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1 PROOFS

Proof of Lemma 6.2

Proof. Givenx € R4,
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For (i), the maximum is attained when zg, = +/|B;|x5,/||x5,

Proof of Theorem 6.5

Proof. We begin with Equation (6.1),

1 V) g0\
Equation (6.1) < f(x(t)) ~ 57 (”va;?x(tgy's’ ) HVf(x(t))Hzo

The next step follows from the refined analysis of GCD from Nutini et al. (2015), we present it here for completeness. Since

w1 is strongly convex, we have

60 = F(v) + (V) x =) + B x =y}, vx,y e R
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By minimizing left-hand and right-hand sides over x, we get
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where (i) uses the fact that the convex conjugate of 3 || - [|3 is 1| - [|% . By subtracting f* from left-hand and right-hand sides

of Eq. (6.1) and combining with Eq. (1.1), we get
E[£(x®) - f]

M1 ||Vf(x(t))||%’,oo (t) *
S <1 - Lmax va(x(t))‘lgo (f(x t ) - f ) . (12)
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Furthermore, with % < ||z||% o and Eq. (6.1), we get
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E[/x")] < £(x®) IV FxO)3, (1.3)

Using the same argument to derive Eq. (1.2) or following the standard analysis for randomized coordinate descent, we get

E[f(x") - f]

< <1— T (rxy = r). (14)

We complete the proof by combining Eq. (1.2) and Eq. (1.4). O
Proof of Theorem 6.6
Proof. We begin with Equation (6.1) and follow the standard proof template (Karimireddy et al., 2019; Dhillon et al., 2011),
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where (i) is from the following inequality
Fe) = 7 < (x = x0T (x D)) < x" = x|V F(xD) oo

Taking expectation on both sides,

E[f ()] < B ()] = 57— (B )] - £,

Note that we use the fact that E[X?] > E[X]? to derive the above property. Denote E[f(x())] — f* as hy, then we can get

hor < By — =——— 12, (1.5)



Dividing both side by h;11ht, we get
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where (i) is from the fact that {h;}$°, is a decreasing sequence and h;/h;y1 > 1. Summing Equation (1.6) over ¢t €
{0,1,...,T}, we get

1 1 < Tn?
ho hT - 2LmaxD2
T > 7]2T )
which completes the proof.
O
Proof of Theorem 6.7
Proof. Given any vector r, we let z; = a] r and define rn; := ] r. Therefore,
Z 2} = (mj + z; — m;)* = |Bj|m + 2m; Z (zi —myj) + Z (2 —m;)2. (1.7)
i€B; i€B; i€B;
According to Rudelson and Vershynin (2010), with probability at least 1 — 2 exp{—n/2}, we have that
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and
| > (2= my)| < allrll2y/|Bjlnlogn
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hold for all 7. Here A B, 1s the jth-block submatrix of A by shifting mean to zero. Therefore, we have
> 22 > |Bj|m? — 2myo||r|2y/|Bjlnlogn + (1/|B;| — 2v/n)? (7|30 (1.8)
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by simplifying (1.7). On the other hand,
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holds with probability at least 1 — 2| B;| exp{—n/4}. Thus, when | Bj| > n, we get
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for some universal constant c. Notice that the above results hold for all . This implies that

Ve, fll2/v/1Bj] ¢
||VBJf||oo o 10g|Bj‘\/ﬁ7

(1.11)



if we specifically take r = f/(Ax!). This further gives

t > c t
1916 > gt 96

When max; |B;j| > d/k > n, there is huge improvement in lower bound, from 1/(max; /| B;|) to 1/(max; log |B;|\/n).
This concludes the proof. O

Proof of Theorem 6.10

Proof. We first show that [|c; — p;|| < 6+/n. We compare the difference between kth coordinates of c¢; and p;. Then

i (k) — (k)| = ||ZA1,€ ;i (k
i€ B;
1
< @(I > Au =)+ Y (A= py(k))
7! ieB;nB; i€B;NB}®
§ Cilog|B;|y/I1B; N Bl |B;n B3|

|B| |B| (ugap+alog|BjD’ (112)
J J

= (Sj.

holds with probability at least 1 — ﬁ, where f1gqp 1= maxyep, max;, 45, |, (k) — pj, (k)| and B¢ is the complement
of B}. By assumption A/, it can be checked that §; < 20 when |B;| > n. Here, (1.12) holds since that ZZEBJ_OB;C (A —

#;(k)) is a Gaussian random variable which is O, (/| B; N B}|). For each i € B; N B}°, the difference between A;;, and
p; (k) is at most |, (k) — p; (k)| plus noise term, which is further bounded by 1144, + o log | B;|.

We next compute the lower bound of 7, B, 22. By use of (1.8), we get

SN2z Y 2= BN Bjim? - 2mjo|r: \/|B N B [nlogn + ( \/\B N B! - 2vn)?|rl30%  (1.13)
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We further calculate the upper bound of max;e p; |2;|.
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By (1.13) and (1.14), when | B;| > n, we get
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by adjusting some universal constant c. Notice that the above results hold for all . This implies that
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This further gives
c
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When max; |B;j| > d/k > n, there is huge improvement in lower bound, from 1/(max; \/|B;[) to 1/(C(log|Bj| +
1)v/n). O
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Proof of Theorem 6.11
Our proof follows the same pattern as the proof of ASCD (Lu et al., 2018).
Lemma 1.1. Define stV = y® — LV f(y®)), then
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Here, (1.18) holds due to the following fact,
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Lemma 1.2. Define t(+1) .= z() — n9 L) VI(y®). Or equivalently,
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Proof. By Lemma 1.1, we have
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Here, we use the fact that t('*1) — z(1) = gE;, [z(+HD) — 2] and [[t¢+D) — 2|2 = gE, |2+ — 202, O
Proof of Theorem 6.11. By Lemma 1.2 and Lemma 1.3, we obtain that
207 Linax %07 Lax
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By using 1= ot“ = 62,we arrive at:
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We use E! to denote taking expectation over everything up to ¢, it follows that
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Algorithm 1 Proximal hybrid coordinate descent

Input: x(©) B = {B;}}_,.
fort=0,1,2,...do
I=90
forj =1,2,...,kdo
[Random rule] uniform randomly choose a i; € Bj andlet I = I U {i;}

end for
[GS-s rule] i € argmax;c;y {mmsegl |V F(x) + s}
x(t+1) — ProXy g, ( () _ L )

end for

It is easy to check that §; < then it gives
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High probability error bounds
The following high probability error bounds can be obtained by using (Richtarik and Takéc, 2014, Theorem 1)

Corollary 1.4. Denote x'") as the iterate generated from Algorithm 2. For f that is p1 and ps strongly convex with respect

for 1 and 2-norm. Let
pr IV o m VI3
Liax VI3 " Lmax V)3 [’

7 := inf max
xERd

then with probability at least 1 — (3, we have
(t) * eXp(_tn) 0 *
E[f(x")] - f* < ———(f(x") = [").

Using Equation (1.5) and (Richtarik and Takéc, 2014, Theorem 1), we can immediately get the following.

Corollary 1.5. Denote x\!) as the iterate generated Sfrom Algorithm 2. For convex objective f, with probability at least

b U6 =0 (P (1 (5)))

where p = infega {[[V (O3 oo/ |V F(OI2} and D = supyega{llx —x*[ly | £(x) < F(xO)}.

2 PROXIMAL HYBRIDCD

Proximal hybridCD is a proximal-gradient variant of hybridCD. It aims to solve the composite problem

min, f(a +zgl x).

x€R4
The detailed algorithm is shown in Algorithm 1, where
TOX y) = arg min y X + y
P g & x€R4 2 g

is the standard definition of proximal operator and the GS-s rule is the greedy selection rule extended to composite problem,
see Nutini et al. (2015) for more details.
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