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B GRAPHS

The first concept we will need is an extension to ADMGs
in which we allow some vertices to be ‘fixed’. We define
the siblings of a vertex to be its neighbours via bidirected
edges:

sibG(v) ≡ {w : v ↔ w in G}.

A CADMG G(V,W ) is an ADMG with a set of random
vertices V and fixed vertices W , with the property that
sibG(w) ∪ paG(w) = ∅ for every w ∈W . An example can
be found in Figure 10(b); note that we depict fixed vertices
with rectangular nodes, and random vertices with round
nodes. Random vertices in a CADMG correspond to ran-
dom variables, as in standard graphical models, while fixed
vertices correspond to variables that were fixed to a specific
value by some operation, such as conditioning or causal
interventions. The genealogical relations in Section 2 gen-
eralize in a straightforward way to CADMGs by ignoring
the distinction between V and W ; the only exception is that
districts are only defined for random vertices, so that the
districts in the graph partition only V , rather than V ∪W .

B.1 LATENT PROJECTION

The latent projection of a CADMG G(V ∪̇L,W ) to another
graph G′(V,W ) is given by following the rules:

• if there is a directed path from a ∈ V ∪W to b ∈ V ,
and any interior vertices are in L, then add a→ b;

• if there is a path between a, b ∈ V without any adjacent
arrowheads, and any interior vertices are in L, that
starts and ends with an arrow at a and b, then add
a↔ b.

As an example, consider the ADMG in Figure 8(a), with
variable h designated as latent. Then the projection of this
is given by the ADMG in Figure 8(b).
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Figure 8: (a) An ADMG in which h is latent; (b) its latent
projection over {a, b, c, d}.

B.2 ARID PROJECTION

Example B.1. The maximal arid projection of the ADMG
G in Figure 9(a) is given in 9(b). In the graph (a) we have
〈d〉G = {b, d}, so paG(〈d〉) = {a, b, c}. As a result, in (b)
all these vertices are parents of d. In addition, 〈{d, e}〉G =
{b, c, d, e} which is bidirected connected, so we add the
edge d↔ e into (b). All other adjacencies are as in (a).

C THE NESTED MARKOV MODEL

C.1 FIXING

A vertex r ∈ V is said to be fixable in a CADMG G(V,W )
if disG(r) ∩ deG(r) = ∅. For instance, the vertices a, c and
d are all fixable in the graph in Figure 10(a), but b is not
because d is both its descendant and its sibling.

For any v ∈ V , such that chG(v) = ∅, the Markov blanket
of v in a CADMG G is defined as

mbG(v) ≡ (disG(v) ∪ paG(disG(v))) \ {v};

that is, the set of vertices that are connected to v by paths
with an arrow at v and two arrowheads at each internal
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Figure 9: (a) An ADMG G which is neither maximal nor
arid; (b) its maximal arid projection.

vertex. We can generalize this definition to any vertex that
is childless within its own district.

Given a CADMG G(V,W ), and a fixable r ∈ V , the fixing
operation φr(G) yields a new CADMG G̃(V \{r},W ∪{r})
obtained from G(V,W ) by removing all edges of the form
→ r and↔ r, and keeping all other edges. Given a kernel
qV (xV |xW ) associated with a CADMG G(V,W ), and a
fixable r ∈ V , the fixing operation φr(qV ;G) yields a new
kernel

q̃V \{r}(xV \{r} |xW , xr) ≡
qV (xV |xW )

qV (xr |xmbG(r))
.

A result in Richardson et al. [2017] allows us to unambigu-
ously define

φR(G) ≡ φrk(. . . φr2(φr1(G)) . . .),

and similarly the kernel φR(p;G) for distributions that are
nested Markov with respect to G (defined below). Con-
sequently, we just use sets to index fixings from now on.

If a fixing sequence exists for a set R ⊆ V in G(V,W ), we
say V \ R is a reachable set. Such a set is called intrinsic
if the vertices in V \ R are bidirected-connected (so that
φV \R(G) has only a single district); this definition is equi-
valent to the definition in the main paper. We denote the
collections of reachable and intrinsic sets in G respectively
byR(G) and I(G).

For a CADMG G(V,W ), a (reachable) subset C ⊆ V is
called a reachable closure for S ⊆ C if the set of fixable
vertices in φV \C(G) is a subset of S. Every set S in G has a
unique reachable closure, which we denote 〈S〉G [Shpitser
et al., 2018]. Note that this set is generally a subset of what
we earlier called the ‘closure’.
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Figure 10: (a) An ADMG G that is not ancestral; (b) a
CADMG obtained from G in (a) by fixing a and c.

C.2 NESTED MARKOV MODEL

We are now ready to define the nested Markov model
Mn(G). Given an ADMG G, we say that a distribution
p obeys the nested Markov property with respect to G if
for any reachable set R, we have that φV \R(p;G) factorizes
into kernels as

φV \R(p;G) =
∏

D∈D(φV \R(G))

φV \D(p;G).

In other words, for any reachable graph, the associated ker-
nel factorizes into a product of the districts in that graph
conditional on the parents of those districts.

Note that this also means that φV \R(p;G) will be Markov
with respect to the CADMG φV \R(G) for each reachable
set R; see Richardson [2003] for more details on this.

Example C.1. Consider the ADMG in Figure 10(a). The
vertices a, c and d all satisfy the condition of being fixable,
but b does not since d is both a descendant of, and in the
same district as, b. The CADMG G({b, d}, {a, c}) obtained
after fixing a and c is shown in Figure 10(b). Notice that
fixing c removes the edge b → c, but that the edge c → d
is preserved. Applying m-separation to the graph shown in
Figure 10(b), yields

Xd ⊥⊥ Xa | Xc [φac(p(xabcd);G)].

In addition, one can see easily that if an edge a → d had
been present in the original graph, then we would not have
obtained this m-separation.

C.3 DENSELY CONNECTED VERTICES

Here we give a couple of slightly more detailed examples
than in the main text.

Example C.2. The vertices a and c in Figure 1(b) are
‘densely connected’, because they cannot be separated by
any combination of conditioning or fixing, except by fixing
c (which just amounts to marginalizing it from the graph).
Separately, for ‘gadget’ graph in Figure 2(b) the vertices c
and d are also ‘densely connected’. Naturally, any pair of
vertices joined by an edge is also densely connected.
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Figure 11: An ADMG for which a search for a set to satisfy
Proposition 5.3 is computationally difficult.

D ALGORITHMS

D.1 SPANNING TREE

Given a set C and its subset of childless nodes B (in our
case this will be either {v} or {v, w}), pick a topological
order on the vertices that places all elements of B at the
end. Then, the last vertex before B must be a parent of
some element of B; pick the largest such element under the
topological order.

We then move backwards in the topological order, and each
time a vertex has more than one child, we join it to the vertex
which has the shortest path to an element of B; if there is a
tie, then we pick the largest element under the topological
order. This ensures that each vertex is joined to B by the
shortest possible directed path.

D.2 DIFFICULT GRAPHS

Consider the graph shown in Figure 11. This can clearly
be reduced to the graph w → v, but the application of
Proposition 5.3 is computationally difficult. Note that no
subset will work apart from {z1, . . . , zk}, and there are
3k − 1 possible sets to choose.

Algorithm 1 (with complexity proven to be O(|V |)) can
be applied instead and will immediately return the graph
w → v.

References

T. S. Richardson. Markov properties for acyclic directed
mixed graphs. Scandinavial Journal of Statistics, 30(1):
145–157, 2003.

T. S. Richardson, R. J. Evans, J. M. Robins, and I. Shpit-
ser. Nested Markov properties for acyclic directed mixed
graphs. arXiv:1701.06686, 2017.

I. Shpitser, R. J. Evans, and T. S. Richardson. Acyclic linear

SEMs obey the nested Markov property. In Proceed-
ings of the 34th Conference on Uncertainty in Artificial
Intelligence (UAI-18), pages 735–745, 2018.


	Graphs
	Latent Projection
	Arid Projection

	The Nested Markov Model
	Fixing
	Nested Markov Model
	Densely Connected Vertices

	Algorithms
	Spanning Tree
	Difficult Graphs


