Weighted Model Counting with Conditional Weights for Bayesian Networks (Supplementary Material)

Paulius Dilkas¹

Vaishak Belle¹

¹University of Edinburgh, Edinburgh, UK

1 PROOFS

Theorem 1. The function μ_{ν} is a measure.

Proof. Note that $\mu_{\nu}(\perp) = 0$ since there are no atoms below \perp . Let $a, b \in 2^{2^U}$ be such that $a \wedge b = \perp$. By elementary properties of Boolean algebras, all atoms below $a \vee b$ are either below a or below b. Moreover, none of them can be below both a and b because then they would have to be below $a \wedge b = \perp$. Thus

$$\mu_{\nu}(a \lor b) = \sum_{\{u\} \le a \lor b} \nu(u) = \sum_{\{u\} \le a} \nu(u) + \sum_{\{u\} \le b} \nu(u)$$
$$= \mu_{\nu}(a) + \mu_{\nu}(b)$$

as required.

Theorem 3. For any set U and measure $\mu: 2^{2^U} \to \mathbb{R}_{\geq 0}$, there exists a set $V \supseteq U$, a factorable measure $\mu': 2^{2^V} \to \mathbb{R}_{\geq 0}$, and a formula $f \in 2^{2^V}$ such that $\mu(x) = \mu'(x \wedge f)$ for all formulas $x \in 2^{2^U}$.

Proof. Let $V = U \cup \{f_m \mid m \in 2^U\}$, and $f = \bigwedge_{m \in 2^U} \{m\} \leftrightarrow f_m$. We define weight function $\nu : 2^V \rightarrow \mathbb{R}_{\geq 0}$ as $\nu = \prod_{v \in V} \nu_v$, where $\nu_v(\{v\}) = \mu(\{m\})$ if $v = f_m$ for some $m \in 2^U$ and $\nu_v(x) = 1$ for all other $v \in V$ and $x \in 2^{\{v\}}$. Let $\mu' : 2^{2^V} \rightarrow \mathbb{R}_{\geq 0}$ be the measure induced by ν . It is enough to show that μ and $x \mapsto \mu'(x \wedge f)$ agree on the atoms in 2^{2^U} . For any $\{a\} \in 2^{2^U}$,

$$\mu'(\{a\} \land f) = \sum_{\{x\} \le \{a\} \land f} \nu(x) = \nu(a \cup \{f_a\})$$
$$= \nu_{f_a}(\{f_a\}) = \mu(\{a\})$$

as required.

Lemma 1. Let $X \in \mathcal{V}$ be a random variable with parents $pa(X) = \{Y_1, \ldots, Y_n\}$. Then $CPT_X: 2^{\mathcal{E}^*(X)} \to$ $\mathbb{R}_{\geq 0}$ is such that for any $x \in \operatorname{im} X$ and $(y_1, \ldots, y_n) \in \prod_{i=1}^n \operatorname{im} Y_i$,

$$\operatorname{CPT}_X(T) = \Pr(X = x \mid Y_1 = y_1, \dots, Y_n = y_n),$$

where
$$T = \{\lambda_{X=x}\} \cup \{\lambda_{Y_i=y_i} \mid i = 1, ..., n\}.$$

Proof. If X is binary, then CPT_X is a sum of $2\prod_{i=1}^{n} |\operatorname{im} Y_i|$ terms, one for each possible assignment of values to variables X, Y_1, \ldots, Y_n . Exactly one of these terms is nonzero when applied to T, and it is equal to $Pr(X = x | Y_1 = y_1, \ldots, Y_n = y_n)$ by definition.

If X is not binary, then $(\sum_{i=1}^{m} [\lambda_{X=x_i}])(T) = 1$, and $(\prod_{i=1}^{m} \prod_{j=i+1}^{m} (\overline{[\lambda_{X=x_i}]} + \overline{[\lambda_{X=x_j}]}))(T) = 1$, so $\operatorname{CPT}_X(T) = \operatorname{Pr}(X = x \mid Y_1 = y_1, \dots, Y_n = y_n)$ by a similar argument as before. \Box

Lemma 2. Let $V = \{X_1, ..., X_n\}$. Then

$$\phi(T) = \begin{cases} \Pr(x_1, \dots, x_n) & \text{if } T = \{\lambda_{X_i = x_i}\}_{i=1}^n \text{ for} \\ \text{some } (x_i)_{i=1}^n \in \prod_{i=1}^n \operatorname{im} X_i \\ 0 & \text{otherwise,} \end{cases}$$

for all $T \in 2^U$.

Proof. If $T = \{\lambda_{X=v_X} \mid X \in \mathcal{V}\}$ for some $(v_X)_{X \in \mathcal{V}} \in \prod_{X \in \mathcal{V}} \operatorname{im} X$, then

$$\begin{split} \phi(T) &= \prod_{X \in \mathcal{V}} \Pr\left(X = v_X \left| \left. \bigwedge_{Y \in \operatorname{pa}(X)} Y = v_Y \right. \right) \right. \\ &= \Pr\left(\bigwedge_{X \in \mathcal{V}} X = v_X \right) \end{split}$$

by Lemma 1 and the definition of a Bayesian network. Otherwise there must be some non-binary random variable $X \in \mathcal{V}$ such that $|\mathcal{E}(X) \cap T| \neq 1$. If $\mathcal{E}(X) \cap T = \emptyset$, then $\left(\sum_{i=1}^{m} [\lambda_{X=x_i}]\right)(T) = 0$, and so $\operatorname{CPT}_X(T) = 0$, and

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

 \square

 $\begin{array}{l} \phi(T)=0. \text{ If } |\mathcal{E}(X)\cap T|>1, \text{ then we must have two different values } x_1, x_2\in \mathop{\mathrm{im}} X \text{ such that } \{\lambda_{X=x_1},\lambda_{X=x_2}\}\subseteq T \\ \text{which means that } (\overline{[\lambda_{X=x_1}]}+\overline{[\lambda_{X=x_2}]})(T)=0, \text{ and so,} \\ \text{again, } \operatorname{CPT}_X(T)=0, \text{ and } \phi(T)=0. \end{array}$

Theorem 4. For any $X \in \mathcal{V}$ and $x \in \operatorname{im} X$,

$$(\exists_U(\phi \cdot [\lambda_{X=x}]))(\emptyset) = \Pr(X=x).$$

Proof. Let $\mathcal{V} = \{X, Y_1, \dots, Y_n\}$. Then

$$(\exists_U(\phi \cdot [\lambda_{X=x}]))(\emptyset) = \sum_{T \in 2^U} (\phi \cdot [\lambda_{X=x}])(T)$$
$$= \sum_{\lambda_{X=x} \in T \in 2^U} \phi(T)$$
$$= \sum_{\lambda_{X=x} \in T \in 2^U} \left(\prod_{Y \in \mathcal{V}} \operatorname{CPT}_Y\right)(T)$$
$$= \sum_{(y_i)_{i=1}^n \in \prod_{i=1}^n \operatorname{im} Y_i} \operatorname{Pr}(x, y_1, \dots, y_n)$$
$$= \operatorname{Pr}(X = x)$$

by:

- the proof of Theorem 1 by Dudek et al. [2020];
- if $\lambda_{X=x} \notin T \in 2^U$, then $(\phi \cdot [\lambda_{X=x}])(T) = \phi(T) \cdot [\lambda_{X=x}](T \cap \{\lambda_{X=x}\}) = \phi(T) \cdot 0 = 0;$
- Lemma 2;
- marginalisation of a probability distribution.

References

Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. ADDMC: weighted model counting with algebraic decision diagrams. In *The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,* pages 1468– 1476. AAAI Press, 2020. ISBN 978-1-57735-823-7. URL https://aaai.org/ojs/index.php/ AAAI/article/view/5505.