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Abstract

Adversarial machine learning has attracted a great
amount of attention in recent years. Due to the
great importance of support vector machines
(SVM) in machine learning, we consider defend-
ing SVM against poisoning attacks in this paper.
We study two commonly used strategies for de-
fending: designing robust SVM algorithms and
data sanitization. Though several robust SVM al-
gorithms have been proposed before, most of them
either are in lack of adversarial-resilience, or rely
on strong assumptions about the data distribution
or the attacker’s behavior. Moreover, the research
on the hardness of designing a quality-guaranteed
adversarially-resilient SVM algorithm is still quite
limited. We are the first, to the best of our knowl-
edge, to prove that even the simplest hard-margin
one-class SVM with adversarial outliers problem is
NP-complete, and has no fully PTAS unless P=NP.
For data sanitization, we explain the effectiveness
of DBSCAN (as a density-based outlier removal
method) for defending against poisoning attacks.
In particular, we link it to the intrinsic dimension-
ality by proving a sampling theorem in doubling
metrics. In our empirical experiments, we systemat-
ically compare several defenses including the DB-
SCAN and robust SVM methods, and investigate
the influences from the intrinsic dimensionality
and poisoned fraction to their performances.

1 INTRODUCTION

In the past decades we have witnessed enormous progress
in machine learning. One driving force behind this is the
successful applications of machine learning technologies
to many different fields, such as data mining, networking,
and bioinformatics. However, with its territory rapidly en-

larging, machine learning has also imposed a number of
new challenges. In particular, adversarial machine learning
which concerns about the potential vulnerabilities of the
algorithms, has attracted a great amount of attention [Bar-
reno et al., 2006, Huang et al., 2011, Biggio and Roli, 2018,
Goodfellow et al., 2018]. As mentioned in the survey pa-
per [Biggio and Roli, 2018], the very first work of adversar-
ial machine learning dates back to 2004, in which Dalvi et al.
[2004] formulated the adversarial classification problem as
a game between the classifier and the adversary. In general,
the adversarial attacks against machine learning can be cate-
gorized to evasion attacks and poisoning attacks [Biggio
and Roli, 2018]. An evasion attack happens at test time,
where the adversary aims to evade the trained classifier by
manipulating test examples. For example, Szegedy et al.
[2014] observed that small perturbation to a test image can
arbitrarily change the neural network’s prediction.

In this paper, we focus on poisoning attacks that happen at
training time. Usually, the adversary injects a small number
of specially crafted samples into the training data which can
make the decision boundary severely deviate; in particular,
because open datasets are commonly used to train our ma-
chine learning algorithms nowadays, poisoning attack has
become a key security issue that seriously limits real-world
applications [Biggio and Roli, 2018]. For instance, even
a small number of poisoning samples can significantly in-
crease the test error of support vector machine (SVM) [Big-
gio et al., 2012, Mei and Zhu, 2015, Xiao et al., 2012].
Beyond linear classifiers, a number of works studied the poi-
soning attacks for other machine learning problems, such
as clustering [Biggio et al., 2014], PCA [Rubinstein et al.,
2009], and regression [Jagielski et al., 2018].

Though lots of works focused on constructing poisoning
attacks, our ultimate goal is to design defenses. Poisoning
samples can be regarded as outliers, and this leads to two
natural approaches to defend: (1) data sanitization defense,
i.e., first perform outlier removal and then run an existing
machine learning algorithm on the cleaned data [Cretu et al.,
2008], or (2) directly design a robust optimization algo-
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rithm that is resilient against outliers [Christmann and
Steinwart, 2004, Jagielski et al., 2018].

Steinhardt et al. [2017] studied two basic methods of data
sanitization defense, which remove the points outside a spec-
ified sphere or slab, for binary classification; they showed
that high dimensionality gives attacker more room for con-
structing attacks to evade outlier removal. Laishram and
Phoha [2016] applied the seminal DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) method [Es-
ter et al., 1996] to remove outliers for SVM and showed
that it can successfully identify most of the poisoning data.
However, their DBSCAN approach is lacking of theoretical
analysis. Several other outlier removal methods for fighting
poisoning attacks have also been studied recently [Paudice
et al., 2018b,a]. Also, it is worth noting that outlier removal
actually is an independent topic that has been extensively
studied in various fields before [Chandola et al., 2009].

The other defense strategy, designing robust optimization
algorithms, also has a long history in the machine learning
community. A substantial part of robust optimization algo-
rithms rely on the idea of regularization. For example, Xu
et al. [2009] studied the relation between robustness and reg-
ularization for SVM; Zhu et al. [2003] proposed the 1-norm
SVM to enhance the robustness to noise; other robust SVM
algorithms include [Tax and Duin, 1999, Xu et al., 2006,
Natarajan et al., 2013, Ding and Xu, 2015, Xu et al., 2017,
Kanamori et al., 2017]. However, as discussed in [Mei and
Zhu, 2015, Jagielski et al., 2018], these approaches are not
quite ideal to defend against poisoning attacks since the
outliers can be located arbitrarily in the feature space
by the adversary. Another idea for achieving the robust-
ness guarantee is to add strong assumptions about the data
distribution or the attacker’s behavior [Feng et al., 2014,
Weerasinghe et al., 2019], but these assumptions are usu-
ally not well satisfied in practice. An alternative approach
is to explicitly remove outliers during optimization, such
as the “trimmed” method for robust regression [Jagielski
et al., 2018]; but this is often a challenging combinatorial
optimization problem: if z of the input n data items are
outliers (z < n), (at first glance) we have to consider an
exponentially large number

(
n
z

)
of different possible cases

in the adversarial setting.

1.1 OUR CONTRIBUTIONS

Due to the great importance in machine learning [Chang and
Lin, 2011], we focus on defending SVM against poisoning
attacks in this paper. Our contributions are twofold.

(i). First, we consider the robust optimization approach.
To study its complexity, we only consider the hard-margin
case (because the soft-margin case is more complicated and
thus should have an even higher complexity). As mentioned
above, we can formulate the SVM with outliers problem

as a combinatorial optimization problem for achieving the
adversarial-resilience: finding an optimal subset of n− z
items from the poisoned input data to achieve the largest
separating margin. Though its local optimum can be ob-
tained by using various methods, such as the alternating
minimization approach [Jagielski et al., 2018], it is often
very challenging to achieve a quality guaranteed solution
for such adversarial-resilience optimization problem. For
instance, Simonov et al. [2019] showed that unless the Ex-
ponential Time Hypothesis (ETH) fails, it is impossible not
only to solve the PCA with outliers problem exactly but
even to approximate it within a constant factor. A similar
hardness result was also proved for linear regression with
outliers by Mount et al. [2014]. Some other hardness results
for robust optimization problems were studied in [Bernholt,
2006]. But for SVM with outliers, we are unaware of any
hardness-of-approximation result before. We try to bridge
the gap in the current state of knowledge in Section 3. We
prove that even the simplest one-class SVM with outliers
problem is NP-complete, and has no fully polynomial-time
approximation scheme (PTAS) unless P=NP. So it is quite
unlikely that one can achieve a (nearly) optimal solution in
polynomial time.

(ii). Second, we investigate the DBSCAN based data san-
itization defense and explain its effectiveness in theory
(Section 4). DBSCAN is one of the most popular density-
based clustering methods and has been implemented for
solving many real-world outlier removal problems [Ester
et al., 1996, Schubert et al., 2017]; roughly speaking, the
inliers are assumed to be located in some dense regions and
the remaining points are recognized as the outliers. Actu-
ally, the intuition of using DBSCAN for data sanitization
is straightforward [Laishram and Phoha, 2016]. We assume
the original input training data (before poisoning attack) is
large and dense enough in the domain Ω; thus the poisoning
data should be the sparse outliers together with some small
clusters located outside the dense regions, which can be
identified by the DBSCAN. Obviously, if the attacker has a
fixed budget z (the number of poisoning points), the lager
the data size n is, the sparser the outliers appear to be (and
the more efficiently the DBSCAN performs).

Thus, to guarantee the effectiveness of the DBSCAN ap-
proach, a fundamental question in theory is what about the
lower bound of the data size n (we can assume that the
original input data is a set of i.i.d. samples drawn from the
domain Ω). However, to achieve a favorable lower bound is
a non-trivial task. The VC dimension [Li et al., 2001] of the
range space induced by the Euclidean distance is high in a
high-dimensional feature space, and thus the lower bound
of the data size n can be very large. Our idea is motivated
by the recent observations on the link between the adversar-
ial vulnerability and the intrinsic dimensionality [Khoury
and Hadfield-Menell, 2019, Amsaleg et al., 2017, Ma et al.,
2018]. We prove a lower bound of n that depends on the
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intrinsic dimension of Ω and is independent of the feature
space’s dimensionality.

Our result strengthens the observation from Steinhardt et al.
[2017] who only considered the Euclidean space’s dimen-
sionality: more precisely, it is the “high intrinsic dimen-
sionality” that gives attacker more room to evade outlier
removal. In particular, different from the previous results on
evasion attacks [Khoury and Hadfield-Menell, 2019, Amsa-
leg et al., 2017, Ma et al., 2018], our result links poisoning
attacks to intrinsic dimensionality (independent of our work,
Weerasinghe et al. [2021] recently also studied the rela-
tion between intrinsic dimension and poisoning attacks). In
Section 5, we investigate several popular defending meth-
ods (including DBSCAN), where the intrinsic dimension of
data demonstrates significant influence on their defending
performances.

2 PRELIMINARIES

Given two point sets P+ and P− in Rd, the problem of
linear support vector machine (SVM) [Chang and Lin,
2011] is to find the maximum margin separating these two
point sets (if they are separable). If P+ (or P−) is a single
point, say the origin, the problem is called one-class SVM.
The SVM can be formulated as a quadratic programming
problem, and a number of efficient techniques have been
developed in the past, such as the soft margin SVM [Cortes
and Vapnik, 1995], ν-SVM [Scholkopf et al., 2000, Crisp
and Burges, 1999], and Core-SVM [Tsang et al., 2005].
If P+ and P− are not separable, we can apply the kernel
method: each point p ∈ P+ ∪P− is mapped to be φ(p) in a
higher dimensional space; the inner product 〈φ(p1), φ(p2)〉
is defined by a kernel function K(p1, p2).

Poisoning attacks. An adversary can inject some bad points
to the original data set P+∪P−. For instance, the adversary
can take a sample q from the domain of P+, and flip its
label to be “−”; therefore, this poisoning sample q can
be viewed as an outlier of P−. Since poisoning attack is
expensive, we often assume that the adversary can poison at
most z ∈ Z+ points (or the poisoned fraction z

|P+∪P−| is a
fixed small number in (0, 1)). We can formulate the defense
against poisoning attacks as the following combinatorial
optimization problem. As mentioned in Section 1.1, it is
sufficient to consider only the simpler hard-margin case for
studying its hardness.

Definition 1 (SVM with Outliers). Let (P+, P−) be an
instance of SVM in Rd, and suppose

∣∣P+∪P−
∣∣ = n. Given

a positive integer z < n, the problem of SVM with outliers
is to find two subsets P+

1 ⊆ P+ and P−1 ⊆ P− with∣∣P+
1 ∪ P−1

∣∣ = n− z, such that the width of the margin (i.e.,
the distance between the two parallel hyperplanes bounding
the margin) separating P+

1 and P−1 is maximized.

Suppose the optimal margin has the width hopt > 0. If we

achieve a solution with the margin width h ≥ (1− ε)hopt
where ε is a small number in (0, 1), we say that it is a
(1− ε)-approximation.

Remark 1. The model proposed in Definition 1 fol-
lows the popular data trimming idea from robust statis-
tics [Rousseeuw and Leroy, 1987]. As an example similar
with Definition 1, Jagielski et al. [2018] proposed a data
trimming based regression model to defend against poison-
ing attacks.

We also need to clarify the intrinsic dimensionality for our
following analysis. Doubling dimension is a measure of
intrinsic dimensionality that has been widely adopted in the
learning theory community [Bshouty et al., 2009]. Given
a point p and r ≥ 0, we use B(p, r) to indicate the ball of
radius r around p in the space.

Definition 2 (Doubling Dimension). The doubling dimen-
sion of a point set P from some metric space1 is the smallest
number ρ, such that for any p ∈ P and r ≥ 0, the set
P ∩B(p, 2r) can always be covered by the union of at most
2ρ balls with radius r in the space.

To understand doubling dimension, we consider the follow-
ing simple case. If the points of P distribute uniformly in a
d′-dimensional flat in Rd, then it is easy to see that P has
the doubling dimension ρ = O(d′), which is independent
of the Euclidean dimension d (e.g., d can be much higher
than ρ). Intuitively, doubling dimension is used for describ-
ing the expansion rate of a given point set in the space. It
is worth noting that the intrinsic dimensionality described
in [Amsaleg et al., 2017, Ma et al., 2018] is quite similar to
doubling dimension, which also measures expansion rate.

3 THE HARDNESS RESULT

In this section, we prove that even the one-class SVM with
outliers problem is NP-complete and has no fully PTAS
unless P=NP (that is, we cannot achieve a polynomial time
(1− ε)-approximation for any given ε ∈ (0, 1)). Our idea is
partly inspired by the result from Megiddo [1990]. Given a
set of points in Rd, the “covering by two balls” problem is to
determine that whether the point set can be covered by two
unit balls. By the reduction from 3-SAT, Megiddo proved
that the “covering by two balls” problem is NP-complete. In
the proof of the following theorem, we modify Megiddo’s
construction of the reduction to adapt the one-class SVM
with outliers problem.

Theorem 1. The one-class SVM with outliers problem is
NP-complete, and has no fully PTAS unless P=NP.

1The space can be a Euclidean space or an abstract metric
space.
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Figure 1: (a) An illustration for the formula (4); (b) the ball B1 is enclosed by Ω and the ball B2 is not.

Let Γ be a 3-SAT instance with the literal set
{u1, ū1, · · · , ul, ūl} and clause set {E1, · · · , Em}. We con-
struct the corresponding instance PΓ of one-class SVM with
outliers. First, let U = {±ei | i = 1, 2, · · · , l + 1} be
the 2(l + 1) unit vectors of Rl+1, where each ei has “1”
in the i-th position and “0” in other positions. Also, for
each clause Ej with 1 ≤ j ≤ m, we generate a point
qj = (qj,1, qj,2, · · · , qj,l+1) as follows. For 1 ≤ i ≤ l,

qj,i =

 α, if ui occurs in Ej ;
−α, else if ūi occurs in Ej ;
0, otherwise.

In addition, qj,l+1 = 3α. For example, if Ej = ui1 ∨ ūi2 ∨
ui3 , the point

qj = (0, · · · , 0, α
i1
, 0, · · · , 0,−α

i2
, 0, · · · ,

0, α
i3
, 0, · · · , 0, 3α). (1)

The value of α will be determined later. LetQ denote the set
{q1, · · · , qm}. Now, we construct the instance PΓ = U ∪Q
of one-class SVM with outliers, where the number of points
n = 2(l + 1) + m and the number of outliers z = l + 1.
Then we have the following lemma.

Lemma 1. Let α > 1/2. Γ has a satisfying assignment if
and only if PΓ has a solution with margin width 1√

l+1
.

Proof. First, we suppose there exists a satisfying assign-
ment A(Γ) for Γ. We define the set S ⊂ PΓ as follows.
If ui is true in A(Γ), we include ei in S, else, we include
−ei in S; we also include el+1 in S. We claim that the set
S ∪Q yields a solution of the instance PΓ with the margin
width 1√

l+1
, that is, the size |S∪Q| = n−z and the margin

separating the origin o and S ∪ Q has width 1√
l+1

. It is
easy to verify the size of S ∪Q. To compute the width, we
consider the mean point of S which is denoted as t. For each
1 ≤ i ≤ l, if ui is true, the i-th position of t should be 1

l+1 ,
else, the i-th position of t should be − 1

l+1 ; the (l + 1)-th
position of t is 1

l+1 . Obviously, ||t|| = 1√
l+1

. LetHt be the
hyperplane that is orthogonal to the vector t− o and passing
through t. It is easy to knowHt separates S and o, and the
margin width (i.e., the distance between the origin andHt)
is ||t|| = 1√

l+1
. Furthermore, for any point qj ∈ Q, since

there exists at least one true variable in Ej , we have the
inner product

〈qj ,
t

||t|| 〉 ≥
3α√
l + 1

+
α√
l + 1

− 2α√
l + 1

=
2α√
l + 1

>
1√
l + 1

, (2)

where the last inequality comes from the fact α > 1/2.
Therefore, all the points from Q lie on the same side ofHt
as S, and then the set S ∪Q can be separated from o by a
margin with width 1√

l+1
.

Second, suppose the instance PΓ has a solution with
margin width 1√

l+1
. With a slight abuse of notations, we

still use S to denote the subset of U that is included in the
set of n−z inliers. Since the number of outliers is z = l+1,
we know that for any pair±ei, there exists exactly one point
belonging to S; also, the whole set Q should be included
in the set of inliers so as to guarantee that there are n − z
inliers in total. We still use t to denote the mean point of S
(||t|| = 1√

l+1
). Now, we design the assignment A(Γ) for Γ:

if ei ∈ S, we assign ui to be true, else, we assign ūi to be
true. We claim that Γ is satisfied by this assignment. For any
clause Ej , if it is not satisfied, i.e., all the three variables in
Ej are false, then we have the inner product

〈qj ,
t

||t|| 〉 ≤
3α√
l + 1

− 3α√
l + 1

= 0. (3)

That means the angle ∠qjot ≥ π/2. So any margin separat-
ing the origin o and the set S ∪Q should have the width at
most

||qj || · ||t||√
||qj ||2 + ||t||2

< ||t|| = 1√
l + 1

. (4)

See Figure 1a for an illustration. This is in contradiction to
the assumption that PΓ has a solution with margin width

1√
l+1

.

Overall, Γ has a satisfying assignment if and only if PΓ has
a solution with margin width 1√

l+1
.

Now we are ready to prove the theorem.

Proof. (of Theorem 1) Since 3-SAT is NP-complete,
Lemma 1 implies that the one-class SVM with outliers prob-
lem is NP-complete too; otherwise, we can determine that
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whether a given instance Γ is satisfiable by computing the
optimal solution of PΓ. Moreover, the gap between 1√

l+1

and ||qj ||·||t||√
||qj ||2+||t||2

(from the formula (4)) is

1√
l+1
−
√

12α2 1
l+1

12α2+ 1
l+1

= ( 1
l+1 )3/2 1√

12α2+ 1
l+1 (
√

12α2+ 1
l+1 +2

√
3α)

= Θ
(
( 1
l+1 )3/2

)
, (5)

if we assume α is a fixed constant. Therefore, if we set

ε = O
( ( 1

l+1 )3/2

( 1
l+1 )1/2

)
= O( 1

l+1 ), then Γ is satisfiable if and only

if any (1− ε)-approximation of the instance PΓ has width

>

√
12α2 1

l+1

12α2+ 1
l+1

. That means if we have a fully PTAS for the

one-class SVM with outliers problem, we can determine that
whether Γ is satisfiable or not in polynomial time. In other
words, we cannot even achieve a fully PTAS for one-class
SVM with outliers, unless P=NP.

4 THE DATA SANITIZATION DEFENSE

From Theorem 1, we know that it is extremely challenging
to achieve the optimal solution even for one-class SVM with
outliers. Therefore, we turn to consider the other approach,
data sanitization defense, under some reasonable assumption
in practice. First, we prove a general sampling theorem in
Section 4.1. Then, we apply this theorem to explain the
effectiveness of DBSCAN for defending against poisoning
attacks in Section 4.2.

4.1 A SAMPLING THEOREM

Let P be a set of i.i.d. samples drawn from a connected
and compact domain Ω who has the doubling dimension
ρ > 0. For ease of presentation, we assume that Ω lies on
a manifold F in the space. Let ∆ denote the diameter of
Ω, i.e., ∆ = supp1,p2∈Ω ||p1 − p2||. Also, we let f be the
probability density function of the data distribution over Ω.

To measure the uniformity of f , we define a value λ as fol-
lows. For any c ∈ Ω and any r > 0, we say “the ball B(c, r)
is enclosed by Ω” if ∂B(c, r)∩F ⊂ Ω; intuitively, if the ball
center c is close to the boundary ∂Ω of Ω or the radius r is
too large, the ball will not be enclosed by Ω. See Figure 1b

for an illustration. We define λ := supc,c′,r

∫
B(c′,r)f(x) dx∫
B(c,r)f(x) dx

,

where B(c, r) and B(c′, r) are any two equal-sized balls,
and B(c, r) is required to be enclosed by Ω. As a simple
example, if Ω lies on a flat manifold and the data uniformly
distribute over Ω, the value λ will be equal to 1. On the other
hand, if the distribution is very imbalanced or the manifold
F is very rugged, the value λ can be high.

Theorem 2. Let m ∈ Z+, ε ∈ (0, 1
8 ), and δ ∈ (0,∆). If

the sample size

|P | > max
{

Θ
( m

1− ε · λ · (
1 + ε

1− ε
∆

δ
)ρ
)
,

Θ̃
(
ρ · λ2 · (1 + ε

1− ε
∆

δ
)2ρ(

1

ε
)ρ+2

)}
, (6)

then with constant probability, for any ball B
(
c, δ
)

enclosed
by Ω, the size |B

(
c, δ
)
∩ P | > m. The asymptotic notation

Θ̃(f) = Θ
(
f · polylog(L∆

δε )
)
.

Remark 2. (i) A highlight of Theorem 2 is that the lower
bound of |P | is independent of the dimensionality of the
input space (which could be much higher than the intrinsic
dimension). Moreover, our result holds for any metric space
with bounded doubling dimension (not only for Euclidean
space).

(ii) For the simplest case that Ω lies on a flat manifold and
the data uniformly distribute over Ω, λ will be equal to 1
and thus the lower bound of |P | in Theorem 2 becomes

max
{

Θ
(
m

1−ε (
1+ε
1−ε

∆
δ )ρ
)
, Θ̃
(
ρ( 1+ε

1−ε
∆
δ )2ρ( 1

ε )ρ+2
)}

.

Before proving Theorem 2, we need to relate the doubling
dimension ρ to the VC dimension dim of the range space
consisting of all balls with different radii [Li et al., 2001].
Unfortunately, Huang et al. [2018] recently showed that
“although both dimensions are subjects of extensive research,
to the best of our knowledge, there is no nontrivial relation
known between the two”. For instance, they constructed
a doubling metric having unbounded VC dimension, and
the other direction cannot be bounded neither. However, if
allowing a small distortion to the distance, we can achieve
an upper bound on the VC dimension for a given metric
space with bounded doubling dimension. For stating the
result, they defined a distance function called “ε-smoothed
distance function”: g(p, q) ∈ (1 ± ε)||p − q|| for any two
data points p and q, where ε ∈ (0, 1

8 ). Given a point p and
δ > 0, the ball defined by this distance function g(·, ·) is
denoted by Bg(p, δ) = {q ∈ the input space | g(p, q) ≤ δ}.
Theorem 3 (Huang et al. [2018]). Suppose the point set
P has the doubling dimension ρ > 0. There exists an ε-
smoothed distance function “g(·, ·)” such that the VC di-
mension2 dimε of the range space consisting of all balls with
different radii is at most Õ( ρερ ), if replacing the distance by
g(·, ·).

Proof. (of Theorem 2) Let r be any positive number. First,
since the doubling dimension of Ω is ρ, if recursively ap-
plying Definition 2 log ∆

r times, we know that Ω can be
2Huang et al. [2018] used “shattering dimension” to state their

result. Actually, the shattering dimension is another measure for
the complexity of range space, which is tightly related to the VC
dimension [Feldman and Langberg, 2011]. For example, if the
shattering dimension is ρ0, the VC dimension should be bounded
by O(ρ0 log ρ0).
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covered by at most Θ
((

∆
r

)ρ)
balls with radius r. Thus, if

B(c, r) is enclosed by Ω, we have∫
B(c,r)

f(x) dx∫
Ω
f(x) dx

≥ Θ
( 1

λ
· ( r

∆
)ρ
)
. (7)

Now we consider the size |B(c, δ) ∩ P |. From Theorem 3,
we know that the VC dimension dimε with respect to the
ε-smoothed distance is Õ( ρερ ). Thus, for any ε0 ∈ (0, 1), if

|P | ≥ Θ
( 1

ε20
dimε log

dimε

ε0

)
, (8)

the set P will be an ε0-sample of Ω; that is, for any point c
and δ′ ≥ 0,

|Bg(c, δ′) ∩ P |
|P | ∈

∫
Bg(c,δ′)

f(x) dx∫
Ω
f(x) dx

± ε0 (9)

with constant probability3 [Li et al., 2001]. Because g(·, ·) is
an ε-smoothed distance function of the Euclidean distance,
we have

B(c,
δ′

1 + ε
) ⊆ Bg(c, δ′) ⊆ B(c,

δ′

1− ε ). (10)

So if we set ε0 = ε · Θ
(

1
λ · ( 1−ε

1+ε
δ
∆ )ρ

)
and δ′ = (1 − ε)δ,

(7), (9), and (10) jointly imply |B(c,δ)∩P |
|P | =

|B(c, δ′

1−ε ) ∩ P |
|P | ≥ |Bg(c, δ′) ∩ P |

|P |

≥
∫
Bg(c,δ′)

f(x) dx∫
Ω
f(x) dx

− ε0

≥
∫
B(c, δ

′
1+ε )

f(x) dx∫
Ω
f(x) dx

− ε0

≥ (1− ε) ·Θ
( 1

λ
· (1− ε

1 + ε

δ

∆
)ρ
)
. (11)

The last inequality comes from (7) (since we assume the
ball B

(
c, δ
)

is enclosed by Ω, the shrunk ball B(c, δ′

1+ε ) =

B(c, 1−ε
1+εδ) should be enclosed as well). Moreover, if

|P | ≥ Θ
( m

1− ε · λ · (
1 + ε

1− ε
∆

δ
)ρ
)
, (12)

we have |B
(
c, δ
)
∩ P | > m from (11). Combining (8) and

(12), we obtain the lower bound of |P |.

3The exact probability comes from the success probability that
P is an ε0-sample of Ω. Let η ∈ (0, 1), and the size |P | in (8)
should be at least Θ

(
1
ε20

(dimε log dimε
ε0

+ log 1
η

)
)

to guarantee a
success probability 1− η. For convenience, we assume η is a fixed
small constant and simply say “1− η” is a “constant probability”.

4.2 THE DBSCAN APPROACH

For the sake of completeness, we briefly introduce the
method of DBSCAN [Ester et al., 1996]. Given two pa-
rameters r > 0 and MinPts ∈ Z+, the DBSCAN di-
vides the set P into three classes: (1) p is a core point,
if |B(p, r) ∩ P | > MinPts; (2) p is a border point, if p is
not a core point but p ∈ B(q, r) of some core point q; (3) all
the other points are outliers. Actually, we can imagine that
the set P forms a graph where any pair of core or border
points are connected if their pairwise distance is no larger
than r; then the set of core points and border points form
several clusters where each cluster is a connected compo-
nent (a border point may belong to multiple clusters, but
we can arbitrarily assign it to only one cluster). The goal of
DBSCAN is to identify these clusters and the outliers. Sev-
eral efficient implementations for DBSCAN can be found
in [Gan and Tao, 2015, Schubert et al., 2017].

Following Section 4.1, we assume that P is a set of i.i.d.
samples drawn from the connected and compact domain Ω
who has the doubling dimension ρ > 0. We let Q be the
set of z poisoning data items injected by the attacker to P ,
and suppose each q ∈ Q has distance larger than δ1 > 0
to Ω. In an evasion attack, we often use the adversarial
perturbation distance to evaluate the attacker’s capability;
but in a poisoning attack, the attacker can easily achieve a
large perturbation distance (e.g., in the SVM problem, if
the attacker flips the label of some point p, it will become
an outlier having the perturbation distance larger than hopt
to its ground truth domain, where hopt is the optimal mar-
gin width). Also, we assume the boundary ∂Ω is smooth
and has curvature radius at least δ2 > 0 everywhere. For
simplicity, let δ = min{δ1, δ2}. The following theorem
states the effectiveness of the DBSCAN with respect to the
poisoned dataset P ∪Q. We assume the poisoned fraction
|Q|
|P | = z

|P | < 1.

Theorem 4. We let m be any absolute constant number
larger than 1, and assume that the size of P satisfies the
lower bound of Theorem 2. If we set r = δ and MinPts =
m, and run DBSCAN on the poisoned dataset P ∪Q, then
the obtained largest cluster is exactly the set P . In other
word, the set Q consists of the outliers and the clusters
except the largest one from the DBSCAN.

Proof. Since δ ≤ δ2, for any p ∈ P , either the ball B(p, δ)
is enclosed by Ω, or p is covered by some ball B(q, δ) en-
closed by Ω. We set r = δ and MinPts = m, and hence
from Theorem 2 we know that all the points of P will be
core points or border points. Moreover, any point q from
Q has distance larger than r to the points of P , that is, any
two points q ∈ Q and p ∈ P should not belong to the same
cluster of the DBSCAN. Also, because the domain Ω is
connected and compact, the set P must form the largest
cluster.
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Remark 3. (i) We often adopt the poisoned fraction z
|P |

as the measure to indicate the attacker’s capability. If we
fix the value of z, the bound of |P | from Theorem 2 reveals
that the larger the doubling dimension ρ, the lower the poi-
soned fraction z

|P | (and the easier corrupting the DBSCAN
defense). In addition, when δ is large, i.e., each poisoning
point has large perturbation distance and ∂Ω is sufficiently
smooth, it will be relatively easy for DBSCAN to defend.

But we should point out that this theoretical bound probably
is overly conservative, since it requires a “perfect” saniti-
zation result that removes all the poisoning samples (this
is not always a necessary condition for achieving a good
defending performance in practice). In our experiments, we
show that the DBSCAN method can achieve promising per-
formance, even when the poisoned fraction is higher than
the threshold.

(ii) In practice, we cannot obtain the exact values of δ and
m. We follow the strategy that was commonly used in the
DBSCAN implementations [Gan and Tao, 2015, Schubert
et al., 2017]; we set MinPts to be a small constant and tune
the value of r until the largest cluster has |P ∪Q|−z points.

Putting it all together. Let (P+, P−) be an instance of
SVM with z outliers, where z is the number of poisoning
points. We assume that the original input point sets P+ and
P− (before the poisoning attack) are i.i.d. samples drawn
respectively from the connected and compact domains Ω+

and Ω− with doubling dimension ρ. Then, we perform the
DBSCAN procedure on P+ and P− respectively (as Re-
mark 3 (ii)). Suppose the obtained largest clusters are P̃+

and P̃−. Finally, we run an existing SVM algorithm on the
cleaned instance (P̃+, P̃−).

5 EMPIRICAL EXPERIMENTS

All the experiments were repeated 20 times on a Win-
dows 10 workstation equipped with an Intel core i5-8400
processor and 8GB RAM. To generate the poisoning attacks,
we use the MIN-MAX attack from [Koh et al., 2018] and the
adversarial label-flipping attack ALFA from ALFASVM-
Lib [Xiao et al., 2015]. We evaluate the defending perfor-
mances of the basic SVM algorithms and several different
defenses by using their publicly available implementations.

1. We consider both the cases that not using and using
kernel. For SVM without kernel, we directly use LIN-
EAR SVM as the basic SVM algorithm; for SVM with
kernel, we consider RBF kernel (RBF SVM). Both the
implementations are from [Chang and Lin, 2011].

2. The recently proposed robust SVM algorithm RSVM-
S based on the rescaled hinge loss function [Xu et al.,
2017]. The parameter “S” indicates the iteration num-
ber of the half-quadratic optimization (e.g., we set

S = 3 and 10 following their paper’s setting). The
algorithm also works fine when using a kernel.

3. The DBSCAN method [Schubert et al., 2017] im-
plemented as Remark 3 (ii). We set MinPts = 5 (our
empirical study finds that the difference is minor within
the range [3, 10]).

4. The data sanitization defenses from [Koh et al., 2018]
based on the spatial distribution of input data, which
include SLAB, L2, LOSS, and K-NN.

For the data sanitization defenses, we run them on the poi-
soned data in the original input space; then, apply the basic
SVM algorithm, LINEAR SVM or RBF SVM (if using RBF
kernel), on the cleaned data to compute their final solutions.

Table 1: Datasets

Dataset Size Dimension

SYNTHETIC 10000 50-200
LETTER 1520 16
MUSHROOMS 8124 112
SATIMAGE 2236 36

Datasets. We consider both the synthetic and real-world
datasets in our experiments. For each synthetic dataset, we
generate two manifolds in Rd, and each manifold is rep-
resented by a random polynomial function with degree d′

(the values of d and d′ will be varied in the experiments).
Note that it is challenging to achieve the exact doubling di-
mensions of the datasets, and thus we use the degree of the
polynomial function as a “rough indicator” for the doubling
dimension (the higher the degree, the larger the doubling
dimension). In each of the manifolds, we randomly sample
5000 points; the data is randomly partitioned into 30% and
70% respectively for training and testing, and we report the
classification accuracy on the test data. We also consider
three real-world datasets from [Chang and Lin, 2011]. The
details are shown in Table 1.

Results. First, we study the influence from the intrinsic di-
mensionality. We set the Euclidean dimensionality d to be
100 and vary the polynomial function’s degree d′ from 25 to
65 in Figure 2a and 2d. Then, we fix the degree d′ to be 40
and vary the Euclidean dimensionality d in Figure 2b and
2e. We can observe that the accuracies of most methods dra-
matically decrease when the degree d′ (intrinsic dimension)
increases, and the influence from the intrinsic dimension is
more significant than that from the Euclidean dimension.

We also study their classification performances under differ-
ent poisoned fraction in Figure 2c and 2f. We can see that all
the defenses yield lower accuracies when the poisoned frac-
tion increases, while the performance of DBSCAN keeps
much more stable compared with other defenses. Moreover,
we calculate the widely used F1 scores from the sanitization
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Figure 2: The classification accuracy on the SYNTHETIC datasets of Linear SVM (the first line) and SVM with RBF kernel
(the second line) under MIN-MAX attack. The third line are the average F1 scores.

4 6 8 10
Poisoned fraction (%)

92

94

96

98

100

Ac
cu

ra
cy

 (%
)

(a) LETTER

4 6 8 10
Poisoned fraction (%)

92

94

96

98

100

Ac
cu

ra
cy

 (%
)

(b) MUSHROOMS

4 6 8 10
Poisoned fraction (%)

92
93
94
95
96
97
98
99

Ac
cu

ra
cy

 (%
)

Linear SVM
RSVM-3
RSVM-10
DBSCAN+Linear SVM
Slab+Linear SVM
L2+Linear SVM
Loss+Linear SVM
k-NN+Linear SVM

(c) SATIMAGE

4 6 8 10
Poisoned fraction (%)

92

94

96

98

100

Ac
cu

ra
cy

 (%
)

(d) LETTER

4 6 8 10
Poisoned fraction (%)

88
90
92
94
96
98

Ac
cu

ra
cy

 (%
)

(e) MUSHROOMS

4 6 8 10
Poisoned fraction (%)

96

97

98

99

Ac
cu

ra
cy

 (%
)

rbf SVM
RSVM-3
RSVM-10
DBSCAN + rbf SVM
Slab + rbf SVM
L2 + rbf SVM
Loss + rbf SVM
k-NN + rbf SVM

(f) SATIMAGE

Figure 3: The classification accuracy on the real datasets of linear SVM (the first line) and SVM with RBF kernel (the
second line) under MIN-MAX attack.
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Figure 4: The classification accuracy of linear SVM (the first line) and SVM with RBF kernel (the second line) under ALFA
attack.

Table 2: F1 scores on MUSHROOM dataset.

ALFA MIN-MAX

4% 6% 8% 10% 4% 6% 8% 10%

DBSCAN 0.72 0.79 0.84 0.86 0.72 0.79 0.84 0.87
SLAB < 0.1 < 0.1 < 0.1 < 0.1 0.17 0.22 0.27 0.30

L2 0.34 0.37 0.40 0.40 0.67 0.66 0.65 0.69
LOSS 0.11 0.60 0.37 < 0.1 0.14 0.28 0.37 < 0.1
KNN < 0.1 < 0.1 < 0.1 < 0.1 0.17 0.11 < 0.1 < 0.1

defenses for identifying the outliers. LOSS and K-NN both
yield very low F1 scores (< 0.1); that means they are not
quite capable to identify the real poisoning data items. The
F1 scores yielded by DBSCAN, L2 and SLAB are shown
in Figure 2g-2i, where DBSCAN in general outperforms
the other two sanitization defenses for most cases.

We also perform the experiments on the real datasets un-
der MIN-MAX attack and ALFA attack with the poisoned
fraction ranging from 4% to 10%. The experimental results
(Figure 3 and 4) reveal the similar trends as the results for
the synthetic datasets, and DBSCAN keeps considerably
better performance compared with other defenses. The F1

scores on MUSHROOM dataset are shown in Table 2 (due to
the space limit, the F1 scores on the other two real datasets
are placed in our full paper).

6 DISCUSSION

In this paper, we study two different strategies for protect-
ing SVM against poisoning attacks. We also have several

open questions to study in future. For example, what about
the complexities of other machine learning problems un-
der the adversarially-resilient formulations as Definition 1?
For many other adversarial machine learning problems, the
study on their complexities is still in its infancy.
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