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1 PROOFS

Theorem 1. The function i, is a measure.

Proof. Note that 1, (L) = 0 since there are no atoms below
1.Leta,b € 22" be such that a A b = L. By elementary
properties of Boolean algebras, all atoms below a V b are
either below a or below b. Moreover, none of them can be
below both a and b because then they would have to be
below a A b = L. Thus

miavh) = 3 vlu)=

{u}<aVvd

- /J/z/(a) + /Lu(b)

Z v(u) + Z v(u)

{u}<a {u}<b

as required. O

Theorem 3. For any set U and measure |i: 22" R>o,
there exists a set V D U, a factorable measure p’ - 22¥
R, and a formula f € 22" such that wx) = p'(xzAf)
for all formulas x € 22"

Proof. Let V.= U U {fy, | m € 2V}, and f =
Ameav{m} < fm. We define weight function v: 2V —

R>o as v = [[,cy v, Where v,({v}) = p({m}) if
v = f,, for some m € 2Y and v,(z) = 1 for all other
veVandz € 207} Let y/: 22° — Rx be the measure
induced by v. It is enough to show that yand z — p/(x A f)
agree on the atoms in 22° . For any {a} € 22",

W{aynf)= >

{zy<{a}nf

= v, ({fa}) = n{a})

as required. O

v(z) = viaU{fa})

Lemma 1. Let X € V be a random variable with par-
ents pa(X) = {Y1,...,Y,}. Then CPTx: 25°(X) —

R is such that for any x € im X and (y1,...,Yn) €
[[i-, imY,
CPT)((T) = PI‘(X =T ‘ Yl =Y1y.- -aYn = yn)7

where T' = {Ax—=z} U {Ay,=y,

i=1,...,n}

Proof. If X is binary, then CPTx is a sum of
2], |imY;| terms, one for each possible assignment
of values to variables X, Y7, ..., Y. Exactly one of these
terms is nonzero when applied to T, and it is equal to
Pr( X =z |Y1 =w,...,Y, = y,) by definition.

If X is not binary, then (> ;" [Ax—s,])(T) = 1,
and (T2, T oy (=] + D=2 ) (1) = 1, 50

CPTx(T) =Pr(X =2 | Y1 =v1,...,Yn = yn) by
a similar argument as before. O

Lemma 2. LetV = {X1,...,X,}. Then

fT= {)‘XLZJEL}ZL:I for
some (z;); € T[], im X;

0 otherwise,

Pr(xy,...,x,

o(T) =

forall T € 2V,

Proof. If T = {Ax=y, | X € V} for some (vx)xey €
[Ixcy im X, then

¢(T)= [ Pr|X =0vx

Xevy

)

by Lemma|T]and the definition of a Bayesian network. Oth-
erwise there must be some non-binary random variable
X € Vsuchthat |E(X)NT| # L IEEX)NT = 0,
then (3°1"  [Ax=s,]) (T') = 0, and so CPTx (T') = 0, and

/\ Y:Uy

Y epa(X)
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¢(T)=0.1f |E(X)NT| > 1, then we must have two differ-
ent values x1, xo € im X such that {\x—,,, A\x=s,} C T
which means that ([Ax—y,] + [Ax=z,])(T) = 0, and so,
again, CPTx(T) = 0, and ¢(T") = 0. O

Theorem 4. Forany X € V and x € im X,
(Fu (9 [Ax=:]))(0) = Pr(X = x).
Proof. LetV ={X,Y1,...,Y,}. Then

Bu(@- Px=D)®) = >~ (¢ Px=a(T)

Te2V

= > 4D

Ax=o€TE2V

> (H CPTY) (T)

Ax=g€T€2V \Y€EV
= Z Pr(x?ylv'”vyn)
(yi)r_,€llie, imY;

by:

¢ the proof of Theorem 1 by |Dudek et al.|[2020];

e if A\x_y, & T € 2Y, then (¢ - [Ax—.])(T) = ¢(T) -
Ax=2](T' N {Ax=s}) = ¢(T) - 0 = 0;

e Lemmal[2}

* marginalisation of a probability distribution.
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