PALM: Probabilistic Area Loss Minimization for Protein Sequence Alignment (Supplementary Materials)

Fan Ding $^{1} \quad$ Nan Jiang $^{* 1} \quad$ Jianzhu Ma ${ }^{2} \quad$ Jian Peng $^{3} \quad$ Jinbo Xu $^{4} \quad$ Yexiang Xue 1
${ }^{1}$ Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
${ }^{2}$ Institute for Artificial Intelligence, Peking University, Beijing, China
${ }^{3}$ Department of Computer Science, University of Illinois at Urbana-Champaign, Illinois, USA
${ }^{4}$ Toyota Technological Institute at Chicago, Illinois, USA

1 PROOF OF THEOREM 1

Theorem 1 states the function value of the output of PALM, in expectation converges to the true optimum within a small constant distance at a linear speed w.r.t. the number of iterations T. To prove Theorem 1, we need the following lemma.

Lemma 1. If the total variation $\max _{\theta} \operatorname{Var}_{P_{\theta}}(\phi(a)) \leq L$, then $l(\theta)$ is L-smooth w.r.t. θ.

1.1 PROOF OF LEMMA 1

Proof. L-smoothness requires that

$$
\left\|\nabla \mathcal{L}_{L B}\left(\theta_{1}\right)-\nabla \mathcal{L}_{L B}\left(\theta_{2}\right)\right\|_{2} \leq L\left\|\theta_{1}-\theta_{2}\right\|_{2}
$$

where $\forall \theta_{1}, \theta_{2} \in \operatorname{dom} f$ and L is a constant. Based on the mean value theorem, there exists a point $\tilde{\theta} \in\left(\theta_{1}, \theta_{2}\right)$ such that

$$
\nabla \mathcal{L}_{L B}\left(\theta_{1}\right)-\nabla \mathcal{L}_{L B}\left(\theta_{2}\right)=\nabla\left(\nabla \mathcal{L}_{L B}(\tilde{\theta})\right)\left(\theta_{1}-\theta_{2}\right)
$$

Taking the L_{2} norm for both sides, we have

$$
\left\|\nabla \mathcal{L}_{L B}\left(\theta_{1}\right)-\nabla \mathcal{L}_{L B}\left(\theta_{2}\right)\right\|_{2}=\left\|\nabla\left(\nabla \mathcal{L}_{L B}(\tilde{\theta})\right)\left(\theta_{1}-\theta_{2}\right)\right\|_{2} \leq\left\|\nabla\left(\nabla \mathcal{L}_{L B}(\tilde{\theta})\right)\right\|_{2}\left\|\theta_{1}-\theta_{2}\right\|_{2}
$$

Then, the problem is to bound the matrix 2-norm $\left\|\nabla\left(\nabla \mathcal{L}_{L B}(\tilde{\theta})\right)\right\|_{2}$. Since we know the explicit form of $\mathcal{L}_{L B}(\theta)$, we know

$$
\begin{aligned}
\nabla \mathcal{L}_{L B}(\theta) & =\nabla \log Z_{\phi}-\phi(a) \\
\nabla\left(\nabla \mathcal{L}_{L B}(\theta)\right) & =\sum_{a}\left[\phi(a)-\nabla \log Z_{\phi}\right]\left[\phi(a)-\nabla \log Z_{\phi}\right]^{T} P_{\theta}(a)
\end{aligned}
$$

where $\nabla\left(\nabla \mathcal{L}_{L B}(\theta)\right)$ is the co-variance matrix. Denote $\operatorname{Cov}_{\theta}[\phi(a)]=\nabla\left(\nabla \mathcal{L}_{L B}(\theta)\right)$, which is both symmetric and positive semi-definite. We have

$$
\left\|\nabla\left(\nabla \mathcal{L}_{L B}(\tilde{\theta})\right)\right\|_{2}=\left\|\operatorname{Cov}_{\theta}[\phi(a)]\right\|_{2}=\lambda_{\max }
$$

where $\lambda_{\text {max }}$ is the maximum eigenvalue of the matrix $\operatorname{Cov}_{\theta}[\phi(a)]$. Then, because of the positive semi-definiteness of the co-variance matrix, all the eigenvalues are non-negative, and we can bound $\lambda_{\max }$ as

$$
\lambda_{\max } \leq \sum_{i} \lambda_{i}=\operatorname{Tr}\left(\operatorname{Cov}_{\theta}[\phi(a)]\right)
$$

[^0]where $\operatorname{Tr}\left(\operatorname{Cov}_{\theta}[\phi(a)]\right)$ is the trace of matrix $\operatorname{Cov}_{\theta}[\phi(a)] \cdot \operatorname{Tr}\left(\operatorname{Cov}_{\theta}[\phi(a)]\right)$ can be further derived as:
$$
\operatorname{Tr}\left(\operatorname{Cov}_{\theta}[\phi(a)]\right)=\mathbb{E}_{P_{\theta}}\left[\|\phi(a)\|_{2}^{2}\right]-\left\|\mathbb{E}_{P_{\theta}}[\phi(a)]\right\|_{2}^{2}
$$
which is equal to the total variation $\operatorname{Var}_{P_{\theta}}(\phi(a))$, we have
$$
\left\|\nabla\left(\nabla \mathcal{L}_{L B}(\tilde{\theta})\right)\right\|_{2} \leq \operatorname{Var}_{P_{\theta}}(\phi(X)) \leq L
$$

Therefore, we have

$$
\left\|\nabla l\left(\theta_{1}\right)-\nabla l\left(\theta_{2}\right)\right\|_{2} \leq L\left\|\theta_{1}-\theta_{2}\right\|_{2} .
$$

This completes the proof.

1.2 PROOF OF THEOREM 1

Proof. By L-smooth of $\mathcal{L}_{L B}$, we have for the t-th iteration,

$$
\begin{aligned}
\mathcal{L}_{L B}\left(\theta_{t+1}\right) & \leq \mathcal{L}_{L B}\left(\theta_{t}\right)+\left\langle\nabla \mathcal{L}_{L B}\left(\theta_{t}\right), \theta_{t+1}-\theta_{t}\right\rangle+\frac{L}{2}\left\|\theta_{t+1}-\theta_{t}\right\|_{2}^{2}, \\
& =\mathcal{L}_{L B}\left(\theta_{t}\right)-\eta\left\langle\nabla \mathcal{L}_{L B}\left(\theta_{t}\right), g_{t}\right\rangle+\frac{L \eta^{2}}{2}\left\|g_{t}\right\|^{2} .
\end{aligned}
$$

Because of $\mathbb{E}\left[g_{t}\right]^{2}=\mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right]-\operatorname{Var}\left(g_{t}\right)$, by taking expectation on both sides w.r.t g_{t} we get

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{L}_{L B}\left(\theta_{t+1}\right)\right]=\mathcal{L}_{L B}\left(\theta_{t}\right)-\eta \mathbb{E}\left[g_{t}\right]^{2}+\frac{L \eta^{2}}{2} \mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right] & =\mathcal{L}_{L B}\left(\theta_{t}\right)-\eta\left(\mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right]-\operatorname{Var}\left(g_{t}\right)\right)+\frac{L \eta^{2}}{2} \mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right], \\
& \leq \mathcal{L}_{L B}\left(\theta_{t}\right)-\eta\left(1-\frac{L \eta}{2}\right) \mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right]+\frac{\eta \sigma^{2}}{M} \\
& \leq \mathcal{L}_{L B}\left(\theta_{t}\right)-\frac{\eta}{2} \mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right]+\frac{\eta \sigma^{2}}{M}
\end{aligned}
$$

where the last inequality follows as $L \eta \leq 2$. Because $\mathcal{L}_{L B}$ is convex, we get

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{L}_{L B}\left(\theta_{t+1}\right)\right] & \leq \mathcal{L}_{L B}\left(\theta^{*}\right)+\left\langle\nabla \mathcal{L}_{L B}\left(\theta_{t}\right), \theta_{t}-\theta^{*}\right\rangle-\frac{\eta}{2} \mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right]+\eta \sigma^{2}, \\
& =\mathcal{L}_{L B}\left(\theta^{*}\right)+\left\langle\mathbb{E}\left[g_{t}\right], \theta_{t}-\theta^{*}\right\rangle-\frac{\eta}{2} \mathbb{E}\left[\left\|g_{t}\right\|_{2}^{2}\right]+\frac{\eta \sigma^{2}}{M}, \\
& =\mathcal{L}_{L B}\left(\theta^{*}\right)+\mathbb{E}\left[\left\langle g_{t}, \theta_{t}-\theta^{*}\right\rangle-\frac{\eta}{2}\left\|g_{t}\right\|_{2}^{2}\right]+\frac{\eta \sigma^{2}}{M} .
\end{aligned}
$$

we now repeat the calculations by completing the square for the middle two terms to get

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{L}_{L B}\left(\theta_{t+1}\right)\right] & \leq \mathcal{L}_{L B}\left(\theta^{*}\right)+\mathbb{E}\left[\frac{1}{2 \eta}\left(\left\|\theta_{t}-\theta^{*}\right\|_{2}^{2}-\left\|\theta_{t}-\theta^{*}-\eta g_{t}\right\|_{2}^{2}\right)\right]+\frac{\eta \sigma^{2}}{M}, \\
& =\mathcal{L}_{L B}\left(\theta^{*}\right)+\mathbb{E}\left[\frac{1}{2 \eta}\left(\left\|\theta_{t}-\theta^{*}\right\|_{2}^{2}-\left\|\theta_{t+1}-\theta^{*}\right\|_{2}^{2}\right)\right]+\frac{\eta \sigma^{2}}{M} .
\end{aligned}
$$

Summing the above equations for $t=0, \ldots, T-1$, we get

$$
\sum_{t=0}^{T-1} \mathbb{E}\left[\mathcal{L}_{L B}\left(\theta_{t+1}\right)-\mathcal{L}_{L B}\left(\theta^{*}\right)\right] \leq \frac{1}{2 \eta}\left(\left\|\theta_{0}-\theta^{*}\right\|_{2}^{2}-\mathbb{E}\left[\left\|\theta_{T}-\theta^{*}\right\|_{2}^{2}\right]\right)+T \frac{\eta \sigma^{2}}{M} \leq \frac{\left\|\theta_{0}-\theta^{*}\right\|_{2}^{2}}{2 \eta}+T \frac{\eta \sigma^{2}}{M}
$$

Finally, by Jensen's inequality, $T \mathcal{L}_{L B}\left(\overline{\theta_{T}}\right) \leq \sum_{t=1}^{T} \mathcal{L}_{L B}\left(\theta_{t}\right)$, thus,

$$
\sum_{t=0}^{T-1} \mathbb{E}\left[\mathcal{L}_{L B}\left(\theta_{t+1}\right)-\mathcal{L}_{L B}\left(\theta^{*}\right)\right]=\mathbb{E}\left[\sum_{t=1}^{T} \mathcal{L}_{L B}\left(\theta_{t}\right)\right]-T \mathcal{L}_{L B}\left(\theta^{*}\right) \geq T \mathbb{E}\left[\mathcal{L}_{L B}\left(\overline{\theta_{T}}\right)\right]-T \mathcal{L}_{L B}\left(\theta^{*}\right)
$$

Combining the above equations we get

$$
\mathbb{E}\left[\mathcal{L}_{L B}\left(\overline{\theta_{T}}\right)\right] \leq \mathcal{L}_{L B}\left(\theta^{*}\right)+\frac{\left\|\theta_{0}-\theta^{*}\right\|_{2}^{2}}{2 \eta T}+\frac{\eta \sigma^{2}}{M}
$$

This completes the proof.

[^0]: *These authors contribute equally.

