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1 PROOFS

Theorem 1. The function µν is a measure.

Proof. Note that µν(⊥) = 0 since there are no atoms below
⊥. Let a, b ∈ 22

U

be such that a ∧ b = ⊥. By elementary
properties of Boolean algebras, all atoms below a ∨ b are
either below a or below b. Moreover, none of them can be
below both a and b because then they would have to be
below a ∧ b = ⊥. Thus

µν(a ∨ b) =
∑

{u}≤a∨b

ν(u) =
∑
{u}≤a

ν(u) +
∑
{u}≤b

ν(u)

= µν(a) + µν(b)

as required.

Theorem 3. For any set U and measure µ : 22
U → R≥0,

there exists a set V ⊇ U , a factorable measure µ′ : 22
V →

R≥0, and a formula f ∈ 22
V

such that µ(x) = µ′(x ∧ f)
for all formulas x ∈ 22

U

.

Proof. Let V = U ∪ {fm | m ∈ 2U}, and f =∧
m∈2U {m} ↔ fm. We define weight function ν : 2V →

R≥0 as ν =
∏
v∈V νv, where νv({v}) = µ({m}) if

v = fm for some m ∈ 2U and νv(x) = 1 for all other
v ∈ V and x ∈ 2{v}. Let µ′ : 22

V → R≥0 be the measure
induced by ν. It is enough to show that µ and x 7→ µ′(x∧f)
agree on the atoms in 22

U

. For any {a} ∈ 22
U

,

µ′({a} ∧ f) =
∑

{x}≤{a}∧f

ν(x) = ν(a ∪ {fa})

= νfa({fa}) = µ({a})

as required.

Lemma 1. Let X ∈ V be a random variable with par-
ents pa(X) = {Y1, . . . , Yn}. Then CPTX : 2E

∗(X) →

R≥0 is such that for any x ∈ imX and (y1, . . . , yn) ∈∏n
i=1 imYi,

CPTX(T ) = Pr(X = x | Y1 = y1, . . . , Yn = yn),

where T = {λX=x} ∪ {λYi=yi | i = 1, . . . , n}.

Proof. If X is binary, then CPTX is a sum of
2
∏n
i=1 | imYi| terms, one for each possible assignment

of values to variables X,Y1, . . . , Yn. Exactly one of these
terms is nonzero when applied to T , and it is equal to
Pr(X = x | Y1 = y1, . . . , Yn = yn) by definition.

If X is not binary, then (
∑m
i=1[λX=xi ]) (T ) = 1,

and
(∏m

i=1

∏m
j=i+1([λX=xi

] + [λX=xj
])
)
(T ) = 1, so

CPTX(T ) = Pr(X = x | Y1 = y1, . . . , Yn = yn) by
a similar argument as before.

Lemma 2. Let V = {X1, . . . , Xn}. Then

φ(T ) =

Pr(x1, . . . , xn)
if T = {λXi=xi}ni=1 for

some (xi)
n
i=1 ∈

∏n
i=1 imXi

0 otherwise,

for all T ∈ 2U .

Proof. If T = {λX=vX | X ∈ V} for some (vX)X∈V ∈∏
X∈V imX , then

φ(T ) =
∏
X∈V

Pr

X = vX

∣∣∣∣∣∣
∧

Y ∈pa(X)

Y = vY


= Pr

( ∧
X∈V

X = vX

)

by Lemma 1 and the definition of a Bayesian network. Oth-
erwise there must be some non-binary random variable
X ∈ V such that |E(X) ∩ T | 6= 1. If E(X) ∩ T = ∅,
then (

∑m
i=1[λX=xi

]) (T ) = 0, and so CPTX(T ) = 0, and
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φ(T ) = 0. If |E(X)∩T | > 1, then we must have two differ-
ent values x1, x2 ∈ imX such that {λX=x1 , λX=x2} ⊆ T
which means that ([λX=x1

] + [λX=x2
])(T ) = 0, and so,

again, CPTX(T ) = 0, and φ(T ) = 0.

Theorem 4. For any X ∈ V and x ∈ imX ,

(∃U (φ · [λX=x]))(∅) = Pr(X = x).

Proof. Let V = {X,Y1, . . . , Yn}. Then

(∃U (φ · [λX=x]))(∅) =
∑
T∈2U

(φ · [λX=x])(T )

=
∑

λX=x∈T∈2U
φ(T )

=
∑

λX=x∈T∈2U

(∏
Y ∈V

CPTY

)
(T )

=
∑

(yi)ni=1∈
∏n

i=1 imYi

Pr(x, y1, . . . , yn)

= Pr(X = x)

by:

• the proof of Theorem 1 by Dudek et al. [2020];

• if λX=x 6∈ T ∈ 2U , then (φ · [λX=x])(T ) = φ(T ) ·
[λX=x](T ∩ {λX=x}) = φ(T ) · 0 = 0;

• Lemma 2;

• marginalisation of a probability distribution.
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