment satisfying
the chosen constraints for its sibling regions, thus ensuring
determinism for the whole circuit.

Structured Decomposable PC. In order to impose struc-
tural decomposability we cannot chose l RVs at random for
each region to split since the circuit must be normalized for
a vtree (see Section 3.1). Hence, a fixed random ordering
σ(X) of the RVs is chosen at the beginning of the iterative
process and, in Algorithm 1 line 5, the variables are always
pushed from that ordering.

However, providing a fixed random ordering σ(X) of the
RVs is necessary but not sufficient to learn structured de-
composable PCs. Indeed, we cannot independently learn
the CLTs in each S-region, because there is not guarantee
they share the same vtree when learned on their correspond-
ing data slice. Therefore, it is necessary to learn for every
S-region a CLT sharing the same structure.

The following theorem proves what is the best first-order
dependency tree approximating many distributions.

1686



Theorem 1. Let {pi}n
k=1 be probability distributions over

X = {Xi}d
i=1 and {qi}n

k=1 their corresponding approxima-
tions based on a same first-order dependency tree T . It
is possible to prove that the first-order dependency tree T̂
minimizing∑n

k=1KL(pk∥qk) is:

T̂ = argmax
T

n

∑
k=1

d

∑
i=1

MIk(Xi;Xτ(i)), (2)

where MIk is the mutual information on pk and Xτ(i) is the
parent of Xi in T .

Theorem 1 proves that the best first-order dependency tree
for many S-regions–over the same scope–is based on the
maximum spanning tree derived by the matrix obtained by
adding the empirical MI computed on each data slice (proof
in Appendix B).

However, it may happen to have S-regions over different
scopes (see Figure 3, in Appendix A) thus avoiding to
straightforwardly apply the Theorem 1. Furthermore, we
can note that the conditioning process implicitly imposes a
partial structure to the vtree. In particular, let C = {Ci}s

i=1
be the ordered set in which Ci contains the RVs of the i-
th conditioning traversing top-down the region graph. Let
F = X−⋃s

i=1 Ci be the set of variables never involved in a
conditioning. Hence, only on those variables F we can learn
the best dependence tree using the result in Theorem 1.

Hence, to complete the vtree we can proceed as follows.
For each S-partition, we accumulate the estimated MI just
for those variables in F. Let TC1 ,TC2 , . . . ,TCs be the depen-
dence trees resp. over the variables in C1,C2, . . . ,Cs, and
TF that over F. We build the complete dependence tree over
X joining the dependence trees such that, the root of TCi+1
becomes a child of TCi for i = 1, . . . ,s− 1, and the root of
TF becomes a child of TCs . Now, each CLT for a S-region
is compiled using the sub-tree in the vtree associated to the
variables in its scope.

4.4 MIXTURES OF XPCS

Recently, a lot of attention has been devoted to learn mix-
tures of PCs to greatly improve their performance as density
estimators, encoding a distribution as the following:

m(X) =
k

∑
i=1

wiqi(X),

where k is the number of components qi(X) and wi are the
weights such that∑k

i=1 wi = 1.

Putting many XPCs in a mixture results in a non-
deterministic circuit, that we call EXPC, since it introduces
a sum node over many XPC marginalizing a latent vari-
able [Peharz et al., 2017]—all the branches of this sum node
are ‘activated’ for an input assignment.

An ensemble of structured decomposable XPCs remains not
structured decomposable unless all of them are normalized
for the same vtree [Dang et al., 2020], a constraint very dif-
ficult to fulfill in general. However, in our learning scheme
we propose to just learn a structured decomposable mixture
using the same ordering σ(X) for each involved XPC.

Therefore, while non-structured decomposable EXPCs can
rely on higher randomness, structured decomposable ones
are highly dependent on such a fixed ordering, and their
randomness only lies in choosing the logical constraints for
horizontal splits. Moreover, since this ordering is shared
among all XPCs, it directly affects the ensemble perfor-
mance.

We noticed that choosing the ordering σ(X) at random
provides poor results. Instead, we propose the following
greedy procedure. The algorithm iteratively selects blocks
of l variables from X. A first variable is selected having the
highest MI w.r.t. the other ones; the remaining l− 1 ones
are those having the highest MI w.r.t. the first one. After
the selection of the block of l variables, the process con-
tinues selecting the next block on the remaining variables.
In this way the conditioning is done on strong condition-
ally dependent variables thus providing better results. All
the experiments for structured decomposable PCs use this
procedure for selecting the variable ordering.

It is possible to note that vertical splits are automatically in-
troduced due to the random conditioning proposed approach.
Furthermore, the proposed heuristic for variable ordering
(and consequently for a vtree structure) imposes a correla-
tion among the variables involved in the logical constraints,
thus providing effective product nodes.

The weights for each component in the mixture are simply
set to be uniform among the ensemble, i.e., wi = 1/k for each
i = 1, . . . ,k. Even if this is not the optimal choice, however
in this way we avoid to optimize them using time consuming
procedures like EM.

5 RESULTS

In this section we empirically evaluate our proposed ap-
proach2 [Gala, 2021]. We evaluate our learner on 20 real-
world benchmark datasets [Haaren and Davis, 2012] (re-
ported in Table 3, Appendix C), already used to evaluate
different tractable density estimators. In particular, we aim
to answer the following research questions: Q1) how much
accurate are single XPCs when compared to other density
estimators? And what is the effect of increasing the length
of the constraints on XPCs. Q2) What is the learning time
and circuit size obtained with the proposed approach. Q3)
Are ensemble of XPCs competitive to those learned using

2https://github.com/gengala/
Random-Probabilistic-Circuits.

1687

https://github.com/gengala/Random-Probabilistic-Circuits
https://github.com/gengala/Random-Probabilistic-Circuits


other approaches?

In our grid searches some hyper-parameters have been tuned,
while keeping fixed to 0.01, for computational reasons, the
smoothing parameter α used in the CLTs and PoBs con-
struction for the Laplace correction. We stopped to grow
the region graph as soon as its leaves are more than 200.
Experiments have been executed on a 8-core Intel Xeon
CPU E5-1620 v3 @ 3.50GHz with 16 GB RAM.

Let us denote a deterministic XPC as XPCDet and a struc-
tured decomposable XPC as XPCSD.

5.1 Q1) SINGLE MODELS

We evaluate different XPCs and we investigate how they
perform by varying the values for l (the length of the logical
constraint) and k (the number of constraints for the horizon-
tal splits) in order to asses whether the proposed random
region graph method works. In particular, we are interested
in XPCs with l > 1, since XPCs with l = 1 are basically
CNets, extensively studied in literature.

Due to the randomness of XPCs, we report the results av-
eraged on 40 different runs for each kind of model in the
following grid search space: l = {1,2,3}, k = {2,3,4,8}
and δ = {16,32,64,128,256,512}3 (the minimum number
of samples per slice for splitting).

The results of such a grid search (reported in Table 4, Ap-
pendix D), shows that XPCs with l > 1 obtain better results,
i.e., just 33 XPCs with l = 1 out of 120 are marked as best
ones, proving that conditioning on more than one variable
at the same time is more effective. The results of XPC wins
over XPCDet 15 out of 20 times, and XPCSD wins 13 out
of 20 over XPCSD

Det. This obviously reflects the higher ex-
pressiveness of non-deterministic PCs over deterministic
ones. Furthermore, XPCSD wins 15 out of 20 over XPC
and XPCSD

Det wins 15 out of 20 over XPCDet, even though
structured decomposable PCs are more restrictive than non-
structured decomposable ones, since their structure have
to fulfill a vtree. However, as reported in Section 4.4, this
could be explained by the adopted greedy heuristic used to
select the variables on which is chosen the conditioning, and
thus providing a correct conditional probability estimation.
A random vtree does not represent the conditional depen-
dencies among the variables the greedy heuristic instead
provides.

Table 1 compares, in the first two columns, the results of a
single XPCDet, averaged by 40 runs, against those of another
deterministic circuit such a XCNet, as reported in [Di Mauro
et al., 2017]. The results show how the two models rank the
same. In the remaining columns we evaluate XPCSD

Det shar-
ing the same structural constraints of the two competitors

3Configurations with k /∈ [2,2l] are discarded.

LEARNPSDD [Liang et al., 2017] and STRUDEL, whose
values are taken from [Dang et al., 2020]. XPCSD

Det log-
likelihoods are in line with those of its competitors despite
its random structure and the extremely fast learning time.

5.2 Q2) LEARNING TIME AND CIRCUIT SIZE

XPCs learning time depends mainly on learning CLTs and
regardless of whether or not we force structural decom-
posability and/or determinism. More specifically, under the
same region graph, every XPC type requires the same learn-
ing time. In terms of circuit sizes, deterministic XPCs need a
greater number of edges in order to model R-partitions, but
nevertheless the size increase is negligible for small values
of l. In general, learning times and circuit sizes are obvi-
ously inversely proportional to δ given that smaller δ values
generate deeper region graphs and then bigger circuits.

In Table 5, Appendix D, reports the average circuit size, the
average training time (in seconds) and the δ value of the 40
best models (bold ones) of Table 4. The statistics are quite
stable unless few outliers such as the XPCSD over the AD
dataset.

Table 2 reports the learning times (in seconds) and circuit
sizes for XPCSD

Det (averaged over 40 runs) and STRUDEL best
models, both executed on the same machine for execution
time comparison. As reported in [Dang et al., 2020] the
learning time and circuit size have been already compared to
those obtained with LEARNPSDD showing the superiority
of STRUDEL. STRUDEL models are larger PCs than XPCSD

Det
thus leading to efficient inference in our case. Furthermore,
the learning time required to learn XPCSD

Det models is only a
tiny fraction of the time required by the competitor so as to
extremely speed up learning. To the best of our knowledge,
XPCs are the fastest and accurate TPMs to learn among
those available in literature.

5.3 Q3) MIXTURE MODELS

To investigate the performance of ensembles of XPCs
(EXPCs) we run a grid search in the space formed by
l = {1,2,3}, k = {2,3,4,8}, δ = {16, 32, 64, 128, 256, 512}
and M = {2, 5, 10, 15, 20, 25, 30, 40} for every EXPC
type, where M is the number of components in the mixture.
Learning times and circuit sizes of EXPCs scale linearly
in M. Next, we compare EXPCs to other state-of-the-art
ensembling techniques and much more sophisticated single
models such as ID-SPN.

Table 6, in Appendix E, shows that most of best test-set log-
likelihoods is associated to EXPCs having l > 1 and this,
once again, justifies the constraint-based approach. In partic-
ular, just 13 EXPCs having l = 1 out of 80 (i.e., 16.25%) are
marked as best ones. By comparing non-rounded test-set log-

1688



Table 1: Average test-set log-likelihoods for XCNet, XPCDet, XPCSD
Det, LEARNPSDD and STRUDEL.

DATASET XPCDet XCNet XPCSD
Det LEARNPSDD STRUDEL

NLTCS -6.10 -6.06 -6.09 -6.03 -6.06
MSNBC -6.18 -6.09 -6.21 -6.04 -6.05

KDD -2.22 -2.19 -2.20 -2.17 -2.17
PLANTS -13.96 -13.43 -14.59 -13.49 -13.72

AUDIO -42.65 -42.66 -41.97 -41.51 -42.26
JESTER -56.00 -56.10 -54.94 -54.63 -55.30

NETFLIX -59.28 -59.21 -58.73 -58.53 -58.68
ACCIDENTS -31.88 -31.58 -31.03 -28.29 -29.46

RETAIL -10.95 -11.44 -10.98 -10.92 -10.90
PUMSB-STAR -25.90 -25.55 -26.56 -25.40 -25.28

DNA -87.75 -87.67 -87.46 -83.02 -87.10
KOSAREK -11.29 -11.70 -10.99 -10.99 -10.98

MSWEB -10.19 -10.47 -10.12 -9.93 -10.19
BOOK -37.51 -42.36 -36.83 -36.06 -35.77

EACHMOVIE -62.62 -60.71 -59.99 -55.41 -59.47
WEBKB -163.33 -167.45 -161.26 -161.42 -160.50

ROUTERS-52 -94.29 -99.52 -88.92 -93.30 -92.38
20NEWS-GRP -163.95 -172.60 -159.37 -160.43 -160.77

BBC -261.96 -261.79 -260.62 -260.24 -258.96
AD -16.40 -18.70 -16.39 -20.13 -16.52

AVG. RANK 1.5 1.5 2.45 1.55 2

Table 2: Learning times (in seconds) and circuit sizes for
XPCSD

Det (averaged over 40 runs) and STRUDEL best models.

DATASET XPCSD
Det STRUDEL XPCSD

Det STRUDEL

NLTCS 0.05 172.5 4401 13827
MSNBC 0.31 3182.7 4887 35629

KDD 1.02 532.7 13040 16984
PLANTS 0.1 10805.6 13960 454141

AUDIO 0.17 930.9 29317 87090
JESTER 0.11 748.5 20273 78342

NETFLIX 0.21 530.1 39868 45328
ACCIDENTS 0.09 2213.3 11921 99277

RETAIL 0.09 50.3 6651 6609
PUMSB-STAR 0.12 216.8 8866 17395

DNA 0.02 211.2 2616 24106
KOSAREK 0.3 657.4 20938 73086

MSWEB 0.27 224.5 12135 3177
BOOK 0.38 1589.9 13678 140351

EACHMOVIE 0.5 10686.1 21369 988953
WEBKB 0.87 1631.0 17122 84299

ROUTERS-52 1.52 3875.6 36440 198905
20NEWS-GRP 3.34 4425.4 65881 204983

BBC 0.77 317.3 14578 22962
AD 1.69 113.2 22093 18151

likelihoods, EXPC wins over EXPCDet 12 out of 20 times,
and EXPCSD wins 14/20 over EXPCSD

Det. Therefore, regard-
less of whether we use deterministic or non-deterministic
components, EXPCs do not show a significant difference
in log-likelihood. In fact, an ensemble can be expressive
enough even employing deterministic components. Finally,
non-structured decomposable EXPC wins over structured
decomposable ones 19 out of 20 times, the only exception
occurs for ROUTERS-52. This proves the limited expres-
siveness of structured decomposable circuits compared to
non-structured decomposable ones.

Table 7, in Appendix E, reports the log-likelihoods for best
EXPCs, SOTA ensembling techniques and single model
competitors. Among mixture models, EXPCs provide the
best average rank; while, when we include single models
competitors, they provide the second best average rank.
However, it should be noticed that EXPCs are obviously
bigger PCs than single model competitors but nevertheless
can be learned employing only a fraction of the time.

Table 3 reports the log-likelihoods of structured decompos-
able EXPCs and their natural competitor STRUDEL, both
executed on the same machine. As we can see our proposed
approach ranks better than STRUDEL, thus providing its
validity.

1689



Table 3: Average test-set log-likelihoods for structured de-
composable mixture models.

DATASET EXPCSD EXPCSD
Det STRUDEL

NLTCS -6.05 -6.05 -6.08
MSNBC -6.18 -6.17 -6.04

KDD -2.15 -2.16 -2.16
PLANTS -14.19 -14.21 -13.73

AUDIO -40.91 -40.97 -41.48
JESTER -53.43 -53.51 -55.04

NETFLIX -57.58 -57.69 -58.25
ACCIDENTS -31.02 -30.99 -29.07

RETAIL -10.94 -10.90 -10.90
PUMSB-STAR -26.06 -26.05 -24.17

DNA -86.61 -85.09 -87.21
KOSAREK -10.77 -10.81 -10.89

MSWEB -9.93 -9.94 -9.76
BOOK -34.75 -35.14 -35.89

EACHMOVIE -54.82 -55.26 -55.76
WEBKB -153.67 -154.23 -159.85

ROUTERS-52 -84.70 -85.09 -90.12
20NEWS-GRP -153.75 -154.21 -158.79

BBC -248.34 -248.79 -257.40
AD -15.50 -15.59 -15.39

AVG. RANK 1.6 2 2.25

6 CONCLUSIONS

We introduced XPCs, simple and customizable probabilistic
circuits based on random logical constraints-based condi-
tioning. XPCs are smooth and decomposable by default but
can be easily forced to be deterministic and/or structured
decomposable without increasing the learning complexity.
When learned in ensembles, XPCs achieve the state-of-
the-art results for density estimation on several benchmark
datasets. Due to their simplicity to implement, fast learn-
ing times and accurate inference performances XPCs are
promising tractable density estimators.

Many lines of work are possible for XPCs. Firstly, we plan to
employ greedy orderings also for non-structured decompos-
able circuits just to improve their log-likelihoods as single
models. Secondly, we plan to extend XPCs for continuous
RVs and to employ a DAG rather than a tree structure to
partition the data. Thirdly, we plan to investigate how EX-
PCs perform using bagged datasets, as done by mixtures of
LEARNPSDD like in [Dang et al., 2020]. Finally, due to their
fast learning, we plan to investigate how sophisticated learn-
ers as LEARNPSDD and STRUDEL perform if we provide
XPCs as initial PCs.

Author Contributions

N. Di Mauro and G. Gala had an equal contribution.

Acknowledgements

The authors would like to thank Antonio Vergari for inspir-
ing discussions and valuable feedback.

References

Hei Chan and Adnan Darwiche. On the robustness of most
probable explanations. In UAI, 2006.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. Technical report, 2020.

C. K. Chow and C. N. Liu. Approximating discrete prob-
ability distributions with dependence trees. IEEE Trans.
Inf. Theory, 14(3):462–467, 1968.

Meihua Dang, Antonio Vergari, and Guy Van den Broeck.
Strudel: Learning structured-decomposable probabilistic
circuits. In PGM, 2020.

Adnan Darwiche. A differential approach to inference in
bayesian networks. In Craig Boutilier and Moisés Gold-
szmidt, editors, UAI, pages 123–132, 2000.

Adnan Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of
the Royal Statistical Society: Series B, 1977.

Aaron W. Dennis and Dan Ventura. Learning the architec-
ture of sum-product networks using clustering on vari-
ables. In NIPS, pages 2042–2050, 2012.

Nicola Di Mauro, Antonio Vergari, Teresa Maria Altomare
Basile, and Floriana Esposito. Fast and accurate density
estimation with extremely randomized cutset networks.
In ECML, pages 203–219, 2017.

Gennaro Gala. gengala/Random-Probabilistic-Circuits:
First release, May 2021. URL https://doi.org/
10.5281/zenodo.4775258.

Robert Gens and Pedro Domingos. Learning the structure of
sum-product networks. In ICML, pages 873–880, 2013.

Jan Van Haaren and Jesse Davis. Markov network structure
learning: A randomized feature generation approach. In
AAAI, 2012.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan
Darwiche. Probabilistic sentential decision diagrams. In
ICPKRR, 2014.

Yitao Liang, Jessa Bekker, and Guy Van den Broeck. Learn-
ing the structure of probabilistic sentential decision dia-
grams. In UAI, 2017.

Marina Meila and Michael I. Jordan. Learning with mixtures
of trees. Journal of Machine Learning Research, 1:1–48,
2000.

1690

https://doi.org/10.5281/zenodo.4775258
https://doi.org/10.5281/zenodo.4775258


George Papamakarios, Iain Murray, and Theo Pavlakou.
Masked autoregressive flow for density estimation. In
NIPS, pages 2338–2347, 2017.

Robert Peharz, Bernhard C. Geiger, and Franz Pernkopf.
Greedy part-wise learning of sum-product networks. In
ECML/PKDD, pages 612–627, 2013.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro M.
Domingos. On the latent variable interpretation in sum-
product networks. IEEE Trans. Pattern Anal. Mach. In-
tell., 39(10):2030–2044, 2017.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Martin Trapp, Xiaoting Shao, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In UAI, volume 115, pages 334–344, 2019.

Knot Pipatsrisawat and Adnan Darwiche. New compilation
languages based on structured decomposability. In AAAI,
pages 517–522, 2008.

Hoifung Poon and Pedro M. Domingos. Sum-product net-
works: A new deep architecture. In UAI, 2011.

Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate.
Cutset networks: A simple, tractable, and scalable ap-
proach for improving the accuracy of chow-liu trees. In
ECML/PKDD, pages 630–645, 2014.

Amirmohammad Rooshenas and Daniel Lowd. Learning
sum-product networks with direct and indirect variable
interactions. In ICML, pages 710–718, 2014.

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and
Zoubin Ghahramani. Bayesian learning of sum-product
networks. In NIPS, pages 6344–6355, 2019.

Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain
Murray, and Hugo Larochelle. Neural autoregressive
distribution estimation. Journal of Machine Learning
Research, 17:205:1–205:37, 2016.

Fabrizio Ventola, Karl Stelzner, Alejandro Molina, and Kris-
tian Kersting. Random sum-product forests with residual
links. CoRR, abs/1908.03250, 2019.

Antonio Vergari, YooJung Choi, Robert Peharz, and Guy
Van den Broeck. Probabilistic circuits: Representations,
inference, learning and applications. In Tutorial at the The
34th AAAI Conference on Artificial Intelligence, 2020.

1691


	Introduction
	Related Works
	Probabilistic Circuits
	Structural Properties
	Tractable Inference
	Structure Learning

	Extremely Randomized Circuits
	Chow-Liu Trees
	Region Graph
	Random Region Graph
	Mixtures of XPCs

	Results
	Q1) Single Models
	Q2) Learning time and circuit size
	Q3) Mixture Models

	Conclusions

