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Abstract

Particle filtering is a popular method for infer-
ring latent states in stochastic dynamical systems,
whose theoretical properties have been well stud-
ied in machine learning and statistics communities.
In many control problems, e.g., partially observed
linear dynamical systems (POLDS), oftentimes the
inferred latent state is further used for planning
at each step. This paper initiates a rigorous study
on the efficiency of particle filtering for sequential
planning, and gives the first particle complexity
bounds. Though errors in past actions may affect
the future, we are able to bound the number of
particles needed so that the long-run reward of the
policy based on particle filtering is close to that
based on exact inference. In particular, we show
that, in stable systems, polynomially many parti-
cles suffice. Key in our proof is a coupling of the
ideal sequence based on the exact planning and
the sequence generated by approximate planning
based on particle filtering. We believe this tech-
nique can be useful in other sequential decision-
making problems.

1 INTRODUCTION

Many real-world applications require planning on a partially
observed stochastic dynamic system [Kaelbling et al., 1998].
The planning policy often operates on the underlying latent
states instead of directly on raw observations. Take robot
navigation as an example. The raw observations are high-
dimensional RGB-D videos, and it is often preferred to
instead plan upon the underlying latent state, such as the
location of the robot.

A core challenge is to infer these latent states from ob-
servations. For simple stochastic systems such as hidden
Markov models (HMM) corrupted by a Gaussian noise,

there are analytical solutions for inference, i.e., Kalman
filtering [Kalman, 1960]. However, exact inference is of-
ten computationally infeasible in many stochastic systems
with complex probabilistic models. A typical example is
inferring the latent state of a partially observable linear dy-
namical system (POLDS), especially in recent models that
parametrize the transition and emission probability distri-
butions with deep neural networks [Hausknecht and Stone,
2015]. Here, while exact computation of the transition ker-
nel and the stochastic emission kernel is efficient (the same
computation complexity as using deep neural networks for
prediction), exact computation of the posterior distribution
over latent states is infeasible.

Particle filtering or Sequential Monte Carlo is a generic ap-
proach to approximately infer the underlying latent states in
stochastic dynamical systems (cf. Algorithm 1). Instead of
computing the posterior distribution exactly, this approach
simulates a set of particles according to the transition ker-
nel. Then, a weighted average of the particles is used to
approximate the posterior distribution, where the weight of
each particle is given by its likelihood. Particle filtering is
computationally efficient because it only needs to compute
the transition kernel and the stochastic emission kernel, but
does not require computing the posterior distribution.

Particle filtering as approximate inference of latent
states can be naturally integrated with belief space plan-
ning [Platt Jr et al., 2010]. Recently, researchers have
also proposed various approximations to make the steps
within particle filtering differentiable, so that the infer-
ence networks can be trained end-to-end with policy net-
works [Karkus et al., 2017, 2018a,b, Jonschkowski et al.,
2018, Wang et al., 2019]. In terms of applications, how-
ever, these works mostly focus on visual navigation, where
the planning horizon is short (with instant feedback), and
the reward function varies smoothly and continuously with
respect to actions such as moving forward. Applications
in dynamic systems without these properties are rare. This
gives rise to a theoretical question:
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Is particle filtering provably efficient for sequential
planning on stochastic systems?

While the theory of particle filtering for inference is well-
studied in statistical machine learning, the theory of particle
filtering for planning is rather unexplored. The approxima-
tion error in inference can lead to selection of different
actions and further affect the outcome such as cumulative
rewards in the future. Therefore, we not only need to study
the approximation in the inference, but also how the error
affects the future planning.

In this paper, we initiate the rigorous quantitative study to
characterize the efficiency of particle filtering in terms of the
properties of stochastic system. We study the fundamental
hidden Markov model, where the dynamics of transition
and emission are linear, but the noise in transition and emis-
sion can be arbitrary probabilistic distributions. We focus
on the planning problem in which we assume noise dis-
tributions are known. Unless these noise distributions are
within specific classes such as Gaussian, exact inference for
latent states is computationally infeasible, and approximate
inference such as particle filtering is needed. Our analysis
not only applies to popular linear, time-invariant (LTI) sys-
tems, but also time-varying ones. It can also potentially be
extended for nonlinear dynamic systems with recent devel-
opment in Koopman analysis [Brunton et al., 2016], which
will enable additional applications in robotic control [Bruder
et al., 2019].

Our Contribution Our main contribution is an upper
bound on the number of particles needed for particle
filtering–based planning to be close to the planning based
on the exact inference. To our knowledge, this is the first
non-asymptotic theoretical result on particle filtering for
sequential planning. The bound depends on some control-
theoretic quantities that describe the POLDS, the planning
horizon, the Lipschitzness of the reward function, and the
inverse of the likelihood of observations and the target sub-
optimality. We also complement the upper bound with a
lower bound showing the dependency is necessary.

Main Challenge and Analysis Overview The main chal-
lenge in the analysis is studying the distribution of the parti-
cles. When there is no sequential planning, the particles are
generated independently, so their distributions can be eas-
ily studied. However, when doing sequential planning, i.e.,
when the states of the particles depend on the past actions,
the particles are not independent anymore. The actions taken
is based on the particle approximation of the past states, so
the particles are correlated with each other. To avoid an-
alyzing the complicated joint distribution of the particles
directly, we show that it is enough to analyze the particle
approximation of the noise in each round separately. The
simulated noise in each particle is independent and can be
easily analyzed.

To study the performance of particle filtering–based sequen-
tial planning, we need to compare the approximate process
generated by particle filtering with an ideal process gen-
erated by exact inference. To make sure that the two pro-
cesses can be fairly compared, we couple the approximate
sequence with the ideal sequence using the same noise. It
can be hard to compare those two processes because after
taking different actions, the two processes are not estimat-
ing the same state anymore. In the following time steps,
the two processes will take actions based on estimations
of different states. Then, even when there is no estimation
error present, two processes can still grow further apart. In
this paper, we show that although the error can accumulate
and be amplified through actions in sequential planning, we
can still upper bound the number of particles needed so that
the long-run rewards of the two processes remain close. We
believe our framework can be the starting point of future
study on particle filtering for sequential planning and can
be useful for studying other methods.

Organization This paper is organized as follows. In Sec-
tion 1.1, we discuss related works. In Section 2, we intro-
duce necessary notations and formally state the problem. In
Section 3, we present our main result, an upper bound on the
particle complexity of particle filtering – based sequential
planning. In Section 4, we complement the upper bound
with a lower bound. In Section 5, we conclude and list con-
crete open problems. In Appendix, we show the proofs that
are omitted in the main paper and present some simulation
studies.

1.1 RELATED WORK

Here we discuss related theoretical work.

For inference, the quality of particle filtering is often mea-
sured by the distance between the posterior from the exact
inference and that from the approximate inference, in met-
rics such as L2 distance and Kullback-Leibler divergence.
Many works have analyzed the number of particles needed
to make the distance small, conditioned on properties of
the dynamic system [Whiteley et al., 2016, Huggins et al.,
2019, Crisan and Doucet, 2002, Marion and Schmidler,
2018, Chopin et al., 2004, Oreshkin et al., 2011]. However,
to our knowledege, no prior work analyzed the quality of
particle filtering–based planning. In this setting, the distance
between the posterior from exact inference and approximate
inference is not sufficient to measure for quality of particle
filtering, as the approximation error in inference can lead to
the selection of a different action and in turn affect the total
reward.

Controlling a known dynamical system is a classical prob-
lem [Bertsekas et al., 1995]. For the POLDS setting consid-
ered in this paper, the controller often needs to first infer the
latent state and plan on top of it. When the noise distribution
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is Gaussian and the reward is quadratic, the problem be-
comes Linear-Qudratic-Gaussian (LQG) control. For LQG,
one can first use analytical formulas for inference [Kalman,
1960], and then, by the separation principle, directly apply
an linear controller on the inferred latent state. Unfortu-
nately, for most noise distributions, exact inference is in
general computationally intractable and we must resort to
approximate inference techniques such as particle filtering.
Recently, researchers also try to leverage online learning
techniques to design provable algorithms for control with
known and unknown linear dynamical systems [Agarwal
et al., 2019a,b, Li et al., 2019, Cohen et al., 2018, Even-Dar
et al., 2009, Goel and Hassibi, 2020, Yu et al., 2009, Abbasi-
Yadkori et al., 2014, Neu and Gómez, 2017, Foster and
Simchowitz, 2020, Dean et al., 2019, Tsiamis et al., 2020,
Hazan et al., 2017, Simchowitz et al., 2020, Simchowitz,
2020], some of which can be even applied to adversarial
noise. Our work differs from this line of research as par-
ticle filtering–based planning is a fundamentally different
approach.

2 PRELIMINARIES

Notations For any positive integer n, we use [n] to denote
the set of integers {1, 2, · · · , n}. For vector x, we use ‖x‖
to denote its `2 norm. For matrix A, we use ‖A‖op denote
the operator norm ofA. For time t, we use x0:t to denote the
sequence x0, ..., xt. For eventE, we use Pr[E] to denote the
probability that the event E happens. For random variable
X,Y and their realizations x, y, we use PX [x] to denote
the value of the probability density function of X at x and
PX [x|y] to denote the value of the density function of X
conditional on Y = y at x. We write PX [x] and PX [x|y] as
P[x] and P[x|y] when there is no ambiguity. For any func-
tion f , we use Õ(f) to denote the class O(f) · logO(1)(f).

Problem Setup We study the setting of planning in
POLDS. At each time step t = 1, ..., T , the environment
is in some latent state xt ∈ X ⊆ Rd. The agent receives
a partial observation ot ∈ O ⊆ Rm of the latent state xt
and takes action ût ∈ U ⊆ Rk based on the observations
in the current time step and previous time steps, o0:t. The
action causes the environment to change to the new state
xt+1 based on a known transition kernel. Finally, in time
step T , we receive a reward R, which is a function of the
past states and actions.

To put it formally, in our setting, at t = 0, we start from
a known state x0, which can be observed exactly. For t =
0, ..., T − 1, we have the state updated as

xt+1 = At · xt +Bt · ût + ξt. (1)

ût is the action we take at time t.At ∈ Rd×d andBt ∈ Rd×k

are transition matrices on the state xt and the action ût,
respectively, at time t. We assume that the matrices At and

Algorithm 1 Particle Filtering for Sequential Planning

Input: starting state x0, number of particles N , number
of time steps T .
for i = 1→ N do

Initialize particle weight w(i)
0 = 1.

Initialize particle state x(i)0 = x0.
end for
for t = 0→ T − 1 do

Estimate latent state ŷt ←
∑N

i=1 w
(i)
t x

(i)
t∑N

i=1 w
(i)
t

.

Take action ût = g(ŷt) and observe ot+1.
for i = 1→ N do

Generate random noise ξ(i)t ∼ µt(·).
Update particle state x(i)t+1 = Atx

(i)
t +Btût+ξ

(i)
t .

Update particle weight w
(i)
t+1 ← w

(i)
t ·

ηt+1(ot+1 − Ct+1x
(i)
t+1).

end for
end for

Bt are known. ξt ∈ Rd is some transition noise following a
known distribution ξt ∼ µt(·). The action ût is taken based
on the observations o1:t of the current state and the past
states.

At state xt, the observation ot is given by

ot = Ct · xt + ζt. (2)

where Ct ∈ Rm×d is a known transition matrix and ζt is
some noise following a known distribution ηt(·).

In our setting, we are given a policy g : X → U , which is
a function on the state space. However, since we only have
access to a partial observation of the latent state xt, we can
only infer the state xt based on the observations o1, ..., ot.
We use particle filtering to do the latent state inference,
which is listed in Algorithm 1.

Particle filtering estimates the latent state by simulating a
group of particles using the known transition kernel. Those
particles update their states using the same actions as we
take in the real process. Then, the state estimation is given
by a weighted average of the simulated states of the particles.
The weight of each particle is proportional to the likelihood
of the states of that particle given the observations.

Formally, we simulate N particles, x(1)0:T , ..., x
(N)
0:T ∈ X T .

All N particles start from the same starting state x0. In time
step t, the particles are updated according to

x
(i)
t+1 = At · x(i)t +Bt · ût + ξ

(i)
t . (3)

The action ût is the same as the action taken in step t of the
real process x0:T . ξ(i)t are sampled independently according
to the noise distribution µt(·).

Next, we show how, at time t, we use the simulated particles
x
(1)
0:t , ..., x

(N)
0:t to estimate the latent state xt. The weight of
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particle i at time t > 0, w(i)
t , is given by

w
(i)
t =

t∏
s=1

P
[
os | x(i)s

]
=

t∏
s=1

ηs

(
os − Cs · x(i)s

)
.

The weight w(i)
t of the i-th particle measures how likely

the true latent states, x0:t, are the states of the particle i,
x
(i)
0:t, given the observations o1:t. We give higher weights to

particles with more likely states. Then, the estimated state
ŷt is a weighted average of the states of the particles,

ŷt =

∑N
i=1 w

(i)
t x

(i)
t∑N

i=1 w
(i)
t

.

We note that if an infinite amount of particles are simulated,
the estimated state would be the posterior mean of the state
given the observations. Given the estimated state ŷt, we take
action ût to be

ût = g(ŷt).

Note we study policies that only depend on the estimated
hidden state, which follows the separation principle in
stochastic control theory. This class of policies is optimal
for certain settings [Bertsekas et al., 1995].

To study the efficiency of the particle filtering algorithm,
we compare the approximate process, x0:t, described above,
with an ideal process, x∗0:t, which are generated via exact
inference. The ideal process starts from x∗0 = x0. For t =
0, ..., T − 1, the ideal process is updated as

x∗t+1 = At · x∗t +Bt · u∗t + ξt, (4)

The action u∗t is taken based on exact inference, which will
be defined formally later. Similarly, the observation o∗t for
t = 1, ..., T , is generated according to

o∗t = Ct · x∗t + ζt, (5)

The transition matrices At, Bt and Ct are the same as those
used in generating the approximate process. To make sure
that the two processes can be fairly compared, we let the
transition noise ξt and the observation noise ζt in the ideal
process be the same as those in the approximate process.

Now, we show how the action u∗t is chosen in the ideal pro-
cess. We assume that in the ideal process, we can compute
the exact posterior mean of the state x∗t given the observa-
tions o∗1:t. We estimate the state x∗t as

ỹt =

∫
x′1:t∈X t

∏t
s=1 P [o∗s | x′s]x′tdρt(x′1:t)∫

x′1:t∈X t

∏t
s=1 P [o∗s | x′s] dρt(x′1:t)

=

∫
x′1:t∈X t

∏t
s=1 ηs (o∗s − Cs · x′s)x′tdρt(x′1:t)∫

x′1:t∈X t

∏t
s=1 ηs (o∗s − Cs · x′s) dρt(x′1:t)

.

where ρt is the distribution of x′1,t given actions u∗0:t−1 and
starting state x0. Given the estimation ỹt, the action u∗t is
taken to be u∗t = g(ỹt).

In this paper, we study how accurately particle filtering can
approximate the exact inference and how the error of particle
filtering can affect the long-run reward where the reward
function rT : X T × UT → R maps some states x1:T and
actions u0:T−1 in the past T time steps to a reward value in
R. In particular, we study the number of particles needed
so that the reward at time step T , rT (x1:t, û0:T−1), of the
approximate process is close to that of the ideal process,
rT (x∗1:t, u

∗
0:T−1).

3 MAIN RESULTS

In this section, we present our main theoretical results. First,
we introduce some necessary regularity conditions. Next,
we discuss our results for general non-linear policies. Lastly,
we focus on linear policies and give more refined results.

3.1 REGULARITY ASSUMPTIONS

To formally state our results, we first describe our assump-
tions.

Assumption 3.1. The transition noise ξ ∈ Rd is sub-
Gaussian with parameter 1/m, i.e.,

E
[
eu
>(ξ−E ξ)

]
≤ e‖u‖

2/(2m), for any vector u ∈ Rd.

Assumption 3.1 is standard regularity condition on transi-
tion noise. Without a regularity condition, the noise can
arbitrarily large.

Assumption 3.2. The reward function rT is Lr-Lipschitz,
i.e.,

|rT (x1:t, u0:t−1)− rT (x′1:t, u
′
0:t−1)|

≤ Lr ·

(
T∑
t=1

‖xt − x′t‖+

T−1∑
t=0

‖ut − u′t‖

)
,

for all x1:T , x′1:T ∈ X T and u0:T−1, u′0:T−1 ∈ UT .

Assumption 3.2 is regularity condition imposed on the re-
ward condition. Note since we are considering planning
based on approximate inference, we cannot hope to choose
the same action as the one based on the exact inference.
Similarly, we cannot hope to have same sequence of hidden
states based on particle filtering as that based on the exact
inference. Assumption 3.2 bounds how much small devia-
tion on the action and hidden state sequence will affect the
reward.
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3.2 MAIN RESULT FOR GENERAL NON-LINEAR
POLICIES

Now we discuss our result on non-linear policies. We need
some assumptions about the dynamical system and the pol-
icy to characterize the stability of the system. Such assump-
tions are necessary for control problems. For the non-linear
policy, we consider the following assumption.

Assumption 3.3. The policy g is Lg-Lipschitz. i.e., for all
x, x′ ∈ X , ‖g(x)−g(x′)‖ ≤ Lg ·‖x−x′‖, for all 0 ≤ t1 <
t2 < T ,

∥∥Πt2
s=t1As

∥∥
op
≤ Caρt2−t1a , and for all 0 ≤ t < T ,

‖Bt‖op ≤ Cb for some Lg, Ca, ρa, Cb > 0.

Assumption 3.3 imposes a Lipschitz condition on the pol-
icy g. Note for this assumption, the policy g can be non-
linear. The condition

∥∥Πt2
s=t1As

∥∥
op
≤ Caρt2−t1a describes

the growth rate of the dynamical system. Such assumption
is standard in the control literature. The bound on ‖Bt‖op
ensures a small deviation on the action will not alter the
system by much.

Our main result is the following.

Theorem 3.4. Given any accuracy ε ∈ (0, 1/2), failure
probability δ > 0 and number of time steps T ≥ 1. Under
Assumptions 3.1, 3.2 and 3.3, let

Σ(T )
a = 1 + Ca

T−2∑
s=0

ρsa and Σ
(T−1)
ab =

T−2∑
s=0

(Ca + CbLg)
s.

Let

∆T = LrLgΣ
(T )
a

(
1 + CbΣ

(T )
a

)(
1 + LgCbΣ

(T−1)
ab

)
and

p = PO1:T
[o1:T | û0:t−1, x0] .

For any δ > 0, it is enough to use

N = Õ(T 2∆2
T dm

−1ε−2p−1)

particles so that with probability at least 1− δ,

|rT (x1:T , û0:T−1)− rT (x∗1:T , u
∗
0:T−1)| ≤ ε.

Theorem 3.4 shows as long as the number of particles scales
polynomially with p, parameters in Assumptions 3.1 and 3.2
and a quantity ∆T defined by the parameters in Assump-
tion 3.3, the reward collected by particle filtering–based
planning is close to that of the ideal process. Here, p is the
likelihood of the observations o1:T conditional on the initial
state and the actions. When the space of the observation is
discrete, p is the probability of seeing the observations. We
note that in some cases, it is possible that 1/p grows expo-
nentially as the number of time steps T grows. However, we
are able to show it is necessary for the number of particles
to depend on 1/p. The lower bound on the dependence on

1/p is stated in Section 4. To our knowledge, this is the first
non-asymptotic particle complexity analysis for planning
problems.

To prove the theorem, we first show the number of particles
needed so that the particle can approximate the latent state,
especially the transition noise, accurately. Then, we show
how the error in each time step can accumulate through the
planning process. We show the proof ideas in Section 3.4
and defer the complete proof to Appendix.

Our bound depends on ∆T which in turn depends on two
quantities Σ

(T )
a and Σ

(T−1)
ab which together describe the

growth rate of the system, i.e., how stable the system is.
To better illustrate Theorem 3.4, we consider the benign
scenario where the system is stable in the sense that ρa ≤ 1
and Ca + CbLg ≤ 1. Stable systems are widely studied in
the control literature. The following corollary shows if the
system is stable, then the number of particles only needs to
scale polynomially with all parameters.

Corollary 3.5. In the same setup as Theorem 3.4, suppose
ρa ≤ 1 and Ca + CbLg ≤ 1. Then it is enough to use

N = Õ(T 6dm−1L2
rL

2
g(1 + C2

bT
2)ε−2p−1)

particles so that for any δ > 0, with probability at least
1− δ, |rT (x1:T , û0:T−1)− rT (x∗1:T , u

∗
0:T−1)| ≤ ε.

3.3 MAIN RESULT FOR LINEAR POLICIES

In this section, we focus on the linear policy, i.e., g(x) = Gx
for some matrix G. Linear policy is a popular class and is
widely studied in the control and online learning literature.
We make the following assumption about the policy and the
system.

Assumption 3.6. ‖G‖op ≤ Lg, for all 0 ≤ t1 < t2 < T ,∥∥Πt2
s=t1 (As +BsG)

∥∥
op
≤ Cabρ

t2−t1
ab ,

∥∥Πt2
s=t1As

∥∥
op
≤

Caρ
t2−t1
a , and for all 0 ≤ t < T , ‖Bt‖op ≤ Cb, and

‖BtG‖op ≤ Cbg for some Lg, Cab, ρab, Ca, ρa, Cb, Cbg >
0.

Assumption 3.6 can be viewed as a fine-grained ver-
sion of Assumption 3.2. Recall that Theorem 3.4
depends on (Ca + CbLg) which corresponds to the
condition

∥∥Πt2
s=t1 (As +BsG)

∥∥
op

≤ Cabρ
t2−t1
ab .

Note (Ca + CbLg)
t2−t1 is always an upper bound

of
∥∥Πt2

s=t1 (As +BsG)
∥∥
op

, so the condition∥∥Πt2
s=t1 (As +BsG)

∥∥
op
≤ Cabρ

t2−t1
ab is a more re-

fined characterization. We remark that this condition is
also a common one in the control literature. Similarly,
Theorem 3.4 depends on LgCb, which corresponds to the
condition ‖BtG‖op ≤ Cbg in Assumption 3.6. Cbg is a
more refined characterization of ‖BtG‖op than LgCb. Now
we present our general theoretical result.
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Theorem 3.7. For any accuracy ε ∈ (0, 1/2), failure
probability δ > 0 and number of time steps T ≥ 1.
Under Assumption 3.1, 3.2 and 3.6, let Σ

(T )
a = 1 +

Ca
∑T−2
s=0 ρ

s
a and Σ̄

(T−1)
ab = 1 +Cab

∑T−3
s=0 ρ

s
ab. Let ∆T =

LrLgΣ
(T )
a

(
1 + CbΣ

(T )
a

)(
1 + CbgΣ̄

(T−1)
ab

)
. For any δ >

0, it is enough to use

N = Õ(T 2∆2
T dm

−1ε−2p−1)

particles so that with probability at least 1− δ,

|rT (x1:T , û0:T−1)− rT (x∗1:T , u
∗
0:T−1)| ≤ ε.

Similar to Theorem 3.4, Theorem 3.7 also guarantees that
with a sufficiently large number of particles, the reward
collected by particle filtering–based planning is close to that
of the ideal process. The main difference is that Theorem 3.7
depends on parameters in Assumption 3.6, which are finer-
grained characterizations of the process. This requires some
new proof components that exploit the linearity of the policy.

Again, to better illustrate our result, we provide the follow-
ing corollary for the stable system.

Corollary 3.8. In the same setup as Theorem 3.4, suppose
ρa ≤ 1 and ρab ≤ 1. Then it is enough to use

N = Õ
(
T 2dm−1L2

rL
2
gε
−2p−1(1 + C2

aT
2)

(1 + C2
b + C2

bC
2
aT

2)(1 + C2
bg + C2

bgC
2
ab)
)

particles so that for any δ > 0, with probability at least
1− δ,

|rT (x1:T , û0:T−1)− rT (x∗1:T , u
∗
0:T−1)| ≤ ε.

The conditions ρa ≤ 1, ρab ≤ 1 appeared in many studies
on linear systems. Corollary 3.8 guarantees that for these
systems, the number of particles only needs to scale polyno-
mially with all parameters.

3.4 PROOF OF MAIN RESULTS

In this section, we state the proof idea of our main results,
Theorem 3.4 and Theorem 3.7. We defer a complete version
of the proof to Appendix.

We first note that at time t, since we know the initial state
x0, the transition matrices A0:t−1 and B0:t−1 and the past
actions û0, ..., ût−1, estimating the state xt is equivalent to
estimating ξ0, ..., ξt−1.

Lemma 3.9. For any t ∈ [T ], we can write the state xt as

xt =

t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξs +Bs · ûs) +

t−1∏
s=0

As · x0, (6)

the state x∗t as

x∗t =

t−1∑
s=0

t−1∏
s′=s+1

As′ · (ξs +Bs · u∗s) +

t−1∏
s=0

As · x0, (7)

and for particle i ∈ [N ],

x
(i)
t =

t−1∑
s=0

t−1∏
s′=s+1

As′ ·
(
ξ(i)s +Bs · ûs

)
+

t−1∏
s=0

As · x0.

(8)

Proof. (6) follows directly from applying the definition of
the process given in (1) recursively. Similarly, (7) and (8)
can be obtained by the definitions (4) and (3).

Recall from Section 2 that the estimation ŷt is given by a
weighted average of the states of the simulated particles,

ŷt =

∑N
i=1 w

(i)
t x

(i)
t∑N

i=1 w
(i)
t

. (9)

and the estimation ỹt is given by the posterior mean of x∗t
given observations o0:t,

ỹt =

∫
x′1:t∈X t

∏t
s=1 P [o∗s | x′s]x′tdρt(x′1:t)∫

x′1:t∈X t

∏t
s=1 P [o∗s | x′s] dρt(x′1:t)

. (10)

By Lemma 3.9, we know that to estimate xt and x∗t , it is
enough to estimate ξ0:t−1. We can further show that the es-
timators ŷt and ỹt can be written as a function of estimators
ξ̂t,0:t−1 and ξ̃t,0:t−1, past actions û0:t−1 and u∗0:t−1, and the
initial state x0. The estimator ξ̂t,0:t−1 is given by a weighted
average of the noise of the particles, ξ(1)0:t−1, ..., ξ

(N)
0:t−1, sim-

ilar to (9). The estimator ξ̃t,0:t−1 is given by the posterior
mean of the noise given observations, similar to (10). Since
û0:t−1 and u0:t−1 are determined by ŷ0:t−1 and ỹt−1, to
show that ŷt is close to ỹt, it is enough to show that ξ̂s,0:s−1
is close to ξ̃s,0:s−1 in all rounds s = 1, ..., t − 1. We can
show the following concentration bound.

Lemma 3.10 (Particle Concentration). Let M :=√
d
m (1 + 2

√
log β′/d+ 2 log β′/d) for some β′ > 1. At

time t ∈ [T ], for each s = 0, .., t − 1, we have for any
β ≤ 1

2 ,

‖ξ̂t,s − ξ̃t,s‖ ≤ 4βM,

holds with probability at least

1− (d+ 1) exp(−Nβ2γt/3)−N exp(−β′).

Lemma 3.10 studied how the particle approximation con-
centrates in one time step. We next discuss how the error of
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approximation in one time step can affect the actions in the
future and further affect the long-run reward of the process.

From Lemma 3.9, it is easy to see that the distance between
xt and x∗t is determined by the distance between actions
in the past time steps, û0:t−1 and u∗0:t−1. It is easy to see
that the distance between xt and x∗t is determined by the
distance between actions in the past time steps, û0:t−1 and
u∗0:t−1.

Lemma 3.11. At time t,

xt − x∗t =

t−1∑
s=0

(
t−1∏

s′=s+1

As′

)
Bs (ûs − u∗s) .

Proof. The proof follows directly from the problem setup.

Then, to bound the distance between the states xt and x∗t ,
it suffices to bound the distance between the actions û0:t−1
and u∗0:t−1. We show the bound in Lemma 3.12.

Lemma 3.12. Assume that max0≤s<t≤T ‖ξ̂t,s − ξ̃t,s‖ = ε.
At time t, we can show the following bounds on ‖ût − u∗t ‖.

• Under Assumptions 3.1, 3.2 and 3.3, for t ∈ [T ], let
Σ

(t)
a = 1 + Ca

∑t−2
s=0 ρ

s
a and Σ

(t−1)
ab =

∑t−2
s=0(Ca +

CbLg)
s. Then, we have

‖ût − u∗t ‖ ≤LgΣ(t)
a

(
1 + LgCbΣ

(t−1)
ab

)
· ε.

• Under Assumptions 3.1, 3.2 and 3.6, for t ∈ [T ],
let Σ

(t)
a = 1 + Ca

∑t−2
s=0 ρ

s
a and Σ̄

(t−1)
ab = 1 +

Cab
∑t−3
s=0 ρ

s
ab. Then, we have

‖ût − u∗t ‖ ≤ LgΣ(t)
a

(
1 + CbgΣ̄

(t−1)
ab

)
· ε.

Finally, we use Lemma 3.12 to prove our main results Theo-
rem 3.4 and Theorem 3.7.

Proof of Theorem 3.4 and Theorem 3.7. We state the proof
for the Lipschitz g case here. The proof for linear g follows
the same steps. We first show the number of particles needed
so that the estimation of the noise, ξt, in a single round is
accurate. If

N = Ω(β−2p−1 log(dT/δ)), (11)

then

(d+ 1) · exp(−Nβ2γt/3) ≤ (d+ 1) · exp(−Nβ2p/3)

≤ δ/(2T 2),

where the first inequality follows from

γt = PO∗1:t [o
∗
1:t|u∗0:t, x0] = PO1:t

[o1:t|û0:t, x0] ≥ p.

Let M :=
√

d
m (1 + 2

√
log β′/d+ 2 log β′/d). If we

choose β′ = log(2T 2N/δ) and β = ε/(4MT ), by
Lemma 3.10, with success probability at least

1−
T∑
t=1

t−1∑
s=0

δ/(2T 2)−
T∑
t=1

t−1∑
s=0

δ/(2T 2) ≥ 1− δ,

we have for all time step t = 1, ..., T and s = 0, .., t− 1,

‖ξ̂t,s − ξ̃t,s‖ ≤ 4βM = ε/T.

Next, we bound the distance between actions in the two
processes. By Lemma 3.12, for any t = 1, ..., T ,

‖ût − u∗t ‖ ≤ LgΣ(t)
a

(
1 + LgCbΣ

(t−1)
ab

)
· ε
T
. (12)

The second inequality follows from our assumption. By
Lemma 3.11 and our assumptions, we can further bound the
distance between the states of the two processes as

‖xt − x∗t ‖ =

∥∥∥∥∥
t−1∑
s=0

(
t−1∏

s′=s+1

As′

)
Bs(ûs − u∗s)

∥∥∥∥∥
≤ Cb

(∥∥ût−1 − u∗t−1∥∥+ Ca

t−2∑
s=0

ρsa ‖ûs − u∗s‖

)
≤ CbΣ(t)

a · LgΣ(t)
a

(
1 + LgCbΣ

(t−1)
ab

)
· ε
T
,

(13)

Thus, combining (12) and (13), we can get for any Lr-
Lipschitz reward function rT ,

rT (x1:T , û0:T−1)− rT (x∗1:T , u
∗
0:T−1)

≤
T∑
t=1

Lr‖xt − x∗t ‖+

T∑
t=1

Lr‖ût−1 − u∗t−1‖

≤ LrLgΣ(T )
a

(
1 + CbΣ

(T )
a

)(
1 + LgCbΣ

(T−1)
ab

)
ε,

where the first step follows from rT is Lr-Lipschitz and the
second step follows from (12) and (13).

Plugging β2 = ε2/(16T 2M2) = Θ̃(ε2T−2d−1m) into
(11), the number of particles needed is

N = Õ(β−2p−1) = Õ(T 2dm−1ε−2p−1),

which completes the proof. Similarly, we can also show that
the number of particles needed for linear g so that

rT (x1:T , û0:T−1)− rT (x∗1:T , u
∗
0:T−1)

≤ LrLgΣ(T )
a

(
1 + CbΣ

(T )
a

)(
1 + CbgΣ̄

(T−1)
ab

)
ε

is
N = Õ(T 2dm−1ε−2p−1).
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4 LOWER BOUND

In this section, we show that Algorithm 1 has particle com-
plexity with at least a linear dependence on the inverse of
the likelihood of observation, 1/p. We note that it is possible
for 1/p to depend exponentially on the number of time step
T in some processes. However, we are able to show that it
is necessary for the particle complexity to depend on 1/p.
Precisely, in Theorem 3.7, we show that we need O(1/p)
particles to approximate the whole process well. We show
in this section that the upper bound O(1/p) is tight.

We consider the following process of dimension d = 1.
We start from the initial state x0 = 0. The total number of
time steps is T . At each time step t = 0, ..., T − 1, let the
transition matrices At = 1 and Bt = 0.

Let δ(·) be the standard Dirac Delta function such that
δ(x − a) = 0 for x 6= a and

∫ a+ε
a−ε δ(x − a)dx = 1 for

ε > 0. Then, let the density function of the transformation
noise ξt be given by

µt(ξ) =
1

2
δ(ξ − 1) +

1

2
δ(ξ + 1).

for t = 0, ..., T − 1. Finally, for all time steps t = 1, ..., T ,
let the observation matrix Ct = 1 and the observation noise
ζt be always 0, i.e., ηt(ζ) = δ(ζ).

Now, we consider the observation oT = T . From the way
we construct the process, it is clear that xt = t for all t =
1, ..., T . Then, we must have ξt = 1 for all t = 0, ..., T − 1.
Moreover, for the observation oT = T , p = P[o1:T |x0] =
2−T . We state this formally in Lemma 4.1.

Lemma 4.1. If oT = T , then xt = t for all t = 1, ..., T
and therefore ξt = 1 for all t = 0, ..., T − 1. Moreover, for
the observation oT = T , p = P[o1:T |x0] = 2−T .

Proof of Lemma 4.1. Since ζ1 = ... = ζT = 0, xt = ot for
all t = 1, ..., T .

Assume for contradiction that there exists some ξs < 0 for
some 0 < s < T . Then we have

xT ≤ T − 1 < T,

contradicting xT = T . Thus, we have xt = ot = t for all
t = 1, ..., T . Moreover,

p =

∫
ξ′0:T−1

P[o1:T |ξ′0:T−1, x0]dπT (ξ′0:T−1)

=

∫
ξ′0:T−1

T−1∏
t=0

ηt+1

(
t+ 1−

t∑
s=0

ξs

)
dπT (ξ′0:T−1)

= Pr[ξt > 0,∀0 ≤ t ≤ T − 1]

= 2−T .

The second step follows from the definition of our process.
The third step follows from

T−1∏
t=0

ηt+1

(
t+ 1−

t∑
s=0

ξs

)
= 0

if there exists some ξt < 0. The last step follows from
ξt > 0 with probability 1/2,

Next, we show that if we do not simulate enough particles,
then with high probability, there will not exist any particle
i ∈ [N ] that has ξ(i)t > 0 for all t = 1, ..., T . Then, all
particles will have weight w(i)

T = 0 at time step T .

Theorem 4.2. Suppose the number of simulated particles
N ≤ 1/(2kp) for some k > 1. For i ∈ [N ], let Ii be the
indicator random variable of the event that ξ(i)t > 0 for all

t = 1, ..., T . Then we have Pr
[∑N

i=1 Ii ≥ 1
]
≤ 1

k .

Proof of Theorem 4.2. Since for each i ∈ [N ], Ii = 0 with
probability 1 − 2−T = 1 − p and Ii = 1 with probability
2−T = p,

Pr

[
N∑
i=1

Ii ≥ 1

]
≤

N∑
i=1

Pr [Ii = 1] =
1

k
,

which completes the proof.

By Theorem 4.2, to avoid all the weights of particle going
to zero after T time steps with high probability, we need to
simulate at least Ω(1/p) particles.

5 CONCLUSION

This paper gives the first quantitative analysis of using parti-
cle filtering for planning over latent states. We also demon-
strate the conditions in our theorem are necessary. In the
following, we list some open problems for future study.

Optimal Particle Complexity A natural interesting theo-
retical problem is, under the assumptions in Section 3: what
is the minimal number of particles needed to find a near-
optimal planning policy? Note the standard particle filtering
algorithm (cf. Algorithm 1) is only one approach that uses
particles. One can design more advanced algorithms that op-
erate on these particles with smaller particle complexity. For
example, particle filtering resampling has shown to outper-
form standard particle filtering algorithm [Kitagawa, 1993],
and it is possible that this approach also admits theoretical
benefits. On the other hand, proving particle complexity
lower bound will also improve our understanding on meth-
ods based on particles in general. We believe designing an
algorithm that achieve optimal particle complexity will have
impact in both theory and practice.
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Learning with Particle Filtering Our work assumes the
probabilistic models of transition and emission are known.
Recently, a line of work used particle filtering in both train-
ing and planning phases [Karkus et al., 2018a, Jonschkowski
et al., 2018]. While we have analyzed the planning phase,
the analysis for training the probabilistic models is more
challenging. In this problem, one uses particle filtering to ex-
plore the state space and collect the data to train probabilistic
models. Characterizing the sample and particle complexity
together is an interesting direction to pursue.
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