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1 PROOF OF THEOREM 1

Theorem 1 states the function value of the output of PALM, in expectation converges to the true optimum within a small
constant distance at a linear speed w.r.t. the number of iterations 7'. To prove Theorem 1, we need the following lemma.

Lemma 1. [f the total variation maxy Varp,(¢(a)) < L, then 1(0) is L-smooth w.r.t. 0.

1.1 PROOF OF LEMMA 1

Proof. L-smoothness requires that
IVLLB(01) = VLLB(02)[]2 < L[|6h — 622,

where V6,605 € dom f and L is a constant. Based on the mean value theorem, there exists a point 0e (61, 02) such that

VLLp(01) —VLLE(02) =V(VLLE(0))(61 — 62).
Taking the L, norm for both sides, we have
IVLLB(O1) = VLLB(6a)ll2 =IV(VLLE(6))(61 — 62)|l2 < | V(VLLB(O))||2 161 — 622
Then, the problem is to bound the matrix 2-norm ||V(VLr5(6))|l2. Since we know the explicit form of £ 5(6), we know
VLip(6) = Viog Zy — ¢(a),
V(VLLp(0) = [6(a) — Viog Zy][é(a) — Vlog Zy]" Py(a),

a

where V(V L g(0)) is the co-variance matrix. Denote Covg[¢(a)] = V(VLLp(0)), which is both symmetric and positive
semi-definite. We have

IV(VLL50))ll2 = [|Cove[d(a)]l2 = Amax,

where Ajax is the maximum eigenvalue of the matrix Covy[¢(a)]. Then, because of the positive semi-definiteness of the
co-variance matrix, all the eigenvalues are non-negative, and we can bound A4, as

Amaz < 3 A = Tr(Cove[p(a)]),
i
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where Tr(Covg[¢(a)]) is the trace of matrix Covg[¢p(a)]. Tr(Covg[é(a)]) can be further derived as:
Tr(Covelp(a)]) = Ep, [[6(a)l[3] — I[Ep, [¢(a)]]13,

which is equal to the total variation Varp,(¢(a)), we have
IV(VLLE ()]l < Varp, (¢(X)) < L.
Therefore, we have
[VI(61) — Vi(02)[|l2 < L [|61 — b2]]2.

This completes the proof.

1.2 PROOF OF THEOREM 1

Proof. By L-smooth of L} g, we have for the ¢-th iteration,
L
Lra(01) < Lrp0:) + (VLLB(6:), 0041 — 6;) + §|\9t+1 — 0413,

Ln? 2
=Lrp(0:) —n(VLLB(0:), g) + T”gtn :
Because of E[g;]? = E[||g¢||3] — Var(g:), by taking expectation on both sides w.r.t g; we get
_ » , L 21 _ 2 L772E 2
ElCo(001)] = Los(00) ~nElal® + T Ello3] = L2500 — n(Ellgul) — Var(e) + T2 Elg: 3]
Ln no
< Lrp(0r) —n(1 - *> [llg:l13] + ﬁ7

2
n
< Lrp(0:) — §]E[||gt||§] + ﬁ-

where the last inequality follows as Ln < 2. Because L g is convex, we get

ElLLp(0i11)] < Lp(07) +(VLLB(01), 00 — 07) — QE[IlgtIIS] + 10,

o2

= L1p(0) + (Elg) 6, — 0°) — TB[lgi)13) + Lo,
no?
R
we now repeat the calculations by completing the square for the middle two terms to get

= Lrp(0%) +E[{g, 0 — 07) — §Hgt||§} +

ElLLp(0r41)] < LLp(07) + ]E[ (H9t — 0713 — 110 — 0" — nge13)] +

* * T}U
= Lup(%) + Bl (10— 0715 = 101 = 07[B)] +

Summing the above equations fort =0,...,7 — 1, we get

T-1
O, — O* 2 2
160 13 JrT77‘7

* 1 * * 7’02
ElLep(Or) — Lrp(O")] < 5 (160 — 673 ~Elllor — 6" I5) + 777 < o

)
Finally, by Jensen’s inequality, Ly 3(67) < Ethl L15(6;), thus,

T-1

Z E[LrB(0+1) — Lrp(f Z Lrp(01)] —TLLp(0*) > TE[LLp(0r)] — TLL(0%).
=0

Combining the above equations we get

— o, 6o —6*|5  no?
E 0 < 0 _
[Lrp(07)] < LLp(07) + T + 7

This completes the proof.
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