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A INFERENCE

A.1 NUTS

We use the NUTS sampler implemented in NumPyro [Phan
et al., 2019, Bingham et al., 2019], which leverages JAX for
efficient hardware acceleration [Bradbury et al., 2020]. In
most of our experiments (see Sec. E for exceptions) we
run NUTS for 768 = 512 + 256 steps where the first
Nwarmup = 512 samples are for burn-in and (diagonal)
mass matrix adaptation (and thus discarded), and where
we retain every 16th sample among the final Npost = 256
samples (i.e. sample thinning), yielding a total of L = 16
approximate posterior samples. It is these L samples that
are then used to compute Eqns. (4), (5), (10). We also limit
the maximum tree depth in NUTS to 6.

We note that these choices are somewhat conservative, and
in many settings we would expect good results with fewer
samples. Indeed on the Branin test function, see Fig. 6, we
find a relatively marginal drop in performance when we
reduce the NUTS sampling budget as follows: i) reduce the
number of warmup samples from 512 to 128; ii) reduce the
number of post-warmup samples from 256 to 128; and iii)
reduce the total number of retained samples from 16 to 8.
We expect broadly similar results for many other problems.
See Sec. C for corresponding runtime results.

It is worth emphasizing that while SAASBO requires speci-
fying a few hyperparameters that control NUTS, these hy-
perparameters are purely computational in nature, i.e. they
have no effect on the SAAS function prior. Users simply
choose a value of L that meets their computational budget.
This is in contrast to e.g. the embedding dimension de that
is required by ALEBO and HeSBO: the value of de often
has significant effects on optimization performance.

To improve the geometry of the joint density defined by the
model—and thus make NUTS more efficient—we reparam-

*Equal contribution

eterize the prior in Eqn. (8) as follows:

[global shrinkage] τ ∼ HC(α) (12)
[reparameterized length scales] ρ̃i ∼ HC(1)

[effective length scales] ρi = τ × ρ̃i

where we note that the final equation is a deterministic
equality and HMC is performed in the coordinate system
defined by ρ̃i. Note that this sort of reparameterization can
be implemented in NumPyro using the deterministic
primitive.

We also note that it is possible to make SAASBO-NUTS
faster by means of the following modifications:

1. Warm-start mass adaptation with mass matrices from
previous iterations.

2. Instead of fitting a new SAAS GP at each iteration,
only fit every M iterations (say M = 5), and reuse
hyperparameter samples {ψ`} across M iterations of
SAASBO.

A.2 MAP

We run the Adam optimizer [Kingma and Ba, 2015] for
1500 steps and with a learning rate of 0.02 and β1 = 0.50
to maximize the log density

Us(ψs|τs) = log p(y|X, ψs) + log p(ψs|τs) (13)

w.r.t. ψs for S = 4 pre-selected values of τs: τs ∈
{1, 10−1, 10−2, 10−3}. This optimization is trivially opti-
mized across S.

For each s = 1, ..., S we then compute the leave-one-out
predictive log likelihood using the mean and variance func-
tions given in Eqns. (4)-(5). We then choose the value of
s that maximizes this predictive log likelihood and use the
corresponding kernel hyperparameter ψs to compute the
expected improvement in Eqn. (10).
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Figure 6: We depict how SAASBO-NUTS per-
forms on Branin as we reduce the sampling
budget (Nwarmup, Npost, L) = (512, 256, 16) to
(Nwarmup, Npost, L) = (128, 128, 8). We compare
performance w.r.t. the best minimum found (the mean
is depicted by a thick line and shaded bands denote
standard errors). Each curve corresponds to 60 independent
replications of Algorithm 1.

A.3 NO DISCRETE LATENT VARIABLES

As discussed briefly in the main text, it is important that
the SAAS prior defined in Sec. 4.1 does not include any
discrete latent variables. Indeed a natural alternative to our
model would introduce D binary-valued latent variables
that control whether or not a given dimension is relevant to
modeling fobj. However, inference in any such model can
be very challenging, as it requires exploring an extremely
large discrete space of size 2D. Our model can be under-
stood as a continuous relaxation of such an approach. This
is a significant advantage since it means we can leverage
gradient information to efficiently explore the posterior. In-
deed, the structure of our sparsity-inducing prior closely
mirrors the justly famous Horseshoe prior [Carvalho et al.,
2009], which is a popular prior for Sparse Bayesian linear
regression. We note that in contrast to the linear regression
setting of the Horseshoe prior, our sparsity-inducing prior
governs inverse squared length scales in a non-linear kernel
and not variances. While we expect that any prior that con-
centrates ρi at zero can exhibit good empirical performance
in the setting of high-dimensional BO, this raises the impor-
tant question whether distributional assumptions other than
those in Eqn. (8) may be better suited to governing our prior
expectations about ρi. Making a careful investigation of this
point is an interesting direction for future work.

B EXPECTED IMPROVEMENT
MAXIMIZATION

We first form a scrambled Sobol sequence x1:Q (see
e.g. [Owen, 2003]) of length Q = 5000 in the D-
dimensional domain D. We then compute the expected im-
provement in Eqn. (10) in parallel for each point in the Sobol
sequence. We then choose the top K = 3 points in x1:Q,
that yield the largest EIs. For each of these K approximate
maximizers we run L-BFGS [Zhu et al., 1997] initialized
with the approximate maximizer and using the implementa-
tion provided by Scipy (in particular fmin_l_bfgs_b)
to obtain the final query point xnext, which (approximately)
maximizes Eqn. (10). We limit fmin_l_bfgs_b to use a
maximum of 100 function evaluations.

C RUNTIME EXPERIMENT

We measure the runtime of SAASBO as well as each base-
line method on the Branin test problem. See Table 1 for the
results. We record runtimes for both the default SAASBO-
NUTS settings described in Sec. A.1 as well as one with a
reduced NUTS sampling budget. While SAASBO requires

Table 1: Average runtime per iteration on the Branin
test function embedded in a 100-dimensional space. Each
method uses m = 10 initial points and a total of 50 function
evaluations. Runtimes are obtained using a 2.4 GHz 8-Core
Intel Core i9 CPU outfitted with 32 GB of RAM.

Method Time / iteration
SAASBO (default) 26.51 seconds

SAASBO (128-128-8) 19.21 seconds
TuRBO 1.52 seconds
SMAC 12.12 seconds
EBO 128.10 seconds

ALEBO (de = 5) 4.34 seconds
ALEBO (de = 10) 11.91 seconds
HeSBO (de = 5) 0.70 seconds

HeSBO (de = 10) 1.51 seconds
CMA-ES < 0.1 seconds

Sobol < 0.01 seconds

more time per iteration than other methods such as TuRBO
and HeSBO, the overhead is relatively moderate in the set-
ting where the black-box function fobj is very expensive
to evaluate. We note that after reducing the NUTS sam-
pling budget to (Nwarmup, Npost, L) = (128, 128, 8) about
75% of the runtime is devoted to EI optimization. Since our
current implementation executes K = 3 runs of L-BFGS
serially, this runtime could be reduced further by executing
L-BFGS in parallel.



D ADDITIONAL FIGURES AND
EXPERIMENTS

D.1 MODEL FITTING

In Fig. 7 we reproduce the experiment described in Sec. 5.1,
with the difference that we replace the RBF kernel with a
Matérn-5/2 kernel.

200 300 400 500 600
True value

200

300

400

500

600

P
re

d
ic

te
d

va
lu

e

GP-MLE
Vehicle Design (D = 124)

200 300 400 500 600
True value

200

300

400

500

600

P
re

d
ic

te
d

va
lu

e

GP-NUTS-Dense
Vehicle Design (D = 124)

200 300 400 500 600
True value

200

300

400

500

600

P
re

d
ic

te
d

va
lu

e

GP-NUTS-SAAS
Vehicle Design (D = 124)

0.0 0.5 1.0
True value

0.0

0.5

1.0

P
re

d
ic

te
d

va
lu

e

GP-MLE
SVM (D = 388)

0.0 0.5 1.0
True value

0.0

0.5

1.0

P
re

d
ic

te
d

va
lu

e

GP-NUTS-Dense
SVM (D = 388)

0.0 0.5 1.0
True value

0.0

0.5

1.0

P
re

d
ic

te
d

va
lu

e

GP-NUTS-SAAS
SVM (D = 388)

Figure 7: This figure is an exact reproduction of Fig. 1 in
the main text apart from the use of a Matérn-5/2 kernel
instead of a RBF kernel. We compare: (left) a GP fit with
MLE; (middle) a GP with weak priors fit with NUTS; and
(right) a GP with a SAAS prior (this paper; see Eqn. (8))
fit with NUTS. For the vehicle design problem we use 100
training points and for the SVM problem we use 50 training
points. We use 100 test points for both problems. Only
SAAS provides a good fit. In each figure mean predictions
are depicted with dots and bars denote 95% confidence
intervals.

We note that the qualitative behavior in Fig. 7 matches the
behavior in Fig. 1. In particular, only the sparsity-inducing
SAAS function prior provides a good fit. This emphasizes
that the potential for drastic overfitting that arises when fit-
ting a non-sparse GP in high dimensions is fundamental and
is not ameliorated by using a different kernel. In particular
the fact that the Matérn-5/2 kernel decays less rapidly at
large distances as compared to the RBF kernel (quadratically
instead of exponentially) does not prevent the non-sparse
models from yielding essentially trivial predictions across
most of the domain D.

D.2 SVM RELEVANCE PLOTS

In Fig. 8 we explore the relevant subspace identified by
SAASBO during the course of optimization of the SVM
problem discussed in Sec. 5.6. We see that the three most
important hyperparameters, namely the regularization hyper-

parameters, are consistently found more or less immediately
once the initial Sobol phase of Algorithm 1 is over. This
explains the rapid early progress that SAASBO makes in
Fig. 4 during optimization. We note that the 4th most rele-
vant dimension turns out to be a length scale for a patient
ID feature, which makes sense given the importance of this
feature to the regression problem.
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Figure 8: Left: We depict the mean number of regular-
ization hyperparameters that have been ‘found’ in the
SVM problem, where a regularization hyperparameter
is ‘found’ if its corresponding PosteriorMedian(ρk) is
among the three largest {PosteriorMedian(ρi)}Di=1. Note
that there are three regularization hyperparameters in to-
tal. Right: We depict the mean effective subspace dimen-
sion, defined to be the number of dimensions for which
PosteriorMedian(ρk) > ξ where ξ ∈ {0.1, 0.5} is an ar-
bitrary cutoff. Means are averages across 30 independent
replications.

D.3 SVM ABLATION STUDY

In Fig. 9 we depict results from an ablation study of
SAASBO in the context of the SVM problem. First, as a
companion to Fig. 1 and Fig. 7, we compare the BO perfor-
mance of the SAAS function prior to a non-sparse function
prior that places weak priors on the length scales. As we
would expect from Fig. 1 and Fig. 7, the resulting BO per-
formance is very poor for the non-sparse prior. Second, we
also compare the default RBF kernel to a Matérn-5/2 kernel.
We find that, at least on this problem, both kernels lead to
similar BO performance.

D.4 ROTATED HARTMANN

In this experiment we study whether the axis-aligned as-
sumption in SAAS leads to degraded performance on non-
axis-aligned objective functions. In particular, we con-
sider the Hartmann function fhart for d = 6 embedded
in D = 100 dimensions. Given a projection dimension-
ality dp ≥ d, we generate a random linear projection
Pdp ∈ Rd×dp where [Pdp ]ij ∼ N (0, 1/dp). The task is
to optimize f̃(x) = fhart(Pdp

x1:dp
− z)) where x ∈ [0, 1]D
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Figure 9: We compare the BO performance of the SAAS
function prior to a non-sparse function prior on the SVM
hyperparameter tuning problem (D = 388). In addition
we compare the RBF kernel to the Matérn-5/2 kernel. We
do 15 independent replications for each method, except
for SAASBO-RBF and Sobol, for which we reproduce the
same 30 replications from the main text. Left: For each
method we depict the mean value of the best minimimum
found at a given iteration. Right: For each method we depict
the distribution over the final approximate minimum ymin

encoded as a violin plot, with horizontal bars corresponding
to 5%, 50%, and 95% quantiles.

and z ∈ Rd. For a given Pdp
, z is a vector in [0, 1]d that

satisfies f̃([x∗;w]) = fhart(x
∗),∀w ∈ [0, 1]D−d where x∗

is the global optimum of the Hartmann function. The transla-
tion z guarantees that the global optimum value is attainable
in the domain. We consider dp ∈ {6, 18, 30} and generate a
random Pdp and z for each embedded dimensionality; these
are then used for all replications. EBO is excluded from this
study, as it performed worse than Sobol in Fig. 3.

The results are shown in Fig. 10. We see that SAASBO
outperforms the other methods even though the function
has been rotated, thus straining the axis-aligned assumption.
Despite the rotation, SAASBO quickly identifies the most
important parameters in the rotated space. We also notice
that the worst-case performance of SAASBO is better than
for the other methods across all projection dimensionalities
considered.

E ADDITIONAL EXPERIMENTAL
DETAILS

Apart from the experiment in Sec. 5.2 that is depicted in
Fig. 2 we use α = 0.1 in all experiments. Apart from Fig. 7
and Fig. 9, we use an RBF kernel in all experiments.

E.1 MODEL FIT EXPERIMENT

In the model fit experiment in Sec. 5.1 we take data collected
from two different runs of SAASBO in D = 100. We use

one run as training data and the second run as test data, each
with N = 100 datapoints. To construct datasets in D = 30
dimensions we include the 6 relevant dimensions as well
as 24 randomly chosen redundant dimensions and drop all
remaining dimensions.

E.2 INFERENCE AND HYPERPARAMETER
COMPARISON EXPERIMENT

For the experiment in Sec. 5.2 that is depicted in Fig. 2
we initialize SAASBO with m = 10 points from a Sobol
sequence.

E.3 BASELINES

We compare SAASBO to ALEBO, CMA-ES, EBO, HeSBO,
SMAC, Sobol, and TuRBO. For ALEBO and HeSBO we
use the implementations in BoTorch [Balandat et al., 2020]
with the same settings that were used by [Letham et al.,
2020]. We consider embeddings of dimensionality de = 5
and de = 10 on the synthetic problems, which is similar
to the de = d and de = 2d heuristics that were considered
in [Nayebi et al., 2019] as well as [Letham et al., 2020].
As the true active dimensionality d of fobj is unknown, we
do not allow any method to explicitly use this additional
information. For the three real-world experiments, de = 5
does not work well on any problem so we instead report
results for de = 10 and de = 20.

For CMA-ES we use the pycma1 implementation. CMA-
ES is initialized using a random point in the domain and
uses the default initial step-size of 0.25. Recall that the
domain is normalized to [0, 1]D for all problems. We run
EBO using the reference implementation by the authors2

with the default settings. EBO requires knowing the value
of the function at the global optimum. Similarly to [Letham
et al., 2020] we provide this value to EBO for all problems,
but note that EBO still performs poorly on all problems
apart from Branin and SVM.

Our comparison to SMAC uses SMAC4HPO, which is im-
plemented in SMAC33. On all problems we run SMAC in
deterministic mode, as all problems considered in this paper
are noise-free. For Sobol we use the SobolEngine imple-
mentation in PyTorch. Finally, we compare to TuRBO with
a single trust region due to the limited evaluation budget;
we use the implementation provided by the authors4.

1https://github.com/CMA-ES/pycma
2https://github.com/zi-w/

Ensemble-Bayesian-Optimization
3https://github.com/automl/SMAC3
4https://github.com/uber-research/TuRBO

https://github.com/CMA-ES/pycma
https://github.com/zi-w/Ensemble-Bayesian-Optimization
https://github.com/zi-w/Ensemble-Bayesian-Optimization
https://github.com/automl/SMAC3
https://github.com/uber-research/TuRBO
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Figure 10: We consider a rotated version of the Hartmann function with d = 6. We generate random linear projection
matrices Pdp for different projection dimensionalities dp ∈ {6, 18, 30} and optimize the resulting rotated function. SAASBO
outperforms the other methods and is able to quickly identify the most important parameters in the rotated coordinate
system.

E.4 SYNTHETIC PROBLEMS

We consider three standard synthetic functions from the
optimization literature. Branin is a 2-dimensional function
that we embed in a 100-dimensional space. We consider the
standard domain [−5, 10]× [0, 15] before normalizing the
domain to [0, 1]100. For Hartmann, we consider the d = 6
version on the domain [0, 1]6 before embedding it in a 100-
dimensional space. For Rosenbrock, we use d = 3 and the
domain [−2, 2]3, which we then embed and normalize so
that the full domain is [0, 1]100. Rosenbrock is a function
that is challenging to model, as there are large function
values at the boundary of the domain. For this reason all
methods minimize log(1 + fobj(x)). All methods except
for CMA-ES are initialized with m = 10 initial points
for Branin and Rosenbrock and m = 20 initial points for
Hartmann.

E.5 ROVER

We consider the rover trajectory optimization problem that
was also considered in Wang et al. [2018]. The goal is to
optimize the trajectory of a rover where this trajectory is
determined by fitting a B-spline to 30 waypoints in the 2D

plane. While the original problem had a pre-determined
origin and destination, the resulting B-spline was not con-
strained to start and end at these positions. To make the
problem easier, we force the B-spline to start and end at
these pre-determined positions. Additionally, we use 50
waypoints points, which results in a 100-dimensional opti-
mization problem. The reward function for the trajectory is
computed in the same way as in Wang et al. [2018], namely
we integrate over the trajectory penalizing collisions with
potential objects. On this problem we initialize all methods
except for CMA-ES with m = 20 initial points.

E.6 SVM

We randomly choose 5000 training and 5000 test points
from the 385-dimensional “CT slice”5 UCI dataset [Dua
and Graff, 2019]. We normalize the inputs and scalar output
so that e.g. the test RMSE of a trivial zero prediction is
given by 1.0. Our domain D then consists of 385 kernel
(log) length scales and 3 regularization hyperparameters for
a kernel support vector machine fit with Scikit-learn

5https://archive.ics.uci.edu/ml/datasets/
Relative+location+of+CT+slices+on+axial+
axis

https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis


[Pedregosa et al., 2011]. The log length scales are restricted
to the interval [−2, 2]. The 3 regularization hyperparame-
ters, which are likewise represented in log space, are denoted
epsilon, C, and gamma in the SVR class constructor. We
restrict epsilon to [0.01, 1.0], gamma to [0.1, 3.0], and
C to [0.01, 5.0]. Aftering fitting the SVM regressor to the
training data we compute the test RMSE (root mean squared
error). This test RMSE is the quantity we seek to mini-
mize. We use the default settings of SVR, which among
other things means the kernel used is a RBF kernel. On this
problem we initialize all methods except for CMA-ES with
m = 20 initial points.

E.7 MOPTA VEHICLE DESIGN

We consider the vehicle design problem MOPTA08 which is
a challenging 124-dimensional real-world high-dimensional
BO problem [Jones, 2008]. The goal in this problem is to
minimize the mass of a vehicle subject to 68 performance
constraints. The D = 124 design variables describe ma-
terials, gauges, and vehicle shape. While this problem is
originally formulated as a constrained optimization prob-
lem, we make it unconstrained by converting the constraints
into a soft constraint. In particular, we consider minimizing
fobj(x) + 10

∑68
i=1 max(0, ci(x)) where the 68 constraints

are of the form ci(x) ≤ 0. This penalty is chosen to be small
enough to have most of the signal come from fobj while
at the same time discouraging large constraint violations.
While it is worth emphasizing that there are constrained op-
timization methods that can explicitly handle the constraint,
this problem shows that SAASBO can quickly exploit struc-
ture in fobj even though there is no obvious low-dimensional
structure.

For SAASBO we use the NUTS settings described in
Sec. A.1 for t ≤ 150. To lower the runtime after itera-
tion t > 150 we collect 384 = 192 + 192 NUTS samples
and retain every 24th of the final 192 samples, resulting
in a total of L = 8 retained samples. We note while this
may hurt the accuracy of the inferred GP model, SAASBO
still performs very well on this problem and outperforms
other methods by a large margin. As we consider a larger
evaluation budget on this problem we initialize all methods
except for CMA-ES with m = 50 initial points.
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