Lifted Reasoning Meets Weighted Model Integration - Supplementary Material

Jonathan Feldstein'

Vaishak Belle!

"University of Edinburgh, United Kingdom

A EXAMPLE OF WMI

Example 3. We can extend Example|l|to the hybrid setting
the following way. Let us assume the propositional theory
A\ |Belle et al |[2015]]:

pV (0 <z <10),

with w(p) = 0.1, w(—p) = 2z, w(q) = 1 and w(—q)
0, where q is the propositional abstraction of (0 < x
10). Then there are three models My = {p,—q}, Ms
{-p, q}, M5 = {p, q}, and the model weight is

Al

10

10
WMI(A, w) = O+/ 21‘d3:—|—/ 0.1dz = 101

0 0

B KNOWLEDGE COMPILATION

The input of the compilation algorithm which builds a FO-
sda-DNNF ciruit is a FO-CNF formula. The algorithm con-
sist of a set of operations on formulas in CNF, each operation
equipped with a precondition. The algorithm repeatedly ap-
plies these auxiliary operations while their preconditions are
satisfied, ensuring that the preconditions of the operations
do not hold in the output, and transforms the sets of clauses
into a directed-acyclic graph by caching and reusing nodes.
The basis of the algorithm is the well-known unification
based first-order resolution algorithm, which computes the
most general unifier (mgu) of two FO atoms.

Definition 5 (Most general unifier in FOL). A unifier of two
atoms is a substitution that, when applied to both atoms,
makes them identical. Let U(a, b) denote the set of unifiers
of atoms a and b. Then the most general unifier (mgu) of FO
atoms a and b is ¥, iff Vo € U(a,b), 3¢ : ¢ =g

The unification algorithm is used in many operations over
formulas, such as SPLIT, CONDITIONING, UNIT PROPA-
GATION and SHATTERING. These auxiliary operations each
help to achieve the different requirements (i.e. smoothness,

determinism, automorphism and decomposability). For ex-
ample, the goal of SPLITTING a clause ~y w.r.t a constrained
atom a is to divide a clause into an equivalent set of clauses
such that for each atom a. in each clause, either the atom is
independent from q or it is subsumed by it. This indepen-
dence leads to the decomposability of the circuit.

Example 4 (Van den Broeck| [2013]).
v= (X, X # kiwi A\ X € Animal :
flies(X) V —haswings(x))
a= VX, X # penguin A X € Bird: flies(X))
SPLIT(7, a) results in
Ymgu = (VX, X # kiwi A X # penguin
ANX € Animal N X € Bird :
flies(z) V =haswings(penguins))
Yoo = (flies(penguin) V —haswings(penguins))
V2, = (VX, X # kiwi A X € Animal
AN X & Bird : flies(x) V —haswings(X))

Both vy}, and 72, are independent from a.

For the other operations, we refer the reader to |Van den
Broeck| [2013]] for details. The output is, as stated above
an sda-DNNF circuit with four internode operators, which
allow the computation of the WFOMC.

In d-DNNF, for formulas a and b, the inter-node operators
are the following:

¢ Decomposable conjunction: a@)b with @ L b, meaning
a and b are independent.

* Deterministic disjunction: a) b with a Ab F L, mean-
ing a and b are contradictory.
The WFOMC of these operators is computed in the same
way, as the WMC for propositional logic, namely
WFOMC(a @ b) = WFOMC(a) x WEOMC(b)
WFOMC(a) b) = WFOMC(a) + WFOMC(b)

Supplement for the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Jonathan Feldstein <jonathan.feldstein@ed.ac.uk>?Subject=Your UAI 2021 paper

The first restriction, needed for polytime inference, is that
we compute the model count over a constrained domain.

The two new intensional operators, compared to WMC, are
V and 3, where

er(VX,cs : @) = gr(pb1) A -+ A gr(oby,) 8)
gI‘(EIX, CS ¢) = gr(¢91) \ARERY gr(¢0n)a (9)

with gr(-) being the grounding of the sentence ¢f and
{01, ...,0,} € solutions(cs, X). The equations above show
that any WFOMC problem can be reduced to WMC problem
through grounding. However, the logical formula would
grow exponentially in the worst case, which is why we want
to reason about indistinguishable objects as one object. The
decomposability and determinism from @ and (V) applies
by extension to the V and 3 nodes. This leads to

WFOMC(VX, ¢s : ¢) = WFOMC(¢0)" (10)
WEOMC(3D, cs : ¢) = Y _ [O,|WFOMC(¢b,,), (1)
where D is a subset of the domain, ©,, = {[D/d] : [D/d] €

solutions(cs, D) A (|d| = n)} and 6,, € ©,,. Note, that
even for this restricted class of sentences the algorithm is
only guaranteed to succeed for the 2 variable fragment, i.e.
IX| = 2 [[Van den Broeck, [2013]]. However, in [Van den
Broeck] [2013]] it has been shown to work in practice for
many problems of interest, and remains an active area of
research [Gehrke et al.| 2018, Braun and Moller, 2018|].

C EXAMPLE OF ALGORITHM 5

Example 5 (Algorithm [3). For readability, let us define
b= BMI(x) and a = age(z). If we have

(wfso, boundsg)

= ([2a + 3b,4a], [{a : [0,45];b : [10,35]}, {a : [0,90]}])
and

(wfs1, bounds,) = ([10b, 4a], [{b : [25,45]}, {a : [18,90]}])

then line 3 in Alg. [] returns

wfs =

[(2a 4 3b) - 10,
(2a + 3b) - 4a
4a - 100,

4a - 4a)

and lines 6-12 return

bounds =

[{a:[0,45],b: [25,35]},
{a:[18,45],b: [10,35]},
{a :[0,90],b: [25,45]},

{a: [18,90]}].

D WFOMI ALGORITHM WITH
EFFICIENT INTEGRATION

The second algorithm we propose reduces the number of
integrations to be solved.

Algorithm 6: Efficient Lifted WFOMI

if node.type = 3 then
result = 0;
forall d € range(set) do
(wfs, cst, bounds) =
set-d));
result += ('Szt‘) cst;

WE'OMI(child, (set, d,

else if node.type = V then

terms = [];

wis, bounds, cst = WFOMI(child, sets);

uniques = find_uniques(hash(wfs));

symbolic = solve_symbolically(uniques);

forall (wf, bounds, cst) € WFOMI(child, sets) do
terms.append(cst x solve_definite(wf,

L symbolic, bounds));

cst = (Sum(terms))\node.set_lype(selsﬂ;

wis =[1];

bounds = [{ }]);

else if node.type = N then

(wfsg, cstg, boundsy) = WFOMI(node.child[0], sets);

(wfsq, csty, bounds;) = WFOMI(node.child[1], sets);

wfs = flatten(wfs] - wfs;);

cst= ﬂatten(cstg - csty);

bounds = [];

forall bounds; € boundsy, do

forall bounds; € bounds, do

new_bounds = bounds; ;

forall p € pred(bound;) N pred(bound;) do
new_bounds[p] = bounds;[p] N

L bounds; [p];

forall p € pred(bounds;) \ pred(bounds;)
do
L new_bounds[p] = bounds;[pl;

B bounds.append(new_bounds);

else if node.type = V then

(wfsg, cstg, boundsy) = WFOMI(node.child[0], sets);
(wfsq, csty, bounds;) = WFOMI(node.child[1], sets);
wfs = concat(wfsg, wfsq);

bounds = concat(boundsy, bounds;);

cst = concat(cstg, csty);

return (wfs, cst, bounds)

The first difference to Alg. [T} mentioned previously in sec-
tion 4.4, is that we split the information related to the weight
functions into a three parts data structure, and carry, in ad-
dition to the weight function and the bounds, the constants
separately. This is where the extra operations on lines 34

and 49 stem from.

The second difference to Alg.[] is the check for duplicate
terms in the weight function array before integration. We
first hash the weight function array and check for unique
values. In Python, this can be achieved with set (), which
uses a hashing function, to find unique values and create a
set from it. Then, we only need to integrate symbolically
the unique values, and compute the numeric values for all
terms in the weight function array, depending on the sym-
bolic value, and its bounds. Finally, as we carry around the
constants separately, the integration result is multiplied by
the constant value. The result is a numeric value and is thus
stored in the constant part of the data structure instead of
the weight function part. This improves also the integration
speed, as large constant values are multiplied in separately,
instead of during integration. The speed up is, as suggested
by Theorem Q(Tl“), which the empirical results show as
well.

E PROOFS

Proof sketch LemmaE] Let us, first, consider the case
where we have only one logical variable in the weight
functions. Let p(z) be a predicate, with a weight function
of the form w(p(x)) = f(a(x),b(x),c(x),...), with an
arbitrary number of function symbols a(z), b(x), ..., and
¢ = Ve, € {x1,...,2,} : p(x). Let us simplify the
notation, s.t. a(z;) = a; and b(z;) = b;. Then,

WFOMI(¢) = w(p(z1)) X - X w(p(xy))

1 1
= A s /0 f((ll, bl, ...)f(a27 bg,) ce f(an, b'ru)
daldbl...d@dbz‘.. . dandbn

::Jél...jglf(al,bh.“)daldbyn

/1.../1f(a2,b2,...)da2db2...

U/‘ f G, by o
(/ﬂ ‘/ f(ay,by,...)daydb;..)

where we used the separability of integrals in the sec-
ond line. Then, in the case where solving the integral of
fla(z),b(x),c(x),...) itself is in polytime, the WFOMI is
still computable in polytime.

)dandb,..

If the function symbols have two logical variables, this still
holds, and the proof follows the same steps, as above.

Let us consider a predicate p(z, y), with a weight function

of the form w(p(z,y)) = f(a(z,y),b(z,y), c(z,y),...),
with an arbltrary number of function sym-
bols a(z,y),b(x,y),... as described above, and

¢ = Vr,yst.xz € {di,da}ty € {ds,...,ds} : p(z,y),
and we use the same simplified notation as above, i.e.
a(d;,d;) = a;j, then

WFOM1(¢) =

p(d1,d3)) x w(p(di, da)) x w(p(da, d3)) x w(p(da,da))

/ / f ais, b13, ...)f(a14, b14,) e f(a24, b24,)
dall...dag4db11...db24...

1 1
= / / f(alg,blg,...)dalgdblg-..
0 0

1 1
// f(a24,b24,...)da24db24...
0 0
X2

1 1 2
— (/ .. / f(a13, b3, ...)da13db13---))
0 0

where we used the separability of integrals in the second
line. It is important to remark that a(x;, ;) are function
symbols, and that a(z;,z;) and a(z;,x)) need to be in-
dependent. Then, in the case where solving the integral
of f(a(z,y),b(x,y), c(x,y),...) itself is in polytime, the
WFOMI is still computable in polytime. O

Proof sketch Theorem Assume a theory of m literals, s.t.
positive and negative literal have the same weight function,
only with different boundaries. Furthermore, the theory has
n atoms, with constant weight functions. Lastly, the theory
has [predicates with different weight functions for both
the positive and negative atoms. Then, from Definition 4]
it follows there are 2m+i+n integrals to solve. However, if
we factorize out the constants and only integrate symbol-
ically, there are only 2" different integrals to solve. Thus,
the number of integrals that need to be solved symbolically
is reduced by a factor of zm—lﬂ O

Proof sketch TheoremH We denote by p(I;") the predicates
that the SMT literals lj‘ are instances of, and i € {1...m},
for m different SMT atoms in the model. Further, we denote
by p(l;) the predicates that the relational literals [are
instances of, and j € {1...n}, for n different relational
atoms in the model. This closely follows the notation in
Definition 4] with the difference that we clearly distinguish
between SMT and relational atoms. Theorem 4] states that

w(p(i)) = fi(p(l7)) and w(p(ly)) = c;. where c; are

constants. Then from Definition @] it follows

WEOMI(A, w)

= [T ww@) [T wee;))

MEA Ly 1T eEM I7eM

> [T s 10 o (12)

MEA Lo UheMm I;eM

S oIl [rou,

MEA |~ +
l;eMm I} EMljeM

where we split up the product in the first step into two
products one for the SMT atoms and one for the relational
atoms. In the second step we wrote the weight functions
explicitly. In the third step, we factored the constants out of
the integrals and then inverted the integrals and the product
for the SMT atoms, which we can do, as the weights are all
functions of only one predicate, and independent of each
other by construction.

On the other hand, integrating over the leaf nodes, and then
using the WFOMC solver leads to the following WFOMI

WEOMI(A, w)

=S 11 [wow)

MEANIEM

lteM
=S I [wthwe)
MEAN | ZeMUfeMpt ey (13)

-S 1010 /fl-<p<li+>>-cj

MEA - eM If eMp+ e

S eIl [s,

MEN|ZeM IFeMptep

where the first line stems from integrating at the leaf nodes
and then using the definition for WFOMC, provided in the
preliminaries. This shows that integrating at the leaf nodes,
under the assumptions made in Theorem [4] and using a
WFOMC solver leads to the correct WFOMI. This has also
been shown empirically with the Forclift WFOMC solver
Van den Broeck et al.|[2011]]. O

Proof sketch Theorem 5] We begin by introducing p(a;;)
auxiliary predicates of SMT atoms ¢ and relational atoms j,
and we keep the notation introduced in the previous proof,
with the difference that w(p(l;)) = 1 by construction. Us-

J
ing auxiliary predicates, as discussed above, which have

weight functions w(p(a;;)) = f;(p(1;)) leads to

WFOMI(A, w)

=y I IT IT wet)we;)wma;)

M’:AHEJW li_EMlj—EMaiJGM

= I TI wot))wpas)

Aﬂ:Al"’EM l?’GM aijEM

= Z H w(p(lj')) H w(p(ai;))

M’:AHGM l;reM IteM a;; €M
- I I [ety [).
AIhAl;re]waijGJWlJrejw +eM

(14)

where the first step stems from the fact that w(p(l;)) = 1.
The second step is true due to the fact that w(p(l;")) are step
distributions with the boundaries equal to the boundaries of
w(p(a;;)), and thus, evaluating

[T II we))wplay))

ey “ii€Mifem

is equivalent to

H w(p(aiz)) -

IteMm I eM 1+em @i €M

Finally, the last step in Eq.[T4]holds due to the independence
of the weight functions.

The fact that Eq.[14]is equal to integrating at the leaf nodes
and then using a WFOMC solver follows the same reasoning
as in Eq. [T3]in the previous proof. O

F SDA-DNNF CIRCUITS

In this section, we provide two more complex circuits. First,
in Fig.[/| we present the circuit, where we use additional
auxiliary predicates. In Fig. [§] we show the circuit for the
second experiment, where we introduced family relations.

family(X, X)v-family(X ,X), X €People

family(X, ¥)v—family(X,Y),¥# X, X €People ™, Y People ™™

family(X, ¥)v—family(X,Y),X#Y, X €People Y € People”

| (BMI(X)235), X People”

| a,(X,Y), X People .Y € People”

HBMH_ X)=35), XEPeerl'e’Ll

a,| XY, XEPcoplc'L',YEPeopJe'L‘

W x
x&People’

a,(x,x")

ﬂfamﬂytx,x’]| |ﬁaztx,x'] ‘ |famil’y(x,x']‘

Figure 8: sda-DNNF of the example with the family predicate.

References

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck.
Probabilistic inference in hybrid domains by weighted
model integration. In Twenty-Fourth International Joint
Conference on Artificial Intelligence, 2015.

Tanya Braun and Ralf Moller. Parameterised queries and
lifted query answering. In IJCAI, pages 4980-4986, 2018.

Marcel Gehrke, Tanya Braun, and Ralf Moller. Lifted dy-
namic junction tree algorithm. In International Confer-
ence on Conceptual Structures, pages 55—69. Springer,
2018.

Guy Van den Broeck. Lifted inference and learning in statis-
tical relational models. PhD thesis, Ph. D. Dissertation,
KU Leuven, 2013.

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse
Davis, and Luc De Raedt. Lifted probabilistic inference
by first-order knowledge compilation. In Proceedings
of the Twenty-Second international joint conference on
Artificial Intelligence, pages 2178-2185, 2011.

	Example of WMI
	Knowledge Compilation
	Example of Algorithm 5
	wfomi algorithm with efficient integration
	Proofs
	sda-DNNF circuits

