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1 ALGORITHMS

Algorithm 1 Newton-CG With Inexact Hessian

Input: Starting point x0, line-search parameter 0 < ρ < 1

for k = 0, 1, 2, . . . until convergence do
(approximately) Solve the following sub-problem using CG

Hkp = −gk

Find αk such that

F (xk+1) ≤ F (xk) + ραk 〈pk,gk〉

Update xk+1 = xk + αkpk

Output: xk

Algorithm 2 Newton-MR With Inexact Hessian

1: Input: Starting point x0, line-search parameter 0 < ρ < 1

2: for k = 0, 1, 2, . . . until convergence do
3: (approximately) Solve the following sub-problem

min
p∈Rd

‖p‖ subject to p ∈ arg min
p̂∈Rd

‖Hkp̂ + gk‖ .

4: Find αk such that

‖gk+1‖2 ≤ ‖gk‖2 + 2ραk 〈pk,Hkgk〉

5: Update xk+1 = xk + αkpk

6: Output: xk
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Algorithm 3 Trust Region with Inexact Hessian

1: Input: Starting point x0, initial radius 0 < ∆0 <∞, hyper-parameters η ∈ (0, 1), γ > 1

2: for k = 0, 1, . . . do
3: Set the approximate Hessian, Hk, as in (4)
4: if converged then
5: Return xk.

6: (approximately) solve the following sub-problem

min
‖p‖≤∆k

mk(p) , 〈∇F (xk),p〉+
1

2
〈p,Hkp〉 ,

7: Set ρk ,
F (xk + pk)− F (xk)

mt(pk)

8: if ρk ≥ η then
9: xk+1 = xk + pk and ∆k+1 = γ∆k

10: else
11: xk+1 = xk and ∆k+1 = ∆k/γ

12: Output: xk

2 OMITTED PROOF IN Section 2

2.1 PROOF OF Theorem 1

This theorem and proof mimic Theorem 5 in Cohen et al. [2017].

The statistical leverage score of the ith row of B ∈ Cn×d can also be written as the following:

`i = Bi(B
∗B)†B∗i .

Proof. Let B∗ = UΣV∗ be the SVD of B∗. We have `i = B∗i (UΣ−2U∗)Bi. Let Y = Σ−1U∗ (CᵀC−BᵀB) UΣ−1.
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Since E[ 1
pi

Bᵀ
i Bi −BᵀB] = 0 we have E[Y] = 0. Also we have CᵀC = UΣYΣU∗ + BᵀB. Because UΣ2U∗ = B∗B

it suffices to show that ‖Y‖ ≤ ε, which gives −εI � Y � εI, and consequently:

B
ᵀ
B− εB∗B � C

ᵀ
C � B

ᵀ
B + εB∗B.

A useful tool for proving ‖Y‖ is small is the matrix Bernstein inequality Tropp et al. [2015]. We remark that the version we
use is suitable for complex matrices as well.

Note that for any i, because BᵀB has real entries, we have

1
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B

ᵀ
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1
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where the first step is by the structure of A, and the second step follows from a known property of leverage scores (see the
proof of Lemma 4 in Cohen et al. [2015a]). With this we have:
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In addition

1

t
Σ−1U∗B

ᵀ
BUΣ−1 � 1

t
Σ−1U∗B∗BUΣ−1 =

ε2

c log(d/δ)
I

These two give ‖Xj‖ ≤ ε2

c log(d/δ) . We then bound the variance of Y:

E[YY∗] = E[Y∗Y] = tE[XjX
∗
j ]
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By the stable rank matrix Bernstein inequality, we have for large enough c:

P (‖Y‖2 > ε) ≤ 4tr(I)

‖I‖
exp

(
− ε2/2

ε2

c log(d/δ) (‖I‖+ ε/3)

)
< δ

where we use the fact that tr(I) ≤ d and ‖I‖ = 1.

2.2 PROOF OF Theorem 2

Proof. Let B∗ = UΣV∗ be the SVD of B∗. We have `i = B∗i (UΣ−2U∗)Bi. Let Y = CᵀC−BᵀB. Then we write
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Now we bound the variance of Y:

E[Y∗Y] = tE[X∗jXj ]
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By the matrix Chernoff bound Gross and Nesme [2010], we have

Pr(‖Y‖ > ε) ≤ 2d exp

(
− ε2

4ε2

c log(d/δ)

)
= O(δ)

We remark that for our particular task, YY∗ = Y∗Y. In general this is not true. By applying the non-Hermitian matrix
Bernstein inequality in Tropp et al. [2015], one can derive the same result off by a multiplicative constant factor.

2.3 THEORETICAL RESULTS ON THE HYBRID RANDOMIZED-DETERMINISTIC SAMPLING
ALGORITHM

We first present a useful inequality from Cohen et al. [2015b] for subspace embeddings in the complex setting.

Lemma 1. Let S be an ε-subspace embedding for span(A,B), where A,B ∈ Cn×d. Then we have:

‖A∗S∗SB−A∗B‖ ≤ ε‖A‖‖B‖.

Proof of Lemma 1. W.l.o.g., we assume that ‖A‖ = ‖B‖ = 1, since we can divide both sides by ‖A‖‖B‖. Let U be an
orthonormal matrix of which the columns form a basis for span(A,B). Note since ‖A‖ = ‖B‖ = 1, for any x,y, we have
Ax = Us and By = Ut such that ‖s‖ ≤ ‖x‖ and ‖t‖ ≤ ‖y‖. Now:

‖A∗S∗SB−A∗B‖
= sup
‖x‖=‖y‖=1

|〈SAx,SBy〉 − 〈Ax,By〉|

= sup
‖s‖,‖t‖≤1

|〈SUs,SUt〉 − 〈Us,Ut〉|

=‖U∗S∗SU− I‖ ≤ ε

We are now ready to prove Theorem 3.

Proof of Theorem 3. If x ∈ ker(D1/2
N AN ), then the statement holds trivially. Assume without loss of generality that

x 6∈ ker(D1/2
N AN ).

We first show that
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By Lemma 1, it suffices to show that S is a subspace embedding for span
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The same proof holds for showing S is an ε-subspace embedding for span
(
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)
.
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2.4 FAST COMPUTATION OF LEVERAGE SCORES

Despite the nice properties of leverage scores, they are data-dependent features and quite expensive to compute. In this
section, we show how one can efficiently approximate all the leverage scores simultaneously.

Theorem 1. Let B ∈ Cn×d and let S ∈ Cs×n be an ε-subspace embedding of span(B). Let SB = QR−1 be a QR-
factorization of SB, where Q ∈ Cs×d has orthonormal columns and R−1 ∈ Cd×d. Let G ∈ Rd×logn be a random
Gaussian matrix. We define the ith approximate leverage score to be: ˜̀

i = ‖eᵀ
i BRG‖2 Then ˜̀

i = (1± ε)`i for all i with
high probability, and all ˜̀

i can be calculated simultaneously in O
(
(nnz(A) + d2) log n

)
time.

Proof. Define
`′i = ‖eᵀ

i BR‖2

• We first show that `′i = O(1± ε)`i for all i ∈ [n]. Let B = UΣV∗. Since BR has the same column space as B, we have
BR = UT−1, for some matrix T. We have:

‖x‖ = ‖Qx‖ = ‖SBRx‖ = (1± ε)‖BRx‖

Hence
‖T−1x‖ = ‖UT−1x‖ = ‖BRx‖ = (1±O(ε))‖x‖

This implies that T−1 is well-conditioned: all singular values of T−1 are of order 1±O(ε). With this property:

`′i = ‖eᵀ
i BR‖2 = (1±O(ε))‖eᵀ

i BRT‖2

= (1±O(ε))‖eᵀ
i U‖2 = (1±O(ε))`i

• The second step is to show that ˜̀
i = (1± ε)`′i. Recall the Johnson-Lindenstrauss lemma: let G be as defined above. Then

for all vectors z ∈ Cd:
Pr
(
‖zᵀG‖2 = (1± ε)‖z‖2

)
≥ 1− δ

We remark that the JL lemma holds for complex vectors z as in Krahmer and Ward [2011]. Now set z = eᵀ
i BR:

Pr
(
‖eᵀ
i BRG‖2 = (1± ε)‖eᵀ

i BR‖2
)
≥ 1− δ

and we get the desired result.

• The time complexity for such a construction is the same as the construction for real matrices, which takes O((nnz(A) +
d2) log n) time.



2.5 PROOF OF Theorem 4

Proof. By Lemma 1, we have that:

‖Aᵀ
T

ᵀ
TDA−A

ᵀ
DA‖ ≤ ε‖A‖‖DA‖

and

‖Aᵀ
D1/2S

ᵀ
SD1/2A−A

ᵀ
DA‖ ≤ ε‖D1/2A‖‖(D1/2)∗A|‖ = ε‖D1/2A‖22

Note that

‖D1/2A‖22 = λmax(A
ᵀ
(D1/2)∗D1/2A)

=λmax(A
ᵀ|D|A) = ‖Aᵀ|D|A‖2

≤‖A‖‖|D|A‖ = ‖A‖‖DA‖

So sampling in the latter way is always as good as the former.

Now we give a simple example that the first sampling scheme can give an arbitrarily worse bound. Let A =

[
a1 0
0 a2

]
and

D =

[
d1 0
0 d2

]
, where 1 = a1 > a2 and 1 = |d1| < |d2|.

Hence DA =

[
a1d1 0

0 a2d2

]
and Aᵀ|D|A =

[
|d1|a2

1 0
0 |d2|a2

2

]
By the above calculation, ‖D1/2A‖22 = max{1, |d2|a2

2}, and ‖A‖‖DA‖ = max{1, |d2|a2}. Let a2 = Θ(
√

1/|d2|) and
making |d2| arbitrarily large, we then have ‖A‖‖DA‖ � ‖D1/2A‖22.

2.6 FAST LOCAL CONVERGENCE OF NEWTON-CG

Theorem 2 (Fast Local Convergence). Let S be the leverage score sampling matrix as in Theorem 1 with precision ε.
Let r(x) = λ ‖x‖2 /2 and λ ≥ 4 ‖A‖2 h where h is the Lipschitz continuity constant of the derivative, i.e., |f ′′

i (t)| ≤ h
for some h <∞. Then for sub-sampled Newton-CG with initial point satisfying ‖x0 − x?‖ ≤ µ/(4L), step-size αk = 1,
and the approximate Hessian H = AᵀD1/2SᵀSD1/2A + λI , we have the following error recursion ‖xk − x?‖ ≤
Cq · ‖xk − x?‖2 + Cl · ‖xk − x?‖, where x? is the optimal solution, Cq = 2L

(1−O(ε))µ , Cl = 3ε
1−O(ε)

√
κ, L is the Lipschitz

continuity constant of the Hessian, µ = λmin

(
∇2F (x?)

)
> 0, ν = λmax

(
∇2F (x?)

)
< ∞, and κ = ν/µ is the

condition number.

Proof. Let B = D1/2A, S be the sketching matrix, and C = SD1/2A. By Theorem 1, we have:

−εAᵀ|D|A � A
ᵀ
D1/2S

ᵀ
SD1/2A−A

ᵀ
DA � εAᵀ|D|A. (2)

Rewrite

A
ᵀ|D|A =

n∑
i=1

|Di,i|A
ᵀ
i A =

n∑
i=1

Di,iA
ᵀ
i A− 2

∑
i:Di,i<0

Di,iA
ᵀ
i A � A

ᵀ
DA + Q

where Q , λI as defined in the theorem. The above inequality then holds by the definition of λ. Therefore, by (2) we have

−ε(Aᵀ
DA + Q) � (A

ᵀ
D1/2S

ᵀ
SD1/2A + Q)− (A

ᵀ
DA + Q) � ε(Aᵀ

DA + Q).

This form satisfies the fast convergence condition in [Xu et al., 2016, Lemma 7]. Applying their lemma leads to our
conclusion.



3 SKETCHING FOR OPTIMIZATION–MORE DETAILS AND EXPERIMENTS

More Background on Some Optimization Methods

– Convex Optimization: Sub-sampled Newton-CG. In strongly convex settings where∇2F (x) � µI for some µ > 0,
the Hessian matrix is positive definite, and the kth iteration of the sub-sampled Newton-CG method is often written
as xk+1 = xk + αkpk, where pk is an approximate solution to the linear system Hkp = −∇F (xk), obtained using
the conjugate gradient (CG) algorithm Saad [2003], and 0 < αk ≤ 1 is an appropriate step-size, which satisfies the
Armijo-type line search Nocedal and Wright [2006] condition stating that F (xk+1) ≤ F (xk) + ραk 〈pk,gk〉, where
0 < ρ < 1 is a given line-search parameter (see Algorithm 1 in Section 1).

– Non-convex Optimization: Sub-sampled Newton-MR. In non-convex settings, the Hessian matrix could be indefinite
and possibly rank-deficient. In light of this, in the kth iteration, Newton-MR Roosta et al. [2018] with an approximate
Hessian involves iterations of the form xk+1 = xk + αkpk where pk ≈ −[Hk]

†∇F (xk) is obtained by a variety of
least-squares iterative solvers such as MINRES-QLP Choi et al. [2011], and 0 < αk ≤ 1 is such that ‖gk+1‖2 ≤
‖gk‖2 + 2ραk 〈pk,Hkgk〉 (see Algorithm 2 in Section 1). It has been shown that Newton-MR achieves fast local and
global convergence rates when applied to a class of non-convex problems known as invex Roosta et al. [2018], whose
stationary points are global minima. From Liu and Roosta [2019, Corollary 1] with ε small enough in (4), Algorithm 2
converges to an εg-approximate first-order stationary point ‖∇F (xk)‖ ≤ εg in at most k ∈ O (log (1/εg)) iterations.
Every iteration of MINRES-QLP requires one Hessian-vector product, which using the full Hessian, amounts to a
complexity of O (nnz(A)). In the worst case, MINRES-QLP requires O(d) iterations to obtain a solution. Putting
this all together, the overall running time of Newton-MR with exact Hessian to achieve an εg-approximate first-order
stationary point is k ∈ O (nnz(A)d log (1/εg)). However, with the complex leverage score sampling of Algorithm 1 (cf.
Theorem 1), the running time then becomes k ∈ O

((
nnz(A) log n+ d3

)
log (1/εg)

)
.

– Non-convex Optimization: Sub-sampled Trust Region. As a more versatile alternative to line-search, trust-region
Sorensen [1982], Conn et al. [2000] is an elegant globalization strategy that has attracted much attention. Recently,
Xu et al. [2019] theoretically studied the variants of trust-region in which the Hessian is approximated as in (4).
The crux of each iteration of the resulting algorithm is the (approximate) solution to a constrained quadratic sub-
problem of the form min‖p‖≤∆k

mk(p) , 〈∇F (xk),p〉 + 1
2 〈p,Hkp〉, for which a variety of methods exists, e.g,

CG-Steihaug Steihaug [1983], Toint [1981], and the generalized Lanczos based methods Gould et al. [1999], Lenders
et al. [2016] (see Algorithm 3 in Section 1). Suppose for i ∈ [n], ‖ai‖2 supx∈Rd |f ′′i (x)| ≤ Ki and define Kmax ,
maxi=1,...,nKi, K̂ ,

∑n
i=1Ki/n. By considering uniform and row-norm sampling of D1/2A with respective sampling

complexities of |S| ∈ O(K2
maxε

−2 log d) and |S| ∈ O(K̂2ε−2 log d), Xu et al. [2019] showed that one can guarantee
(4) with high-probability, and as a result Algorithm 3 achieves an optimal iteration complexity, i.e., it converges
to an (εg, εH)-approximate second-order stationary point ‖∇F (xk)‖ ≤ εg and λmin(∇2F (xk)) ≥ −εH in at most
k ∈ O(max{ε−2

g ε−1
H , ε−3

H }) iterations.

Sub-sampling Schemes. Recall the following terms:

– Uniform: For this sampling, we have pi = 1/n, i = 1, . . . , n.

– Leverage Score (LS): Complex leverage score sampling by considering the leverage scores of D1/2A as in Algorithm 1.

– Row Norm (RN): Row-norm sampling of D1/2A using (3) where s((D1/2A)i) = |fi′′(〈ai,x〉)| ‖ai‖22
– Mixed Leverage Score (LS-MX): A mixed leverage score sampling strategy arising from a non-symmetric viewpoint of

the product Aᵀ (DA) using (2) with s(Ai) = `i(A) and S((DA)i) = `i(DA).

– Mixed Norm Mixture (RN-MX): A mixed row-norm sampling strategy with the same non-symmetric viewpoint as in
(2) with s(Ai) = ‖(A)i‖ and S((DA)i) = ‖(DA)i‖.

– Hybrid Randomized-Deterministic (LS-Det): Hybrid deterministic-leverage score sampling of Algorithm 2.

– Full: In this case, the exact Hessian is used.

Datasets. The datasets used in our experiments for this section are listed in Table 1. All datasets are publicly available
from the UC Irvine Machine Learning Repository Dua and Graff [2017].



Name n d

Drive Diagnostics 50,000 48

covertype, 581,012 54

UJIIndoorLoc 19,937 520

Table 1: Data sets used for our experiments.

Hyper-parameters. Algorithms 1 to 3 are always initialized at x0 = 0. In all of our experiments, we run each method until
either a maximum number of iterations or a maximum number of function evaluations is reached. The maximum number
of CG iterations within Newton-CG, MINRES-QLP iterations within Newton-MR and CG-Steihaug within trust-region
methods are all set to 100. The parameter of line-search ρ in Newton-MR is set to 10−4. For trust-region, we set ∆0 = 1,
η = 0.8 and γ = 1.2.

Performance Evaluation. In all of our experiments, we plot the objective value or the gradient norm vs. the total number of
oracle calls of function, gradient, and Hessian-vector products. This is because comparing algorithms in terms of “wall-clock”
time can be highly affected by their particular implementation details as well as system specifications. In contrast, counting
the number of oracle calls, as an implementation and system independent unit of complexity, is most appropriate and fair.
More specifically, after computing each function value, computing the corresponding gradient is equivalent to one additional
function evaluation. Our implementations are Hessian-free, i.e., we merely require Hessian-vector products instead of using
the explicit Hessian. For this, each Hessian-vector product involving ADA amounts to two additional function evaluations,
as compared with gradient evaluation. In this light, each matrix-vector product involving D1/2A for approximating the
underlying complex leverage scores is equivalent to one gradient evaluation.

Following the theory of Newton-MR, whose convergence is measured by the norm of the gradient, we evaluate Algorithm 2
with various sampling schemes by plotting ‖∇F (xk)‖ vs. the total number of oracle calls, whereas for Algorithms 1 and 3,
which guarantees descent in objective function, we plot F (xk) vs. the total number of oracle calls.

3.1 COMPARISON AMONG VARIOUS SKETCHING TECHNIQUES

To verify the result of Theorem 4, in this section we present empirical evaluations of Uniform, LS, RN, LS-MX, RN-MX
and Full in the context of Algorithms 1 to 3. The results are depicted in Figures 1 to 2. It can be clearly seen that for both
algorithms, LS and LS-MX sampling amounts to a more efficient algorithm than that with RN and RN-MX variants, and at
times this difference is more pronounced than other times.



(a) F (xk) vs. Oracle calls (Drive Diagnostics) (b) F (xk) vs. Oracle calls (Cover Type)

(c) F (xk) vs. Oracle calls (UJIIndoorLoc)

Figure 1: Comparison of Newton-CG (Algorithm 1) using various sampling schemes.

(a) F (xk) vs. Oracle calls (Drive Diagnostics) (b) F (xk) vs. Oracle calls (Cover Type)

(c) F (xk) vs. Oracle calls (UJIIndoorLoc)

Figure 2: Comparison of Trust-region (Algorithm 3) using various sampling schemes.

3.2 EVALUATION OF HYBRID SKETCHING TECHNIQUES

Here, to verify the result of Theorem 3, we evaluate the performance of Algorithm 3 by varying the terms involved in E.
We do this for a simple splitting of H = E + N, i.e., T = 1 in Theorem 3. We fix the overall sample size and change the
fraction of samples that are deterministically picked in E. The results are depicted in Figure 3. The value in brackets in
front of LS-Det is the fraction of samples that are included in E, i.e., deterministic samples. “LS-Det (0)” and “LS-Det
(1)” correspond to E = 0 and N = 0, respectively. The latter strategy has been used in low rank matrix approximations
McCurdy [2018]. As it can be seen, the hybrid sampling approach is always competitive with, and at times significantly



better than, LS-Det (0). As expected, LS-Det (1), which amounts to entirely deterministic samples, consistently performs
worse. This can be easily attributed to the high bias of such a deterministic estimator.

(a) F (xk) vs. Oracle calls (Drive Diagnostics) (b) F (xk) vs. Oracle calls (Cover Type)

(c) F (xk) vs. Oracle calls (UJIIndoorLoc)

Figure 3: Comparison of Algorithm 3 using hybrid randomized-deterministic sampling schemes. For all runs, the overall
sample/mini-batch size for estimating the Hessian matrix is s = 0.05n. The values in parentheses in front of LS-Det is the
fraction of samples that are taken deterministically and included in E.
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